CHAPTER 2

MATHEMATICAL MODELS
AND NUMERICAL METHODS

SECTION 2.1
POPULATION MODELS

Section 2.1 introduces the first of the two major classes of mathematical models studied in the
textbook, and is a prerequisite to the discussion of equilibrium solutions and stability in Section 2.2.

In Problems 1-8 we outline the derivation of the desired particular solution, and then sketch some
typical solution curves.

1. Noting that x >1 because x(0) =2, we write

dx ) l_ 1 _
Jx(l_x) = jldr, J(x x_ljdx jldt

Inx—In(x-1) = t+InC; Ll = Cé
x—

x(0)=2 implies C=2; x = 2(x-1e’

2e’ 2
2e' -1 2—et’

x(t) =

Typical solution curves are shown in the figure on the left below.
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Noting that x <10 because x(0)=1, we write

J—iﬁ—-=jum JF&-I jﬁ::ﬁom
x(10—x) x 10—x

Inx-In(10-x) = 10¢t+InC; = Ce'
10—x
x(0)=1 implies C=%; 9x = (10-x)e"
10e"” 10

x(t) =

9+e!® 14971

Typical solution curves are shown in the figure on the right at the bottom of the
preceding page.

Noting that x >1 because x(0) =3, we write

dx ) 11 _ (i
J(1+x)(1—x) - Ildt’ J-(x—l x+1jdx I( 2) dt

In(x-1)-In(x+1) = -2t+InC; -1 = Ce™
x+1
x(0)=3 implies C=%; 2(x=1) = (x+De™*

24 2e¥+1
2—e  2e" -1

Typical solution curves are shown in the figure on the left below.

x(t) =
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Noting that |x’ <3 because x(0)=0, we write

f dx = [tar, H LI jdx=j6dt
(3+2x)(3-2x) 3+2x 3-2x

lln(3+2x)—l]n(3__2x) - 6f+llnC; 3+2x
2 2 2 3-2x

x(0)=0 implies C=1; 34+2x = 3-2x)e™

3612t—-3 B 3(e12t_1)
2% 12 2(e12’+1)'

_ C eth

x(t) =

Typtcal solution curves are shown in the figure on the right at the bottom of the
preceding page.

Noting that x >5 because x(0)=38, we write

dx _ 11 _
Jx(x_s) = [(-3yar, Hx x_sjdx [15at

X 5
—=Ce1t

x=5

x(0)=8 implies C=8/3;  3x = 8(x—5)e'™

Inx—In(x-5) = 15¢+InC;

~40 " 40
- 3—8615' - 8—3e"15’ -

Typical solution curves are shown in the figure on the left below.
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6.

7.
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Noting that x <5 because x(0)=2, we write

dx 1 1
= [(-3)an; b |dx = [(-15)a
JX(S—X) ‘[( ) J(x S—XJ X _‘-( )
lnx—ln(S—x) = "15f+1nc; X — Ce—lSt
S5—x
x<0)=2 lmplleS C=2/3; 3x = 2(5_x)e_15t

-15¢
() = 10e _ 10

3+2e™ 24368

Typical solution curves are shown in the figure on the right at the bottom of the

preceding page.

Noting that x >7 because x(0)=11, we write

J & f(—4yar; J(l— 1 de = [284t
x(x—-T7) x x-7
Inx—In(x~7) = 28¢+InC; Y ™

x-17
x(0)=11 implies C=11/4; dx = 11(x-17)e*®

—77* 77
x(t) = 287 87 °
4-11e 11-4e

Typical solution curves are shown in the figure on the left below.
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10.

11.

12.

Noting that x >13 because x(0)=17, we write

dx ) 1 1 [
Jx(x—13) = Jra J(x x-lSde = Jcova

X
x—13

x(0)=17 implies C=17/4; 4x = 17(x—-13)e’"

Inx~In(x-13) = =917+ InC; = Ce"

—221e¢7" 221
x(t) = oir 97
4177 17—4e

Typical solution curves are shown in the figure on the right at the bottom of the
preceding page.

Substitution of P(0) =100 and P'(0) =20 into P’ =k/P yields k=2, so the
differential equation is P’ = 2+/P. Separation of variables and integration,
faPi2JP = [dt, gives NP = t+C. Then P(0)=100 implies C= 10, so

P(f) = (¢+10)>. Hence the number of rabbits after one yearis P(12) = 484.

Given P'=-6P=—(k/ JP YP=—k+/P, separation of variables and integration as in
Problem 9 yields 2P = —kt+C. The initial condition P(0) = 900 gives C=60, and

then the condition P(6) = 441 implies that k= 3. Therefore 2+/P = -3t +60, so
P = 0 after + = 20 weeks.

(a) Starting with dP/dt = k\/F, dPldt = k[P, we separate the variables and
integrate to get P(¢) = (k#/2 + C)>. Clearly P0) = Py implies C = \/FO .

(b) If P(?) = (kt/2+ 10)%, then P(6) = 169 impliesthat £ = 1. Hence
P(f) = (¢/2+10)%, so there are 256 fishafter 12 months.

Solution of the equation P’ = kP by separation of variables and integration,

ar _ [fea; Lok
P? P

gives P(f) = 1/(C~ k). Now P(0)=12 implies that C = 1/12, so now P(f) =

12/(1 — 12kz). Then P(10)=24 implies that k= 1/240, so finally P(f) = 240/(20 — ).
Hence P =48 whent=15, that is, in the year 2003. And obviously P —> o as # —> 20.
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13.

14.

15.

16.

17.

18.

19.

20.

21.
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(a) If the birth and death rates both are proportional to P* and > 5, then Eq. (1) in

this section gives P'=kP? with k positive. Separating variables and Integrating as in
Problem 12, we find that P(#) = 1/(C —kr). The initial condition P(0) = P, then gives
C=1/F,so P(t) = 1/(1/ B —kt) = P /(1-kPy).

(b) If =6 then P(r) = 6/(1-6kt). Now the fact that P(10)=9 implies that
k=180, so P(¥) = 6/(1-t/30) = 180/(30—1¢). Hence it is clear that
P — o as t—> 30 (doomsday).

Now dP/dt = —kP* with k>0, and separation of variables yields P(¥) = 1/(kt + C).
Clearly C = 1/Py asinProblem 13, s0 P(¥) = Po/(1 + kPof) . Therefore it is clear
that P(¥) - 0 as t— o0, so the population dies out in the long run.

If we write P' = bP(a/b- P) we see that M = a/b. Hence

BE _ (@B)P, _ a
= — = - =M.
D, bP; b

Note also (for Problems 16 and 17) that a=B,/F, and b=D,/P} = k.

The relations in Problem 15 give k= 1/2400 and M= 160. The solution is
P(r) = 19200/(120+40e™"""). We find that P = 0.95M after about 27.69 months.

The relations in Problem 15 give k= 1/2400 and M = 180. The solution is
P(1) = 43200/(240-60e7>"*). We find that P=1.05M after about 44.22 months.

If we write P' = aP(P—b/a) we see that M = b/a. Hence

DR _ GB)A _ b _
B, afF; a

Note also (for Problems 19 and 20) that 5=D,/P, and a=B,/P} = k.

The relations in Problem 18 give &= 1/1000 and A= 90. The solution is
P(¢) = 9000/(100-10¢°'). We find that P = 10M after about 24.41 months.

The relations in Problem 18 give 4= 1/1100 and A/=120. The solution is
P(¢) = 13200/(110+10e*"*). We find that P=0.1M after about 42.12 months.

Starting with the differential equation dP/dt = kP(200— P), we separate variables and
integrate, noting that P <200 because P, =100:
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22,

23.

24.

Jd_P:jkdt - J(LL L )dp:jzookdr;
P(200- P) P 200-P

P = 200kt +InC —> P

200-P 200-P

ln — Ce200kt

Now P(0)=100 gives C =1, and P'(0) =1 implies that 1=£%-100(200-100), so
we find that &£ =1/10000. Substitution of these numerical values gives

P = 2001/10000 _ 1/50

200-P ’

and we solve readily for P(f) = 200/(1 + e‘”so). Finally, P(60)= 200/(1 + e‘é/s) ~153.7

million.

We work in thousands of persons, so M = 100 for the total fixed population. We
substitute A/ = 100, P'(0) = 1, and Py = 50 in the logistic equation, and thereby obtain

1 = K(50)(100 — 50), so k= 0.0004.

If # denotes the number of days until 80 thousand people have heard the rumor, then Eq. (7)
in the text gives
50x100

~ 50+ (100— 50y 0%’

and we solve this equation for ¢~ 34.66. Thus the rumor will have spread to 80% of the
population in a little less than 35 days.

(a) X' = 0.8x—0.004x* = 0.004x(200 —x), so the maximum amount that will dissolve
is M = 200g.

(b) With M = 200, Py = 50, and £ = 0.004, Equation (4) in the text yields the
solution
10000

= ————
D= S 15060

Substituting x = 100 on the left, we solve for # = 1.25In3 ~ 1.37 sec.
The differential equation for M) is N'(f) = kN (15— N). When we substitute N(0) = 5

(thousands) and N'(0) = 0.5 (thousands/day) we find that £ = 0.01. With N in place of
P, this is the logistic equation in Eq. (3) of the text, so its solution is given by Equation (7):
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25.

26.

27.
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15x5 15

N@) = = 0.15¢ °
5+10exp[—(0.01)(15)¢] 142¢

Upon substituting N = 10 on the left, we solve for # = (In4)/(0.15) =~ 9.24 days.

Proceeding as in Example 3 in the text, we solve the equations
25.00k(M—25.00) = 3/8,  47.54k(M—47.54) = 12
for M = 100 and k£ = 0.0002. Then Equation (4) gives the population function

2500
254 75e7%0% -

P(t) =
We find that P = 75 when ¢t = 50In9 ~ 110, thatis, in 2035 A. D.
The differential equation for P(?) is

P'(H) = 0.001P2—5P.
When we substitute P(0) = 100 and P'(0) = 8 we find that 6 = 0.02, so

%i—) = 0.001P* -0.02P = 0.001P(P -20).

We separate variables and integrate, noting that P > 20 because F, =100:

J_d{’___ = [o.001ar = J[——l———l-)dP = [o.024t;
P(P -20) P-20 P

11’1ﬂ = iz‘+lnC = P-20 = Ce"™,
P 50 P

Now P(0)=100 gives C =4/5, hence

100

5(P-20) = 4P = P@) = FRVPEL

It follows readily that P = 200 when ¢ = 50 In(9/8) ~ 5.89 months.

We are given that
P = kP*-0.01P,

When we substitute P(0) = 200 and P'(0) = 2 we find that £ = 0.0001, so
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28.

”;—I; = 0.0001P* —0.017 = 0.0001P(P —100).

We separate variables and integrate, noting that P >100 because P, =200:

Ji_— J‘OOOOldt = H 1de— j001dr
P(P —100) P-100 P

w210 L e o 2210 e
P 100
Now P(0)=100 gives C =1/2, hence
200
2(P-100) = P = P@) = PaTE

(2) P = 1000 when ¢ = 100 In(9/5) ~ 58.78.
(b) P—>ow as t—>100In2 ~69.31.

Our alligator population satisfies the equation

dar

x = 0.0001x> ~0.01x = 0.0001x(x —100).

With x inplace of P, this is the same differential equation as in Problem 27, but now we
use absolute values to allow both possibilities x <100 and x >100:

J—dx—— jOOOOldt = H —l) dP = jo.mdr;
x(x—100) x-100 x

ln|x—1oo|= e = |x —100|
x 100 X

— Cet/lOO. (*)

(a) If x(0)=25 then x<100 and |x — 100| =100—-x, so (*) gives C =3 and hence

100
1/100 = x(t_) — 1+3et/100-

100—x = 3xe

We therefore see that x(¢) >0 as t— oo.
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30.

31.
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(b)  Butif x(0)=150 then x>100 and |x—100|=x-100, so (*) gives C=1/3
and hence

3(x-100) = xe”*° = x() = 3 300

1/100 ~
—€e

Now x(f) >+ as t—(1001n 33', so doomsday occurs after about 109.86 months.

Here we have the logistic equation
%}% = 0.03135P-0.0001489 P> = 0.0001489 P(210.544 — P)
where £ =0.0001489 and P =210.544. With F, =3.9 also, Eq. (7) in the text gives

(210.544)(3.9) 821.122

- (3.9) +(210.544 —3.9) o~ (0.0001489)(210.544)z - 3.0+ 206.644¢ 00155 °

Pt

(a) This solution gives P(140) ~127.008, fairly close to the actual 1930 U.S. census
population of 123.2 million.

(b) The limiting population as ¢ — o is 821.122/3.9 = 210.544 million.

©) Since the actual U.S. population in 200 was about 281 million — already exceeding
the maximum population predicted by the logistic equation — we see that that this model
did not continue to hold throughout the 20th century.

The equation is separable, so we have
fd_P - jﬂoe_mdt, so InP=- &e‘“’ +C.
P o

The initial condition P(0)=F, gives C=InPF, + f,/, so

P(@) = Pyexp [%(1 —e )}

If we substitute P(0) = 10° and P'(0) = 3x10° into the differential equation
P'(t) = B,e P,
we find that fy = 0.3. Hence the solution given in Problem 30 is

P(t) = Pexp[(0.3/a)(1—e*")].
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