CHAPTER 2 |KINEMATICS IN

ONE DIMENSION

ANSWERS TO FOCUS ON CONCEPTS QUESTIONS

10.

11.

. (b) Displacement, being a vector, conveys information about magnitude and direction.

Distance conveys no information about direction and, hence, is not a vector.

. (¢) Since each runner starts at the same place and ends at the same place, the three

displacement vectors are equal.

. (¢) The average speed is the distance of 16.0 km divided by the elapsed time of 2.0 h. The

average velocity is the displacement of 0 km divided by the elapsed time. The displacement is
0 km, because the jogger begins and ends at the same place.

. (a) Since the bicycle covers the same number of meters per second everywhere on the track,

its speed is constant.

. (e) The average velocity is the displacement (2.0 km due north) divided by the elapsed time

(0.50 h), and the direction of the velocity is the same as the direction of the displacement.

. (¢) The average acceleration is the change in velocity (final velocity minus initial velocity)

divided by the elapsed time. The change in velocity has a magnitude of 15.0 km/h. Since the
change in velocity points due east, the direction of the average acceleration is also due east.

. (d) This is always the situation when an object at rest begins to move.

. (b) If neither the magnitude nor the direction of the velocity changes, then the velocity is

constant, and the change in velocity is zero. Since the average acceleration is the change in
velocity divided by the elapsed time, the average acceleration is also zero.

. (a) The runners are always moving after the race starts and, therefore, have a non-zero average

speed. The average velocity is the displacement divided by the elapsed time, and the
displacement is zero, since the race starts and finishes at the same place. The average
acceleration is the change in the velocity divided by the elapsed time, and the velocity
changes, since the contestants start at rest and finish while running.

(c) The equations of kinematics can be used only when the acceleration remains constant and
cannot be used when it changes from moment to moment.

(a) Velocity, not speed, appears as one of the variables in the equations of kinematics.
Velocity is a vector. The magnitude of the instantaneous velocity is the speed.
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12. (b) According to one of the equation of kinematics (v2 = vg + 2ax, with vy =0 m/ S), the

displacement is proportional to the square of the velocity.

13.(d) According to one of the equation of kinematics (x =Vt + %atz, with v, =0 m/ S), the

displacement is proportional to the acceleration.

14. (b) For a single object each equation of kinematics contains four variables, one of which is
the unknown variable.

15. (e) An equation of kinematics (v =y, tat ) gives the answer directly, since the initial
velocity, the final velocity, and the time are known.

16. (c) An equation of kinematics [x = %(vo + v)t :I gives the answer directly, since the initial

velocity, the final velocity, and the time are known.

17.(e) An equation of kinematics (v2 = vg + Zax) gives the answer directly, since the initial

velocity, the final velocity, and the acceleration are known.

18. (d) This statement is false. Near the earth’s surface the acceleration due to gravity has the
approximate magnitude of 9.80 m/s* and always points downward, toward the center of the
earth.

19. (b) Free-fall is the motion that occurs while the acceleration is solely the acceleration due to
gravity. While the rocket is picking up speed in the upward direction, the acceleration is not
just due to gravity, but is due to the combined effect of gravity and the engines. In fact, the
effect of the engines is greater than the effect of gravity. Only when the engines shut down
does the free-fall motion begin.

20. (c) According to an equation of kinematics (vz = vg + 2ax, withv=0 m/ S), the launch

speed v, is proportional to the square root of the maximum height.

21.(a) An equation of kinematics (v =y, tat ) gives the answer directly.

22.(d) The acceleration due to gravity points downward, in the same direction as the initial
velocity of the stone thrown from the top of the cliff. Therefore, this stone picks up speed as
it approaches the nest. In contrast, the acceleration due to gravity points opposite to the initial
velocity of the stone thrown from the ground, so that this stone loses speed as it approaches
the nest. The result is that, on average, the stone thrown from the top of the cliff travels faster
than the stone thrown from the ground and hits the nest first.

23. 1.13s
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24. (a) The slope of the line in a position versus time graph gives the velocity of the motion. The
slope for part A is positive. For part B the slope is negative. For part C the slope is positive.

25. (b) The slope of the line in a position versus time graph gives the velocity of the motion.
Section A has the smallest slope and section B the largest slope.

26. (c) The slope of the line in a position versus time graph gives the velocity of the motion.
Here the slope is positive at all times, but it decreases as time increases from left to right in
the graph. This means that the positive velocity is decreasing as time increases, which is a
condition of deceleration.
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CHAPTER 2 |KINEMATICS IN
ONE DIMENSION

PROBLEMS

1. REASONING The distance traveled by the Space Shuttle is equal to its speed multiplied by

the time. The number of football fields is equal to this distance divided by the length L of one
football field.

SOLUTION The number of football fields is

v (7:6x10° mys)(110x107s) -

Number = —
L 91.4m

N~ =

2. REASONING The displacement is a vector that points from an object’s initial position to its
final position. If the final position is greater than the initial position, the displacement is
positive. On the other hand, if the final position is less than the initial position, the
displacement is negative. (a) The final position is greater than the initial position, so the
displacement will be positive. (b) The final position is less than the initial position, so the
displacement will be negative. (c) The final position is greater than the initial position, so the
displacement will be positive.

SOLUTION The displacement is defined as Displacement = x — x,,, where x is the final
position and x,, is the initial position. The displacements for the three cases are:

(a) Displacement=6.0m—-2.0m =

(b) Displacement=2.0m —6.0 m =
(c) Displacement=7.0m - (-3.0m) =

3. REASONING The average speed is the distance traveled divided by the elapsed time

(Equation 2.1). Since the average speed and distance are known, we can use this relation to
find the time.

SOLUTION The time it takes for the continents to drift apart by 1500 m is

Distance 1500 m

Average speed - ul I m
yr )| 100 cm

Elapsed time = =| 5x10% yr
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REASONING Since the average speed of the impulse is equal to the distance it travels
divided by the elapsed time (see Equation 2.1), the elapsed time is just the distance divided
by the average speed.

SOLUTION The time it takes for the impulse to travel from the foot to the brain is

Distance 1.8 m

- = 1.6x107 s (2.1)
Average speed  1.1x10% m/s

Time =

X=X

REASONING According to Equation 2.2 [\7 = 0 } the average velocity (\7) is equal
t—t
0

to the displacement (x—xo) divided by the elapsed time (t —1,), and the direction of the

average velocity is the same as that of the displacement. The displacement is equal to the
difference between the final and initial positions.

SOLUTION Equation 2.2 gives the average velocity as

t—1t,
Therefore, the average velocities for the three cases are:

(a) Average velocity = (6.0 m — 2.0 m)/(0.50 s) = [+8.0 m/s]
(b) Average velocity = (2.0 m — 6.0 m)/(0.50 s) =
(c) Average velocity = [7.0 m — (—3.0 m)]/(0.50 s) = |+2.0 x 10! m/s|

The algebraic sign of the answer conveys the direction in each case.

REASONING Distance and displacement are different physical quantities. Distance is a
scalar, and displacement is a vector. Distance and the magnitude of the displacement,
however, are both measured in units of length.

SOLUTION

a. The distance traveled is equal to three-fourths of the circumference of the circular lake.
The circumference of a circle is 27, where r is the radius of the circle. Thus, the distance d
that the couple travels is

3 3
d == (27r)=7]27(1.50 km) | =[7.07 km
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b. The couple’s displacement is the hypotenuse of a right End point
triangle with sides equal to the radius of the circle (see the ~
drawing). The magnitude R of the displacement can be R FooN
obtained with the aid of the Pythagorean theorem: Stating

proint )

R=\r?*+? :«/2(1.50km)2 = N — /

The angle @ that the displacement makes with due east is

0 =tan™ [Z]: tan”' (1) =| 45.0° north of east

r

REASONING AND SOLUTION 1n 12 minutes the sloth travels a distance of
x, = v =(0.037 m/s)(12 min)(&,sj —27m
1 min
while the tortoise travels a distance of

x, = vt =(0.076 m/s)(12 min)( fOTISHj —55m

The tortoise goes farther than the sloth by an amount that equals 55 m-27 m= | 28 m

REASONING The younger (and faster) runner should start the race after the older runner,
the delay being the difference between the time required for the older runner to complete the
race and that for the younger runner. The time for each runner to complete the race is equal to
the distance of the race divided by the average speed of that runner (see Equation 2.1).

SOLUTION The difference between the times for the two runners to complete the race is

sy —tg» where

Distance Distance
lsg = and #4= (2.1
(Average Speed)so_yr_01 q (Average Speed)lg_yr_01 d

The difference between these two times (which is how much later the younger runner should
start) is
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Distance

Distance _
(Average Speed)l 8-yr-old

(AVerage Speed )50-yr-01d

3 3

T 427 ms 439 m/s

Iso— 113

9. REASONING In order for the bear to catch the tourist over the distance d, the bear must
reach the car at the same time as the tourist. During the time ¢ that it takes for the tourist to

reach the car, the bear must travel a total distance of d + 26 m. From Equation 2.1,

d d+26m
Viourist — 7 (M and Voear — p 2)
Equations (1) and (2) can be solved simultaneously to find d.

SOLUTION Solving Equation (1) for ¢ and substituting into Equation (2), we find

— d+26m _ (d +26 m)vtourist

vb -
. d/ Vtourist d

_ 26 m

Voear = 1+ d Viourist
Solving for d yields:
J= 26 m _ 26 m [5om
Viear 1 6.0 m/s_1
Viourist 4.0 m/s

10. REASONING AND SOLUTION Let west be the positive direction. The average velocity
of the backpacker is

X +x
v=-W_¢€  where ¢+ =Y and ¢ =-%

t+t Wy C v

w e e

Combining these equations and solving for x_ (suppressing the units) gives

(/v )%, —[1-(1.34 m/s)/(2.68 m/s) | (6.44 km) — 0slkm
1-(1.34 m/s)/(0.447 mvs)

& (l—v/ve)
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The distance traveled is the magnitude of x_, or | 0.81 km |.

11.

REASONING AND SOLUTION

a. The total displacement traveled by the bicyclist for the entire trip is equal to the sum of
the displacements traveled during each part of the trip. The displacement traveled during
each part of the trip is given by Equation 2.2: Ax =V At . Therefore,

60 s
1 min

Ax; = (7.2 m/s)(22 min)( ): 9500 m

60 s
1 min

Ax, = (5.1 m/s)(36 min)( )z 11 000 m

60s

min

Axy = (13 m/s)(8.0 min)(1 ]: 6200 m

The total displacement traveled by the bicyclist during the entire trip is then

Ax= 9500 m + 11 000 m + 6200 m = | 2.67x10* m

b. The average velocity can be found from Equation 2.2.

A .
Ax 2.67x10* m [ Imin ]: 6.74 m/s, due north

V=—
60 s

Ar (22 min + 36 min + 8.0 min)

12.

REASONING  The definition of average velocity is given by Equation2.2 as
Average velocity = Displacement/(Elapsed time). The displacement in this expression is the
total displacement, which is the sum of the displacements for each part of the trip.
Displacement is a vector quantity, and we must be careful to account for the fact that the
displacement in the first part of the trip is north, while the displacement in the second part is
south.

SOLUTION According to Equation 2.2, the displacement for each part of the trip is the
average velocity for that part times the corresponding elapsed time. Designating north as the
positive direction, we find for the total displacement that

Displacement = (27 m/s)tNO o T (—17 m/s)tsOuth

Northward Southward

where # ., and ¢y . denote, respectively, the times for each part of the trip. Note that the
minus sign indicates a direction due south. Noting that the total elapsed time is
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INorth T fsouthy WE can use Equation 2.2 to find the average velocity for the entire trip as
follows:

Displacement _ (27 m) g +(~17 m/8)i5,

Average velocity = -
Elapsed time

tNorth + tSouth

:(27 m/s)[ tNorth ]_'_(_17 m/s)[t tSouth ]

tNorth + tSouth orth + tSouth

t 3 t 1
But | — North  |— = gpq | —South  |— _  Therefore, we have that
tNorth + tSouth 4 tNorth + tSouth 4

Average velocity = (27 rn/s)(% ]+ (-17 m/s)[i]z [+16 nvs]

The plus sign indicates that the average velocity for the entire trip points north.

13. REASONING AND SOLUTION The upper edge of the wall will disappear after the train
has traveled the distance d in the figure below.

B
0.90 m B
I A 12° A

2.0 b
PELLLEP > x\
>

- d

The distance d is equal to the length of the window plus the base of the 12° right triangle of
height 0.90 m.

The base of the triangle is given by

0.90
090m _ m o

tan12° ' b

Thus,d =20m + 42m = 62 m.

The time required for the train to travel 6.2 m is, from the definition of average speed,

xX_62m
3.0m/s

= =|2.1s
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14. REASONING AND SOLUTION Since v=v,+at, the acceleration is given by

a=(v—v,)/t. Since the direction of travel is in the negative direction throughout the

problem, all velocities will be negative.

. (=29.0 m/s)—(—27.0 m/s) _
50s

—0.40 m/s?

Since the acceleration is negative, it is in the same direction as the velocity and the car is
speeding up.

. (=23.0m/s)—(-27.0m/s) _
50s

+0.80 m/s?

Since the acceleration is positive, it is in the opposite direction to the velocity and the car is
slowing down or decelerating.

15.

REASONING The average acceleration (5 ) is defined by Equation 2.4 [5 % ] as the
r—t
0

change in velocity (v —v, ) divided by the elapsed time (t —1,)- The change in velocity is

equal to the final velocity minus the initial velocity. Therefore, the change in velocity, and
hence the acceleration, is positive if the final velocity is greater than the initial velocity. The
acceleration is negative if the final velocity is less than the initial velocity. The acceleration
is zero if the final and initial velocities are the same.

SOLUTION Equation 2 .4 gives the average acceleration as

a. The initial and final velocities are both +82 m/s, since the velocity is constant. The
average acceleration is

a = (82 m/s — 82 m/s)/(¢ - 1,) =

b. The initial velocity is +82 m/s, and the final velocity is —82 m/s. The average acceleration
is

7 =(-82m/s—82m/s)(12's) =
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16. REASONING Although the planet follows a curved, two-dimensional path through space,

this causes no difficulty here because the initial and final velocities for this period are in
opposite directions. Thus, the problem is effectively a problem in one dimension only.

Equation 2.4 (5:%] relates the change Av in the planet’s velocity to its average
t

acceleration and the elapsed time Ar = 2.16 years. It will be convenient to convert the
elapsed time to seconds before calculating the average acceleration.

SOLUTION
a. The net change in the planet’s velocity is the final minus the initial velocity:

Av = V=V, =-18.5 km/s —20.9 km/s =-39.4 km/s

Av=|-39.4 Jerfi 1(1000m ) ~3.94%10% m/s
15%%

S

b. Although the planet’s velocity changes by a large amount, the change occurs over a long
time interval, so the average acceleration is likely to be small. Expressed in seconds, the

interval is
At:(2.16)/f){316;;{ ][211){({ )(mf J[Sfﬂ%]:é.slxw s

Then the average acceleration is

AV _-3.94x10* m/s _
At 681x10" s

a= —5.79%10* m/s>

17.

REASONING Since the velocity and acceleration of the motorcycle point in the same
direction, their numerical values will have the same algebraic sign. For convenience, we will
choose them to be positive. The velocity, acceleration, and the time are related by Equation
24 v=vy,+at.

SOLUTION

a. Solving Equation 2.4 for t we have

v=v, (+31m/s)—(+21 m/s)

1= ) 40 S
a +2.5 m/s
b. Similarly,
- + —(+
t:V V0:(61m/s) (521m/s): 10 s
a +2.5 m/s
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18.

REASONING We can use the definition of average acceleration a=(v-v,)/(t~¢))

(Equation 2.4) to find the sprinter’s final velocity v at the end of the acceleration phase,
because her initial velocity (V0 =0 m/s, since she starts from rest), her average acceleration

a, and the time interval r— 1, are known.

SOLUTION
a. Since the sprinter has a constant acceleration, it is also equal to her average acceleration, so

a=+23m/s> Her velocity at the end of the 1.2-s period is

v=vy+a(t—1,) =0 ms)+(+23 m/s?) (1.2 5) = [+2.8 ms|

b. Since her acceleration is zero during the remainder of the race, her velocity remains

constant at [+2.8 m/s].

19.

REASONING When the velocity and acceleration vectors are in the same direction, the
speed of the object increases in time. When the velocity and acceleration vectors are in
opposite directions, the speed of the object decreases in time. (a) The initial velocity and
acceleration are in the same direction, so the speed is increasing. (b) The initial velocity and
acceleration are in opposite directions, so the speed is decreasing. (c) The initial velocity and
acceleration are in opposite directions, so the speed is decreasing. (d) The initial velocity and
acceleration are in the same direction, so the speed is increasing.

SOLUTION The final velocity v is related to the initial velocity V- the acceleration a, and
the elapsed time 7 through Equation 2.4 (v = v, + af). The final velocities and speeds for the
four moving objects are:

a.v=12m/s + (3.0 m/sz)(2.0 s) = 18 m/s. The final speed is |18 m/s|.

b. v=12m/s + (=3.0 m/s?)(2.0s) = 6.0 m/s. The final speed is [6.0 m/s].
c. v=—I2m/s + (3.0 m/s?)(2.0 s) = —6.0 m/s. The final speed is [6.0 m/s].
d. v=—12m/s + (-3.0 m/s*)(2.0's) =—18 m/s. The final speed is [18 m/s].

20.

REASONING The fact that the emu is slowing down tells us that the acceleration and the
velocity have opposite directions. Furthermore, since the acceleration remains the same in
both parts of the motion, we can determine its value from the first part of the motion and then
use it in the second part to determine the bird’s final velocity at the end of the total
6.0-s time interval.

SOLUTION



54 KINEMATICS IN ONE DIMENSION
a. The initial velocity of the emu is directed due north. Since the bird is slowing down, its
acceleration must point in the opposite direction, or .
b. We assume that due north is the positive direction. With the data given for the first part
of the motion, Equation 2.4 shows that the average acceleration is
- 10.6 m/s)—(13.0 m/
a= Y Vo _ | $)=(30m5) _ 5 60 mys?
t—t, 40s-0s
The negative value for the acceleration indicates that it indeed points due south, which is the
negative direction. Solving Equation 2.4 for the final velocity gives
— a — 2 —
v=vy+a(t—ty)=+10.6 m/s+(-0.60 m/s? )(2.0 50 5) =+9.4 m/s
Since this answer is positive, the bird’s velocity after an additional 2.0 s is in the positive
direction and is | 9.4 m/s, due north|.
21. REASONING AND SOLUTION The magnitude of the car's acceleration can be found
from Equation 2.4 (v = v, + ar) as
="V _ 268 m/s —0m/s _ 2 18 m/s2
t 3.275s
22. REASONING According to Equation 2.4, the average acceleration of the car for the first

twelve seconds after the engine cuts out is

— _ Yt Vo
a, =——2 1
1 A (1)

and the average acceleration of the car during the next six seconds is

7 = Vor TV20 _ Vor “Vir
)= -
At, At,

2)

The velocity v, of the car at the end of the initial twelve-second interval can be found by
solving Equations (1) and (2) simultaneously.
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SOLUTION Dividing Equation (1) by Equation (2), we have

a (=) /Ay (v —vyp)AL,

ay (v =vip) /ALy (vyp —vip)AY

Solving for v, we obtain

_ a Aty +a, AL _ (@] ay)) Aty + ALy,
a, At +a,At, (a,/ay)At, +At,

Vif

_ 1.50(12.0 )(+28.0 mv/s) + (6.0 s)(+36.0 m/s) _

T +30.0 m/s
1.50(12.08)+6.0 s

23. REASONING AND SOLUTION Both motorcycles have the same velocity v at the end of
the four second interval. Now

V=V taut
for motorcycle A and

V= VOB +aBt

for motorcycle B. Subtraction of these equations and rearrangement gives

Vop = Vop = (40 m/s* —2.0 m/s?)(4 s) = | +8.0 m/s

The positive result indicates that motorcycle A was initially traveling faster.

24. REASONING AND SOLUTION The average acceleration of the basketball player is
a=v/t,so

xz%_t2 :%(6'0 m’s )(1.5 s)2 = 45m

25. REASONING AND SOLUTION

a. The magnitude of the acceleration can be found from Equation 2.4 (v = v, + ar) as

v=y, 3.0m/s-0m/s _
t 20s

1.5 m/s?

a=

b. Similarly the magnitude of the acceleration of the car is
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v=v, 41.0m/s—-38.0m/s _
t 20s

1.5 m/s?

a=

c. Assuming that the acceleration is constant, the displacement covered by the car can be
found from Equation 2.9 (v2 = v02 + 2ax):

V=) (410 m/s)2 —(38.0 mis)?

xX= 3 79 m
2a 2(1.5 m/s*)

Similarly, the displacement traveled by the jogger is

Vv (3.0 m/s)? — (0 mys)?

xX= 3 =30m
2a 2(1.5 m/s%)

Therefore, the car travels 79 m — 3.0 m = | 76 m | further than the jogger.

26.

REASONING The average acceleration is defined by Equation 2.4 as the change in
velocity divided by the elapsed time. We can find the elapsed time from this relation because
the acceleration and the change in velocity are given.

SOLUTION
a. The time Ar that it takes for the VW Beetle to change its velocity by an amount
Av =v - is (and noting that 0.4470 m/s = 1 mi/h)

0.4470 m/s]_O .

(60.0 mi/h) :
V=V, 1mi/h
At = = =|11.4s

a 235m/s?

b. From Equation 2.4, the acceleration (in m/s?) of the dragster is

0.4470 m/s

———— |-0m/s
v=y, 1 mi/h

a: = =

1=t 0.600s-0s

(60.0 mi/h)[
=| 447 m/s?

27.

REASONING We know the initial and final velocities of the blood, as well as its

displacement. Therefore, Equation 2.9 (v2 = vg + 2ax) can be used to find the acceleration
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of the blood. The time it takes for the blood to reach it final velocity can be found by using

Equation 2.7 | ¢t = 1# .
3(v+v)

SOLUTION
a. The acceleration of the blood is

v —vg _ (26 cm/s)2 —(0 cm/s)2

=|1.7x10% cm/s?
2x 2(2.0 cm)

a=

b. The time it takes for the blood, starting from O cm/s, to reach a final velocity of +26 cm/s
is

X 2.0 cm

(Vo +v) %(O cm/s+26 cm/s) >

=

=

28.

REASONING AND SOLUTION
a. From Equation 2.4, the definition of average acceleration, the magnitude of the average
acceleration of the skier is

v=v, 80m/s—-0m/s
t—1t, 50s

1.6 m/s>

a=

b. With x representing the displacement traveled along the slope, Equation 2.7 gives:

x=1 @+t =18.0m/s+0n/s)(5.05)=[2.0x10' m

29.

REASONING AND SOLUTION The average acceleration of the plane can be
found by solving Equation 2.9 (vz :vg +2ax) for a. Taking the direction of motion as

positive, we have

vV =vy (6.1 m/s)? —(+69 m/s)®

2x 2(+750 m)

~ 3.1 m/s?

a=

The minus sign indicates that the direction of the acceleration is opposite to the direction of
motion, and the plane is slowing down.

30.

REASONING At a constant velocity the time required for Secretariat to run the final mile is
given by Equation 2.2 as the displacement (+1609 m) divided by the velocity. The actual
time required for Secretariat to run the final mile can be determined from Equation 2.8, since
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the initial velocity, the acceleration, and the displacement are given. It is the difference
between these two results for the time that we seek.
SOLUTION According to Equation 2.2, with the assumption that the initial time is 7, = 0 s,
the run time at a constant velocity is
+1
At=i—gy =g =20 HOOM o) 04
v +16.58 m/s
Solving Equation 2.8 (x =Vl + % atz) for the time shows that
2
_ —v i\/vo —4(%a)(—x)
2(3a)
~16.58 m/si\/(+16.58 m/s)” —4(1)(+0.0105 m/s? ) (~1609 m)
2(4)(+0.0105 mys? )
We have ignored the negative root as being unphysical. The acceleration allowed Secretariat
to run the last mile in a time that was faster by
97.04 5—94.2 s =
31. REASONING The cart has an initial velocity of v, = +5.0 m/s, so initially it is
moving to the right, which is the positive direction. It eventually reaches a point where the
displacement is x = +12.5 m, and it begins to move to the left. This must mean that the cart
comes to a momentary halt at this point (final velocity is v =0 m/s), before beginning to
move to the left. In other words, the cart is decelerating, and its acceleration must point
opposite to the velocity, or to the left. Thus, the acceleration is negative. Since the initial
velocity, the final velocity, and the displacement are known, Equation 2.9 (vz :vg +2ax)
can be used to determine the acceleration.
SOLUTION Solving Equation 2.9 for the acceleration a shows that
2 .2 2 2
ve—vy  (0m/s)” —(+5.0 m/s) -2
a= = =[-1.0 m/s
2x 2(+12.5m)
32. REASONING At time t both rockets return to their starting points and have a displacement

of zero. This occurs, because each rocket is decelerating during the first half of its journey.
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However, rocket A has a smaller initial velocity than rocket B. Therefore, in order for rocket
B to decelerate and return to its point of origin in the same time as rocket A, rocket B must
have a deceleration with a greater magnitude than that for rocket A. Since we know that the
displacement of each rocket is zero at time ¢, since both initial velocities are given, and since
we seek information about the acceleration, we begin our solution with Equation 2.8, for it
contains just these variables.

SOLUTION Applying Equation 2.8 to each rocket gives

xA:vOAz‘+%aAt2 xB:vOBt+%aBt2
0:vOAz‘+%aAt2 0:v0B1+%aBt2
O:v0A+%aAt 0:vOB+%aBt
l:ﬂ t:%
dp dp

The time for each rocket is the same, so that we can equate the two expressions for #, with the
result that

~2Voa _ Vo8 Yoa _ YoB

or
N ag ap dg

Solving for ay gives

_a, _ —15m/s?
ag = YoB =
Vor "B 5800 mys

(8600 m/s) =|-22 m/s*

As expected, the magnitude of the acceleration for rocket B is greater than that for rocket A.

33.

REASONING The stopping distance is the sum of two parts. First, there is the distance the
car travels at 20.0 m/s before the brakes are applied. According to Equation 2.2, this distance
is the magnitude of the displacement and is the magnitude of the velocity times the time.
Second, there is the distance the car travels while it decelerates as the brakes are applied.
This distance is given by Equation 2.9, since the initial velocity, the acceleration, and the
final velocity (0 m/s when the car comes to a stop) are given.

SOLUTION With the assumption that the initial position of the car is x, = 0 m, Equation 2.2
gives the first contribution to the stopping distance as

Ax, =x, = vt; =(20.0 m/s)(0.530 s)
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Solving Equation 2.9 (vz = vg + 2ax) for x shows that the second part of the stopping

distance is

v =2 (0 m/s)’ —(20.0 m/s)’
x = =
> 2a 2(-7.00 mys?)

Here, the acceleration is assigned a negative value, because we have assumed that the car is

traveling in the positive direction, and it is decelerating. Since it is decelerating, its

acceleration points opposite to its velocity. The stopping distance, then, is

2 2
41, (200 mis)(0.530 5)+ (LSS ~(00mS) o
Xqoooso o =X, +x, =(20. s)(0. S =392 m
Stopping 1 2 9 (_7'00 m/sz )

34. REASONING The entering car maintains a constant acceleration of a; = 6.0 m/s? from the

time it starts from rest in the pit area until it catches the other car, but it is convenient to
separate its motion into two intervals. During the first interval, lasting 7, = 4.0 s, it

accelerates from rest to the velocity v,, with which it enters the main speedway. This

velocity is found from Equation 2.4 (v =V, +at), withvy=0m/s,a=a,t=¢,andv=y:

Vio = a4 (1)

The second interval begins when the entering car enters the main speedway with velocity v,
and ends when it catches up with the other car, which travels with a constant velocity v, =

70.0 m/s. Since both cars begin and end the interval side-by-side, they both undergo the same
displacement x during this interval. The displacement of each car is given by Equation 2.8

(x =Vt +%at2 ) . For the accelerating car, v, =v,,, and a = a, so
X =vlot+%a1t2 (2)
For the other car, v, = v, anda=0 m/s?, and so Equation 2.8 yields
X =V,t 3)

SOLUTION The displacement during the second interval is not required, so equating the
right hand sides of Equations (2) and (3) eliminates x, leaving an equation that may be solved
for the elapsed time #, which is now the only unknown quantity:
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1 2 _
v10t+5a1t —vzot

V10/+%"1t2 :"20/

L. 4)
24 =Vy0 " Vg
f= 2("20_"10)

a4

Substituting Equation (1) for v, into Equation (4), we find that

2(vy-at) 2[70.0m/s- (6.0 mis?) (4.0 )]

= a (6.0 mss?) -las

35. REASONING The drawing shows the two knights, initially separated by the displacement d,
traveling toward each other. At any moment, Sir George’s displacement is x; and that of Sir

Alfred is x A+ When they meet, their displacements are the same, so XG =Xy

. ' — <—I—> + Starting point
Starting point for Sir Alfred
for Sir George /
T . Lo
] L] > Lol
el
>

According to Equation 2.8, Sir George's displacement as a function of time is
_ 1, 2_ 1, 2_1, 2
Xg =Vogl T3 46! =(0 m/s)t+5aGt =5agt (1)
where we have used the fact that Sir George starts from rest (Vo =0 m/s).

Since Sir Alfred starts from rest at x = d at t = 0 s, we can write his displacement as (again,
employing Equation 2.8)

Xy =d+vyst+ia, P =d+(0m/s)i+La, i =d+La,r’ )
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Solving Equation 1 for £ (t2 =2xg / aG) and substituting this expression into Equation 2
yields
2Xx, X,
xA:d+%aA -G =d+a, -G 3)
el el
Noting that x, = x, when the two riders collide, we see that Equation 3 becomes
*G
Xg=d+a,| —
el
. . . . d
Solving this equation for x gives x; = .
1— N
el
SOLUTION Sir George’s acceleration is positive (aG =+0.300 m/s* ) since he starts from
rest and moves to the right (the positive direction). Sir Alfred’s acceleration is negative
(a A =—0.200 m/sz) since he starts from rest and moves to the left (the negative direction).
The displacement of Sir George is, then,
%g = d __ 88.0 m . _528m
1% _(-0200ms%)
a  (+0.300 m/s?)
36. REASONING The players collide when they have the same x coordinate relative to a

common origin. For convenience, we will place the origin at the starting point of the first
player. From Equation 2.8, the x coordinate of each player is given by

_ 1 2 1 2
X =Vorh todly =544 (1)

Xy =d+Vy,t, +%azz‘22 = d+%azz‘22 (2)
where d = +48 m is the initial position of the second player. When x, =x,, the players

collide at time ¢ = t =t,.

SOLUTION
a. Equating Equations (1) and (2) when ¢ =¢, =¢,, we have
2

1 2 1
Ealt —d+5a2t
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We note that a; = +0.50 m/s?, while a, =-0.30 m/s?, since the first player accelerates in the

+x direction and the second player in the —x direction. Solving for ¢, we have

@ =ay /(0.50 m/s? )~ (030 m/s? )

_ [ 2 _\/( 2(48 m) _[iTd

b. From Equation (1),

x =L at? =1(0.50 ms?)(11's)” =[3.0x10" m]

37.

REASONING At a constant velocity the time required for the first car to travel to the next

exit is given by Equation 2.2 as the magnitude of the displacement (2.5 X 103 m) divided by
the magnitude of the velocity. This is also the travel time for the second car to reach the next
exit. The acceleration for the second car can be determined from Equation 2.8, since the
initial velocity, the displacement, and the time are known. This equation applies, because the
acceleration is constant.

SOLUTION According to Equation 2.2, with the assumption that the initial time is 7, = 0 s,
the time for the first car to reach the next exit at a constant velocity is

3
Atzt—t0=t=g=%=76s
v S

Remembering that the initial velocity v, of the second car is zero, we can solve Equation 2.8

(x =Vt + % at® = %at2 ) for the acceleration to show that

_2x _2(2.5x10° m) _

12 (76 s)*

0.87 m/s>

Since the second «car’s speed is increasing, this acceleration must be

in the same direction as the Velocity| .

38.

REASONING Let the total distance between the first and third sign be equal to 2d. Then,
the time ¢, is given by

:i+i:d("35+"55) (1)

Vs5 V35 V55V35
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Equation 2.7 [x = %(Vo +v)t} can be written as ¢ = 2x/(v0 +v), so that

, oo 2d 2 _2d[("35+"25)+("55+"35)}

B Vss TV35 V35T V)s B ("55 +"35)("35 +"25)

2)

SOLUTION Dividing Equation (2) by Equation (1) and suppressing units for convenience,
we obtain

s _ 2V55V3s [(Vss +V55)+ (Vs +V35)} 2(55)(35)[(35+25)+(55+35):| =

‘a (V55+V35)2 ("35+V25) (55+35)2(35+25)

39. REASONING Because the car is traveling in the +x direction and decelerating, its

acceleration is negative: a = —2.70 m/s>. The final velocity for the interval is given (v = +4.50
m/s), as well as the elapsed time (¢ = 3.00 s). Both the car’s displacement x and its initial
velocity v, at the instant braking begins are unknown.

Compare the list of known kinematic quantities (v, a, t) to the equations of kinematics for
constant acceleration: v= v, t+at (Equation 2.4), x :%(vo +v)t (Equation 2.7),
x= v0t+%at2 (Equation 2.8), and +? = vg +2ax (Equation 2.9). None of these four

equations contains all three known quantities and the desired displacement x, and each of
them contains the initial velocity v,,. Since the initial velocity is neither known nor requested,

we can combine two kinematic equations to eliminate it, leaving an equation in which x is the
only unknown quantity.

SOLUTION For the first step, solve Equation 2 .4 (v =V, +at) for v,
vy =v—at (1)

Substituting the expression for v, in Equation (1) into Equation 2.8 (x = vot+%at2 ) yields

an expression for the car’s displacement solely in terms of the known quantities v, a, and #:
— 1,2 _ 21,2
X = (v—at)t+5at =vt—at +§at
X=vt— % at? (2)

Substitute the known values of v, a, and ¢ into Equation (2):
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x = (+4.50 m/s)(3.00 s) -4 (270 m/s? ) (3.00 )’ =

Note: Equation (2) can also be obtained by combining Equation (1) with Equation 2.7
|:x=%(v0+v)t:|, or, with more effort, by combining Equation (1) with Equation 2.9

(vz = vg + 2ax).

40.

REASONING AND SOLUTION  As the plane decelerates through the intersection, it
covers a total distance equal to the length of the plane plus the width of the intersection, so

X =597m+250m = 84.7m

The speed of the plane as it enters the intersection can be found from Equation 2.9. Solving
Equation 2.9 for v, gives

vy =2 —2ax =/(45.0 m)> —2(=5.70 m/s2)(84.7 m) = 54.7 m/s

The time required to traverse the intersection can then be found from Equation 2.4. Solving
Equation 2 .4 for ¢ gives

—v,  45.0m/s—54.
1% V0= 50m/s—5 Zm/s:
a —5.70 m/s

41.

REASONING  As the train passes through the crossing, its motion is described by

Equations 2.4 (v =v, + ar) and 2.7 [x = %(V + )t} , which can be rearranged to give

2x
v—v, =at and VvV, =—
{

These can be solved simultaneously to obtain the speed v when the train reaches the end of
the crossing. Once v is known, Equation 2.4 can be used to find the time required for the
train to reach a speed of 32 m/s.

SOLUTION Adding the above equations and solving for v, we obtain

2x

v=%(at+—)= %[(1.6 m/s?)(2.4 s)+
t

M} =1.0x10" m/s
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The motion from the end of the crossing until the locomotive reaches a speed of 32 m/s
requires a time

v=v, 32m/s — 1.0x10' m/s _

14 s
a 1.6 m/s>

=

42.

REASONING Since the car is moving with a constant velocity, the displacement of the car
in a time ¢ can be found from Equation 2.8 with a =0 m/s? and v, equal to the velocity of the

car: x Since the train starts from rest with a constant acceleration, the

car vcart :
displacement of the train in a time ¢ is given by Equation 2.8 with v, =0 m/s:

_1 2
Xirain = 2 Xrain

t

At atime ¢, , when the car just reaches the front of the train, Year = Livain + Xirain where Lo
is the length of the train. Thus, at time ts
v t=L . +1lq ¢ (1)
car'l train = 2 train’l

At a time t,, when the car is again at the rear of the train, Xogy =X

irain Thus, at time t,
ram

_1 2
vcarZZ -2 atraintZ ()

Equations (1) and (2) can be solved simultaneously for the speed of the car V.o and the

acceleration of the train g, . .
train

SOLUTION
a. Solving Equation (2) for a,,. ~we have

Arain = = (3)

Substituting this expression for g into Equation (1) and solving for v__ , we have

train

L

: 92 m
— train — =13 I’I]/
t (14's)

_1 1-——
1 tz 28 s

b. Direct substitution into Equation (3) gives the acceleration of the train:
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2y _2(13m)5) _

train —
t 28s

0.93 m/s>

a

43.

REASONING AND SOLUTION When air resistance is neglected, free fall
conditions are applicable. The final speed can be found from Equation 2.9;

2_.2
Ve =vy+2ay
where v, is zero since the stunt man falls from rest. If the origin is chosen at the top of

the hotel and the upward direction is positive, then the displacement is y = -99.4 m. Solving
for v, we have

y=—\2ay = —2(-9.80 m/s2)(~99.4 m) = — 4.1 m/s

The speed at impact is the magnitude of this result or | 44.1 m/s |.

44,

REASONING Because there is no effect due to air resistance, the rock is in free fall from its

launch until it hits the ground, so that the acceleration of the rock is always —9.8 m/s?,
assuming upward to be the positive direction. In (a), we will consider the interval beginning
at launch and ending 2.0 s later. In (b), we will consider the interval beginning at launch and

ending 5.0 s later. Since the displacement isn’t required, Equation 2.4 (v =V, +at) suffices

to solve both parts of the problem. The stone slows down as it rises, so we expect the speed
in (a) to be larger than 15 m/s. The speed in (b) could be smaller than 15 m/s (the rock does
not reach its maximum height) or larger than 15 m/s (the rock reaches its maximum height
and falls back down below its height at the 2.0-s point).

SOLUTION
a. For the interval from launch to ¢ = 2.0 s, the final velocity is v = 15 m/s, the acceleration is

a =-9.8 m/s?, and the initial velocity is to be found. Solving Equation 2.4 (v=v, +at)for vy

gives
vy =v—at =15 m/s—(-9.8 m/s*)(2.0 s) =35 /s

Therefore, at launch,

Speed =

b. Now we consider the interval from launch to t = 5.0 s. The initial velocity is that found in
part (a), vo = 35 m/s. The final velocity is
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v=v,+at=35m/s + (-9.8 m/s*)(5.0 s) = —14 mvs (2.4)
Instantaneous speed is the magnitude of the instantaneous velocity, so we drop the minus
sign and find that
Speed =
45. REASONING AND SOLUTION 1n a time t the card will undergo a vertical displacement y
given by
y=yar
where a = —9.80 m/s>. When 7 = 60.0 ms = 6.0 x 1072 s, the displacement of the card is
0.018 m, and the distance is the magnitude of this value or d1 =0.018m|.
Similarly, when # = 120 ms, d2 =0.071 m |, and when 7 = 180 ms, a’3 =0.16m |.
46. REASONING

Assuming that air resistance can be neglected, the acceleration is the same for both the

upward and downward parts, namely —9.80 m/s®> (upward is the positive direction).
Moreover, the displacement is y = 0 m, since the final and initial positions of the ball are the

same. The time is given as t = 8.0 s. Therefore, we may use Equation 2.8 ( y=v,t+ %atz)

to find the initial velocity v, of the ball.

SOLUTION Solving Equation 2.8 ( y=vyt+ %a t2) for the initial velocity v, gives

1,2 0m—1(-9.80m/s2)(8.0s)
Vozy ia = 2( 205 )( ) =[+39 m/s
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REASONING AND SOLUTION The figure at the right N
shows the paths taken by the pellets fired from gun A and
gun B. The two paths differ by the extra distance covered
by the pellet from gun A as it rises and falls back to the +
edge of the cliff. When it falls back to the edge of the cliff,
the pellet from gun A will have the same speed as the
pellet fired from gun B, as Conceptual Example 15
discusses. Therefore, the flight time of pellet A will be
greater than that of B by the amount of time that it takes
for pellet A to cover the extra distance.

>

SRR

=

The time required for pellet A to return to the cliff edge after being fired can be found from
Equation 2.4: v =y, + at. If "up" is taken as the positive direction then v, = +30.0 m/s and

v =-30.0 m/s. Solving Equation 2 .4 for ¢ gives

v=v, _ (<30.0m/s)—(+30.0m/s) _

6.12s
a —9.80 m/s?

t =

Notice that this result is independent of the height of the cliff.

48.

REASONING The initial velocity and the elapsed time are given in the problem. Since the
rock returns to the same place from which it was thrown, its displacement is zero (y = 0 m).

Using this information, we can employ Equation 2.8 ( y:vot+%at2) to determine the

acceleration a due to gravity.

SOLUTION Solving Equation 2.8 for the acceleration yields

2(y=vyt) 2|0m—(+15m/s)(20.0
a= (y 2v0 )= [ m-(+15m Sz)( S):lz ~1.5m/s?
t (20.0s)

49.

REASONING The initial velocity of the compass is +2.50 m/s. The initial position

of the compass is 3.00 m and its final position is O m when it strikes the ground. The
displacement of the compass is the final position minus the initial position, or y = -3.00 m.
As the compass falls to the ground, its acceleration is the acceleration due to gravity,

a = —-9.80 m/s’. Equation 2.8 ( y=vyt + %atz) can be used to find how much time elapses

before the compass hits the ground.

SOLUTION Starting with Equation 2.8, we use the quadratic equation to find the elapsed
time.
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—vy \/vg ~4(La)(~y) —(2.50mss)+ \/(2.50 m/s)” - 4(-4.90 m/s?)[~(-3.00m) ]
= =
2(1a) 2(~4.90 m/s? )
There are two solutions to this quadratic equation, ¢, = and 1, =-0.568 s. The second
solution, being a negative time, is discarded.

50. REASONING The initial speed of the ball can be determined from Equation 2.9
(v2 :vg +2ay). Once the initial speed of the ball is known, Equation 2.9 can be used a
second time to determine the height above the launch point when the speed of the ball has
decreased to one half of its initial value.

SOLUTION When the ball has reached its maximum height, its velocity is zero. If we take
upward as the positive direction, we have from Equation 2.9 that

vy =2 —2ay = \/(o m/s)” —2(-9.80 m/s?)(16 m) =18 m/s
When the speed of the ball has decreased to one half of its initial value, v = %vo,
and Equation 2.9 gives

Vo Gl v w1 \o_U8ms)’ (1)
y= = = = 3 = m
2a 2a 2a\ 4 2(-9.80 m/s”) | 4
51. REASONING AND SOLUTION
a. V= vg +2ay

v= i\/(1.8 m/s)’ +2(-9.80 m/s?)(-3.0 m) =+7.9 ms

The minus is chosen, since the diver is now moving down. Hence, | v=-7.9 m/s |.

b. The diver's velocity is zero at his highest point. The position of the diver relative to the
board is

2 1.8 m/s)’
yz—v—oz— ( S) =0.17m

2a 2(-9.80 m/s?)
The position above the wateris 3.0 m +0.17 m = .
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REASONING Equation 2.9 (vz = vg +2ay)can be used to determine the maximum height
above the launch point, where the final speed is v=0 m/s. However, we will need to know

the initial speed v, which can be determined via Equation 2.9 and the fact that v = %Vo when

y=4.00 m (assuming upward to be the positive direction).

SOLUTION When the ball has reached its maximum height, we have v=0m/s and
Y = Ymax» SO that Equation 2.9 becomes
2
2 -V
V2 = Vg +2ay  or (Om/s) = vg +2ay, .. or y. .= 2_5 (D)

Using Equation 2.9 and the fact that v = %Vo when y=4.00 m (assuming upward to be the

positive direction), we find that

) ,  2a(4.00 m)

242 ! )2— 2 +2a(4.00 m) ()
\% —VO ay or (EVO —VO a . m or VO— _(3/4)

Substituting Equation (2) into Equation (1) gives

—vp _—2a(4.00 m)/[-(3/4)]

Ymax 2a 2a

53.

REASONING AND SOLUTION Since the balloon is released from rest, its initial
velocity is zero. The time required to fall through a vertical displacement y can be found

from Equation 2.8 ( y :v0t+%at2) with v, =0m/s. Assuming upward to be the positive

) g EC Iy
a —9.80 m/s

direction, we find

54.

REASONING Equation 2.9 (vz :vg +2ay) can be used to find out how far above the

cliff's edge the pellet would have gone if the gun had been fired straight upward, provided
that we can determine the initial speed imparted to the pellet by the gun. This initial speed
can be found by applying Equation 2.9 to the downward motion of the pellet described in the
problem statement.

SOLUTION If we assume that upward is the positive direction, the initial speed of the
pellet is, from Equation 2.9,

vy = V2 —2ay =+/(—27 m/s)> —2(-9.80 m/s2)(— 15 m) =20.9 m/s
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Equation 2.9 can again be used to find the maximum height of the pellet if it were fired

straight up. At its maximum height, v = 0 m/s, and Equation 2.9 gives

—vy  —(209m/s)®

N 22 m
2a  2(-9.80 m/s?)

y:

55.

REASONING The displacement y of the diver is equal to her average velocity v multiplied
by the time ¢, or y =v¢. Since the diver has a constant acceleration (the acceleration due to

gravity), her average velocity is equal to v = % (vo+v), where v and v are, respectively, the

initial and final velocities. Thus, according to Equation 2.7, the displacement of the diver is
y=2(vy+v)t 2.7

The final velocity and the time in this expression are known, but the initial velocity is not. To
determine her velocity at the beginning of the 1.20-s period (her initial velocity), we turn to
her acceleration. The acceleration is defined by Equation 2.4 as the change in her velocity, v

— vy, divided by the elapsed time 7 a=(v—v,)/t. Solving this equation for the initial
velocity v, yields

Vo =Vv—at

Substituting this relation for v,, into Equation 2.7, we obtain

(vo+v)t:%(v—at+v)t=vt—%at2

N | —

y:

SOLUTION The diver’s acceleration is that due to gravity, or a = —9.80 m/s>. The
acceleration is negative because it points downward, and this direction is the negative
direction. The displacement of the diver during the last 1.20 s of the dive is

2
y=vi—Lar? =(-10.1 m/s)(1.20 5)- 1 (-9.80 m/s?)(1.20 s)° =

The displacement of the diver is negative because she is moving downward.

56. REASONING The ball is initially in free fall, then collides with the pavement and rebounds,

which puts it into free fall again, until caught by the boy. We don’t have enough information
to analyze its collision with the pavement, but we’re only asked to calculate the time it
spends in the air, undergoing free-fall motion. The motion can be conveniently divided into
three intervals: from release (4; = 9.50 m) to impact, from impact to the second highest point
(hy = 5.70 m), and from the second highest point to 43 = 1.20 m above the pavement. For
each of the intervals, the acceleration is that due to gravity. For the first and last interval, the
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ball’s initial velocity is zero, so the time to fall a given distance can be found from Equation
2
2.8 (y :v0t+%at )

The second interval begins at the pavement and ends at /4, so the initial velocity isn’t zero.
However, the symmetry of free-fall motion is such that it takes the ball as much time to rise
from the ground to a maximum height 4, as it would take for a ball dropped from #; to fall to
the pavement, so we can again use Equation 2.8 to find the duration of the second interval.

SOLUTION Taking upward as the positive direction, we have a = —9.80 m/s’ for the
acceleration in each of the three intervals. Furthermore, the initial velocity for each of the
intervals is vo = 0 m/s. Remember, we are using symmetry to treat the second interval as if
the ball were dropped from rest at a height of 5.70 m and fell to the pavement. Using

Equation 2.8 ( Y=yt +%a12 ), with vy = 0 m/s, we can solve for the time to find that

=2

a
Applying this result to each interval gives the total time as

. \/2(—9.50 m) +\/2(—5.70 m) +\/2[—(5.70 m-120m)]

—9.80 m/s>  \ —9.80 m/s’ ~9.80 m/s’

1" interval 2™ interval 3" interval

Note that the displacement y for each interval is negative, because upward has been
designated as the positive direction.

57.

REASONING To calculate the speed of the raft, it is necessary to determine the distance it
travels and the time interval over which the motion occurs. The speed is the distance divided
by the time, according to Equation 2.1. The distance is
7.00 m — 4.00 m = 3.00 m. The time is the time it takes for the stone to fall, which can be

obtained from Equation 2.8 ( y=vt+ %atz), since the displacement y, the initial velocity

v,» and the acceleration a are known.

SOLUTION During the time ¢ that it takes the stone to fall, the raft travels a distance of
7.00 m — 4.00 m = 3.00 m, and according to Equation 2.1, its speed is

3.00 m

speed =
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The stone falls downward for a distance of 75.0m, so its displacement is
y = —75.0 m, where the downward direction is taken to be the negative direction. Equation
2.8 can be used to find the time of fall. Setting v, = 0 m/s, and solving Equation 2.8 for the
time ¢, we have
2 2(=75.0m
r=|2 = (—2):3.915
a —9.80 m/s
Therefore, the speed of the raft is
speed = 3.00m _ 0.767 m/s
391s
58. REASONING

The stone that is thrown upward loses speed on the way up. The stone that is thrown
downward gains speed on the way down. The stones cross paths below the point that
corresponds to half the height of the cliff. To see why, consider where they would cross
paths if they each maintained their initial speed as they moved. Then, they would cross paths
exactly at the halfway point. However, the stone traveling upward begins immediately to
lose speed, while the stone traveling downward immediately gains speed. Thus, the upward
moving stone travels more slowly than the downward moving stone. Consequently, the
stone thrown downward has traveled farther when it reaches the crossing point than the stone
thrown upward.

The initial velocity v, is known for both stones, as is the acceleration a due to gravity. In

addition, we know that at the crossing point the stones are at the same place at the same
time ¢. Furthermore, the position of each stone is specified by its displacement y from its
starting point. The equation of kinematics that relates the variables v, a, ¢ and y is

Equation 2.8 ( y=vyt +%az‘2 ), and we will use it in our solution. In using this equation, we

will assume upward to be the positive direction.

SOLUTION Applying Equation 2.8 to each stone, we have

=v,Pt+ % at*>  and = ydown; 4 %at2

Y Y down 0

up

Upward moving stone Downward moving stone
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In these expressions ¢ is the time it takes for either stone to
reach the crossing point, and a is the acceleration due to

gravity. Note that Yup is the displacement of the upward Ydown

moving stone above the base of the cliff, y, . is the H

displacement of the downward moving stone below the top
of the cliff, and H is the displacement of the cliff-top above
the base of the cliff, as the drawing shows. The

distances above and below the crossing point must add to equal the height of the cliff, so we
have

Yup

Yup ~ Vdown =H

where the minus sign appears because the displacement y, — points in the negative
direction. Substituting the two expressions for Yup and y, .. into this equation gives

up 1,2 down 1 ..2\_
Vo t+5at — (Vo t+5at )—H

This equation can be solved for ¢ to show that the travel time to the crossing point is

H

up _ down
Yoo TV

=

Substituting this result into the expression from Equation 2.8 for Yup gives

2
H H
_ W12 up 1
Y. =V, +-at™=vy — |+5a| —/————
up 0 2 0 v:)lp _ V(()lown 2 v(l)lp _ v(c)iown
6.00 6.00 ?
=(9.00 m/s) = +1(-9.80 m/s?) =
9.00 m/s —(—9.00 m/s) 9.00 m/s —(—9.00 m/s)

=246 m

Thus, the crossing is located a distance of above the base of the cliff, which is
below the halfway point of 3.00 m, as expected.

59.

REASONING AND SOLUTION
a. We can use Equation 2.9 to obtain the speed acquired as she falls through the distance H.
Taking downward as the positive direction, we find
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V2 =5 +2ay=(0 m/s)2+2aH or  v=+2aH

To acquire a speed of twice this value or 2+/2aH , she must fall an additional distance H .
According to Equation 2.9 (v2 = vg + 2ay), we have

(2\/261_11)2:( 2aH)2+2aH' or  4(2aH)=2aH +2aH’

The acceleration due to gravity a can be eliminated algebraically from this result, giving

AH=H+H’ or H =3H

b. In the previous calculation the acceleration due to gravity was eliminated algebraically.
Thus, a value other than 9.80 m/s*> would [not have affected the answer to part (a)| .

60.

REASONING When the arrows reach their maximum heights, they come instantaneously to
a halt, and the final speed of each arrow is zero. Using this fact, we will be able to determine
the time it takes for each arrow to reach its maximum height. Knowing this time for the
second arrow will allow us to determine its initial speed at launch.

SOLUTION The time required for the first arrow to reach its maximum height can be
determined from Equation 2.4 (v = v, + af). Taking upward as the positive direction, we have
v—y, —
. o _0m/s 25'031/8:2.55s
a —9.80 m/s

Note that the second arrow is shot 1.20 s after the first arrow. Therefore, since both arrows
reach their maximum height at the same time, the second arrow reaches its maximum height

255s-120s=1.35s

after being fired. The initial speed of the second arrow can then be found from Equation 2.4:

vy =v—at=0m/s—(-9.80 m/s*)(1.35 s)=| 13.2 mvs

61.

REASONING Once the man sees the block, the man must get out of the way in the
time it takes for the block to fall through an additional 12.0 m. The velocity of the block at
the instant that the man looks up can be determined from Equation 2.9. Once the velocity is
known at that instant, Equation 2.8 can be used to find the time required for the block to fall
through the additional distance.
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SOLUTION When the man first notices the block, it is 14.0 m above the ground and its
displacement from the starting point is y=14.0 m—53.0m. Its velocity is given by

Equation 2.9 (v2 :vg +2ay). Since the block is moving down, its velocity has a negative

value,

v=—v, +2ay = —\/(0 m/s)” +2(-9.80 m/s?)(14.0 m — 53.0 m) =—27.7 m/s

The block then falls the additional 12.0 m to the level of the man's head in a time ¢ which
satisfies Equation 2.8:

y=vyt+tar’

where y =-12.0 m and v, = —27.7 m/s. Thus, 7 is the solution to the quadratic equation

4.90¢% +27.7t-12.0=0

where the units have been suppressed for brevity. From the quadratic formula, we obtain

2174 J27.7)% —4(4.90)(-12.0) _
- 2(4.90) -

040s or —6.1s

The negative solution can be rejected as nonphysical, and the time it takes for the block to

reach the level of the manis | 0.40s |.

62.

REASONING Once its fuel is gone, the rocket is in free fall, so its motion consists of two
intervals of constant but different acceleration. We will take upward as the positive

direction. From launch to engine burn-out, the acceleration is a; = +86.0 m/sz, and the
rocket’s displacement is y,. Its velocity at the end of the burn, v, is also the initial velocity
for the second portion of its flight: engine burn-out to maximum altitude. During this second
portion, the rocket slows down with the acceleration of gravity a,=-9.80 m/s’ and
undergoes an additional displacement of y, in reaching its maximum height. Its maximum
altitude is the sum of these two vertical displacements: 2=y, + y,.

SOLUTION First we consider the time period ¢, = 1.70 s from the ignition of the engine
until the fuel is gone. The rocket accelerates from v, = 0 m/s to v = v, rising a displacement

¥, as given by Equation 2.8 (y =Vt +%at2 ):

2 2 2
= tyaty =(0ms)y +3an =1a ()
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Equation 2.4 (v=v, +at) gives its velocity v, at the instant the fuel runs out:
v =vytait, =0 m/is+at =ay, (2)
From that moment onward, the second part of the rocket’s motion is free fall
(a,=-9.80 m/s2). It takes a time 7, for the rocket’s velocity to decrease from v, = v, to
v, = 0 m/s at its maximum altitude. We solve Equation 2.9 (v2 = vg + 2ay) to find its upward
displacement y, during this time:
2

(0 m/s)2 =v12+2a2y2 or  y,=——
2a,

Substituting for v, from Equation (2), we find for y, that

_(ap, )2
Yo = T (3)

Using Equations (1) and (3), we find that the rocket’s maximum altitude, relative to the
ground, is
(at,)

2
a
% altl2 1--1
2a, a,
Using the values given, we find that

2
h:%(86.0 m/sz)(l.70 s)’ [1—M]=

2
h=y+y, =qh —

63. REASONING To find the initial velocity v,, of the second stone, we will employ
Equation 2.8, y=v,,t, + %atzz. In this expression 7, is the time that the second stone is in

the air, and it is equal to the time 1, that the first stone is in the air minus the time 130 it takes
for the first stone to fall 3.20 m:

Ly=l—l5

We can find ¢, and ¢, ,, by applying Equation 2.8 to the first stone.

SOLUTION To find the initial velocity v, , of the second stone, we employ Equation 2.3,

Y=Yyl +%at22 . Solving this equation for v, , yields
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1,2
_Y—pah

y
0.2
L

The time 7, for the first stone to strike the ground can be obtained from Equation 2.3,
y=voy + %atlz. Noting that v, , = 0 m/s since the stone is dropped from rest and solving

this equation for t,, we have

= 2 = [PElsom) mz) =1.75s (1)
a \-9.80 m/s

Note that the stone is falling down, so its displacement is negative (y = — 15.0 m). Also, its
acceleration a is that due to gravity, so a = —9.80 m/s”.

The time ¢ ,, for the first stone to fall 3.20 m can also be obtained from Equation 1:

2y [2(-3.20 m)
ty g =472 = [ 0,808
3200 ¢\ —9.80 my/s?

The time ¢, that the second stone is in the air is
ty =t —1t35,=1.755-0.808 s=0.94 s
The initial velocity of the second stone is

y=ta,? (<150 m)-1(-9.80 m/s?)(0.94 5)*
v, = =
02 0.94 s

L

64.

REASONING We assume that downward is the positive direction. The tile falls from rest,
so its initial velocity v, is zero. The tile falls through a displacement y in going from the roof

top to the top of the window. It is a value for y that we seek, and it can be obtained from

2
Viwindow
to gravity. The velocity v

window

= vg +2ay (Equation 2.9). In this expression v, = 0 m/s, and a is the acceleration due
at the top of the window is not given, but it can be obtained
from the time of 0.20 s that it takes the tile to pass the window.

SOLUTION Solving Equation 2.9 for y and using the fact that v, = 0 m/s gives
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2 2 2
y= Vwindow ~ Y0 — Vwindow (1)
2a 2a
The tile travels an additional displacement y,; ;. =1.6 m in traversing the window in a time
. 1 .
t=0.20s. These data can be used in y . . :vwindowt+§at2 (Equation 2.8) to find the
velocity v ., at the top of the window. Solving Equation 2.8 for v ., = gives
2 2
) 2y —at® 2(1.6m)=(9.80 m/s?)(0.20's)" o
window 2t 2(0.20 ) '
Using this value for v . , - in Equation (1), we obtain
2 2
y= Vwindow — (70 m/s) — m
2 2(9.80 m/s?)
65. REASONING The slope of a straight-line segment in a position-versus-time graph is

the average velocity. The algebraic sign of the average velocity, therefore, corresponds to the
sign of the slope.

SOLUTION

a. The slope, and hence the average velocity, is positive for segments 4 and C, negative for
segment B, and zero for segment D.

b. In the given position-versus-time graph, we find the slopes of the four straight-line
segments to be

, _L25km-0km _
4 020h-0h
L _0.50 km~125km _
B 0.40h-0.20h

, _0.75km=0.50 km
€ 0.80h-040h

L, 075 km—0.75 km _
D 1.00h—0.80h

+6.3 km/h

—3.8 km/h

=|+0.63 km/h

0 km/h
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66. REASONING On a position-versus-time graph, the velocity is the slope. Since the object’s
velocity is constant and it moves in the +x direction, the graph will be a straight line with a
positive slope, beginning at x = =16 m when 1= 0 s. At t=18s, its position should be
x=—-16 m+ 48 m =+32 m. Once the graph is constructed, the object’s velocity is found by

calculating the slope of the graph: v = Zﬁ
t

SOLUTION The position-versus-time graph for the motion is as follows:

40
32
24

s
E 16 )
= 80

g
2 0.0

w2 —

2 -80
faut

-16
-24

0 3.0 6.0 9.0 12 15 18

Time ¢ (s)

The object’s displacement is +48 m, and the elapsed time is 18 s, so its velocity is

Ax_+48m :m

yV=—=
At 18 s

67. REASONING AND SOLUTION The average acceleration for each segment is the slope of

that segment.
4 —
a, = 0 m/s Om/szl.9 S

21s-0s
oy :40 m/s —40 m/s :
48 s—21s
80 m/s —40 m/s
ac = ~[3.3ms?|
60s—48s

68. REASONING The average velocity for each segment is the slope of the line for that
segment.

SOLUTION  Taking the direction of motion as positive, we have from the graph for
segments A, B, and C,
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L _10.0km-40.0km _
A 1.5h—0.0h

, _20.0km—10.0km _
B 25h—15h

L _40.0km-20.0km _
¢ 30h-25h

~—2.0x10" km/h

1.0x10! km/h

40 km/h

69.

REASONING The slope of the position-time graph is the velocity of the bus. Each of the
three segments of the graph is a straight line, so the bus has a different constant velocity for
each part of the trip: v, v,, and v . The slope of each segment may be calculated from

Equation 2.2 (v = Zﬂ} where Ax is the difference between the final and initial positions of
t

the bus and At is the elapsed time during each segment. The average acceleration of the bus

V=
is the change in its velocity divided by the elapsed time, as in Equation 2.4 (a = A 0 ] The
t

trip lasts from ¢ = 0 h (the initial instant on the graph) to ¢ = 3.5 h (the final instant on the
graph), so the total elapsed time is Az = 3.5 h. The initial velocity of the bus is its velocity at ¢
= 0, which is its constant velocity for segment 4: v, = v . Similarly, the velocity of the bus at

the last instant of segment C is its final velocity for the trip: v=v..

At
any displacement Ax within a segment may be chosen, so long as the corresponding elapsed
time At is used in the calculation. If the full displacements for each segment are chosen, then

SOLUTION 1In using Equation 2.2 (v = ﬂ] to calculate the slopes of segments 4 and C,

AxA 24 km~-0km

v, = =24 km/h
At,  10h-0h

Ax _
c _27km 33km:—5km/h

VC =
At.  35h-22h

Apply these results to Equation 2.4:

_ —5 km/h)— (24 kmv/h
=" Y _( )~ ( ):—8.3km/h2
At 35h

70.

REASONING The runner is at the position x =0 m when time =0 s; the finish line is
100 m away. During each ten-second segment, the runner has a constant velocity and runs
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half the remaining distance to the finish line. The following table shows the first four
segments of the motion:

Time Interval Change in Position

r=0s—r=100s x=0m—>x=50.0m

t=100s—¢=20.0s x=500m—->x=50.0m+25.0m=75.0m

t=200s—¢=30.0s x=750m—->x=75.0m+12.5m=87.5m

t=300s—r=40.0s x=875m—->x=875m+625m=93.8m

This data can be used to construct the position-time graph. Since the runner has a constant
velocity during each ten-second segment, we can find the velocity during each segment from
the slope of the position-time graph for that segment.

SOLUTION
a. The following figure shows the position-time graph for the first forty seconds.

100.0 —{ position x (m)
80.0 —
60.0 —

40.0 —

20.0 —

Time t (s)
I I I I
0.00 10.0 20.0 30.0 40.0

0.00

b. The slope of each segment of the position-time graph is calculated as follows:
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_Ax_50.0m-0.00m

[0.00 s t0 10.0 5] v=—= = 5.00 m/s
At 10.0s-0s
[10.0 s t0 20.0 5] p= X _OmM=00m _ o, o6
At 20.0s-10.0s
[20.0's 10 30.0 5] p= X 87 m=750m s g
At 30.0s-20.0s
[30.0's to 40.0 5] =AY _BIMZETIM _ 5 s
At 40.0s-30.0s
Therefore, the velocity-time graph is:
5.00
4.00 —
E
~ 3.00 —
-
&
3
_q 2.00 —
(]
>
1.00 —
0.00 Timel £(s)
0.00 10.0 20.0 30.0 40.0

71. REASONING The two runners start one hundred meters apart and run toward each
other. Each runs ten meters during the first second and, during each second thereafter, each
runner runs ninety percent of the distance he ran in the previous second. While the velocity
of each runner changes from second to second, it remains constant during any one second.

SOLUTION The following table shows the distance covered during each second for one of

the runners, and the position at the end of each second (assuming that he begins at the origin)
for the first eight seconds.

Time t (s) Distance covered (m) Position x (m)
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0.00 0.00

1.00 10.00 10.00
2.00 9.00 19.00
3.00 8.10 27.10
4.00 7.29 34.39
5.00 6.56 40.95
6.00 5.90 46.85
7.00 5.31 52.16
8.00 4.78 56.94

The following graph is the position-time graph constructed from the data in the table above.
60 S

50 -
40 4

30+

Pagition v [m]

VAVE

10+

O 4F T T T T T T T T T T T T
0 2 4 6 8 10
Time t (s}

a. Since the two runners are running toward each other in exactly the same way, they will
meet halfway between their respective starting points. That is, they will meet at x = 50.0 m.

According to the graph, therefore, this position corresponds to a time of .

b. Since the runners collide during the seventh second, the speed at the instant of collision
can be found by taking the slope of the position-time graph for the seventh second. The
speed of either runner in the interval from ¢ = 6.00 s to = 7.00 s is

_Ar_5216m—46.85m

V= = = 53 m/s
At 7.00s—-6.00s

Therefore, at the moment of collision, the speed of either runner is [5.3 m/s].




86 KINEMATICS IN ONE DIMENSION
72. REASONING The average acceleration (5 ) is defined by Equation 2.4 [5 % ] as the
r—t
0
change in velocity (v —v, ) divided by the elapsed time (t —1,)- The change in velocity is
equal to the final velocity minus the initial velocity. Therefore, the change in velocity, and
hence the acceleration, is positive if the final velocity is greater than the initial velocity. The
acceleration is negative if the final velocity is less than the initial velocity. (a) The final
velocity is greater than the initial velocity, so the acceleration will be positive. (b) The final
velocity is less than the initial velocity, so the acceleration will be negative. (c) The final
velocity is greater than the initial velocity (3.0 m/s is greater than —6.0 m/s), so the
acceleration will be positive. (d) The final velocity is less than the initial velocity, so the
acceleration will be negative.
SOLUTION Equation 2.4 gives the average acceleration as
V=
a=—-">
t—t,
Therefore, the average accelerations for the four cases are:
@ @ =(5.0m/s—20m/s)(20s)=
(b) @ =(20m/s—50 m/s)/(2.0s) =
(c) @=[-30m/s—(-60 m/s)|/(20s)=
(d) @ =(-40m/s =40 m/s)/(2.0 s) = [—4.0 m/s?]
73. REASONING AND SOLUTION

a. Once the pebble has left the slingshot, it is subject only to the acceleration due to gravity.

Since the downward direction is negative, the acceleration of the pebble is | —9.80 m/s?

The pebble is not decelerating. Since its velocity and acceleration both point downward, the
magnitude of the pebble’s velocity is increasing, not decreasing.

b. The displacement y traveled by the pebble as a function of the time ¢ can be found from
Equation 2.8. Using Equation 2.8, we have

y=vyt+1a,r? =(-9.0 m/s)(0.50 5) +%[(—9.80 m/s2)(0.50 s)z} -~ 57m

Thus, after 0.50 s, the pebble is beneath the cliff-top.
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REASONING In a race against el-Guerrouj, Bannister would run a distance given by his
average speed times the time duration of the race (see Equation 2.1). The time duration of
the race would be el-Guerrouj’s winning time of 3:43.13 (223.13 s). The difference between
Bannister’s distance and the length of the race is el-Guerrouj’s winning margin.

SOLUTION From the table of conversion factors on the page facing the front cover, we find
that one mile corresponds to 1609 m. According to Equation 2.1, Bannister’s average speed
is

Distance 1609 m

Average speed = — =
Elapsed time 239.4 s

Had he run against el-Guerrouj at this average speed for the 223.13-s duration of the race, he
would have traveled a distance of

1609 m
S

Distance = Average speed X Time =(

j(223.13 s)

while el-Guerrouj traveled 1609 m. Thus, el-Guerrouj would have won by a distance of

1609 m—(g;im )(223.13 s)=[109 m]
4 S

75.

REASONING Since the belt is moving with constant velocity, the displacement
(x, = 0 m) covered by the belt in a time 7, _, is giving by Equation 2.2 (with x,, assumed to be

Zero) as

X = Vpeitbelt (1)

Since Clifford moves with constant acceleration, the displacement covered by Clifford in a
time Lotise is, from Equation 2.8,

_ |2 12
X =Volcuge t7 Aciise = 3 sy 2)

The speed v, with which the belt of the ramp is moving can be found by eliminating x
between Equations (1) and (2).

SOLUTION Equating the right hand sides of Equations (1) and (2), and noting that
_1
fclis = 4 loelr» WE have

1 (1 2
Voeltlbelt =72 ¢ (Z Lhelt )
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Voelt = 35 @l =25 (037 m/s?)(64 ) = 0.74 s

76. REASONING The minimum time that a player must wait before touching the basketball is

the time required for the ball to reach its maximum height. The initial and final velocities are
known, as well as the acceleration due to gravity, so Equation 2.4 (v=v, +at) can be used

to find the time.

SOLUTION Solving Equation 2.4 for the time yields

V=, Om/s —4.6m/s _

047 s
a —9.8m/s?

=

77. REASONING Average speed is the ratio of distance to elapsed time (Equation 2.1), so the

elapsed time is distance divided by average speed. Both the average speed and the distance
are given in SI base units, so the elapsed time will come out in seconds, which can then be
converted to minutes (1 min = 60 s).

SOLUTION First, calculate the elapsed time Af in seconds:

Af = Distance 1.5m

B Average speed - 1.1x107% m/s

=140's 2.1)

Converting the elapsed time from seconds to minutes, we find that

At =(140 ;{)[1631? ): 2.3 min

78.

REASONING The average acceleration is defined by Equation 2.4 as the change in
velocity divided by the elapsed time. We can find the elapsed time from this relation because
the acceleration and the change in velocity are given. Since the acceleration of the spacecraft
is constant, it is equal to the average acceleration.

SOLUTION
a. The time At that it takes for the spacecraft to change its velocity by an amount
Av = +2700 m/s is

Av  +2700m/s

Ar=—r m/s
a 490 M8

day

3.0x10? days

b. Since 24 hr = 1 day and 3600 s = 1 hr, the acceleration of the spacecraft (in m/s?) is
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Av +9.0m/s

a=—"= ar = | +1.04x10™* m/s>
t (1 day) r ) 3600 s
1 day 1 hr

79.

REASONING The cheetah and its prey run the same distance. The prey runs at a constant
velocity, so that its distance is the magnitude of its displacement, which is given by Equation
2.2 as the product of velocity and time. The distance for the cheetah can be expressed using
Equation 2.8, since the cheetah’s initial velocity (zero, since it starts from rest) and the time
are given, and we wish to determine the acceleration. The two expressions for the distance
can be equated and solved for the acceleration.

SOLUTION We begin by using Equation 2.2 and assuming that the initial position of the
prey is x, = 0 m. The distance run by the prey is

Ax=x—x,=x = Vprey!
The distance run by the cheetah is given by Equation 2.8 as

_ 1 2
X =W, Cheetah? T 2 ACpeetah!

Equating the two expressions for x and using the fact that v, ..., =0 m/s, we find that

t

—1 2
vPrey ) aCheetaht

Solving for the acceleration gives

_ 2Vprey _ 2(49.0 m/s) 6.0 /s
t 30s

ACheetah

80.

REASONING AND SOLUTION The distance covered by the cab driver during the two
phases of the trip must satisfy the relation

X, +x, =2.00 km (1)

where x; and x, are the displacements of the acceleration and deceleration phases of the trip,

respectively. The quantities x; and x, can be calculated from Equation 2.9 (vz = vg + 2ax):
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v2 (0 m/s)’ o (0m/s)* =v2, %
2q, 2a

x1=

with Vor =V and a, =-3a,. Thus,

X vl2 ay))
X, -l /(~6a))
so that
x, =3x, 2)
Combining (1) and (2), we have,

3x2 +x, = 2.00 km

Therefore, x, =0.50 km, and from Equation (1), x; =1.50 km. Thus, the length of the

acceleration phase of the trip is x; =| 1.50 km |, while the length of the deceleration phase is
x, =| 0.50 km |.

81.

REASONING Since the woman runs for a known distance at a known constant
speed, we can find the time it takes for her to reach the water from Equation 2.1. We can then
use Equation 2.1 to determine the total distance traveled by the dog in this time.

SOLUTION The time required for the woman to reach the water is

d
Elapsed time = —°mat — ( 4.0 km j(lOOO m J= 1600 s

25m/s )| 1.0 km

woman

In 1600 s, the dog travels a total distance of

d

dog = Vdog! = (4.5 m/8)(1600 5) =| 7.2x10° m

82.

REASONING When the second-place cyclist catches the leader, the displacement x, ; of
the second-place cyclist is 10.0 m greater than the displacement x,. .. of the leader, so
X90d = Xjeader T 10.0 m. The initial velocity and acceleration of the second-place cyclist are

known (v, = +9.50 m/s, @ = +1.20 m/s2), as well as those of the leader (v, = +11.10 m/s,

a=0.00 m/sz). Note that the leader has zero acceleration, since his velocity is constant.
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Equation 2.8 may be used to provide a relationship between these variables and the
displacement x.

SOLUTION Substituting Equation 2.8 into each side of the relation x, , = x4, + 10.0 m,
we have that
1,2 _ 1.2
Vot toat®=v t+-at +10.0 m

x2nd xleader

(9.50 m/s)e+1(1.20 m/s? ) = (1110 m/s)e-+1{0.00 m/5? )2 +10.0 m

Rearranging the terms of this equation so it is in quadratic form, we have

L(120m/s?)¢? =(1.60 m/s)t =10.0 m =0

This equation can be solved using the quadratic formula, with the result that ¢ =|5.63 s|.

REASONING The time ¢t

trip
rides in the golf cart plus the time 7, that she walks

that she walks is

to make the entire trip is equal to the time 7, that the golfer
t .+t

: ttrip =1t Lyalk: Therefore, the time

t t

2 trip ~ ‘cart (1

walk =

The average speed v,_.  for the entire trip is equal to the total distance, x_,, + x she
rip

cart walk’

travels divided by the time to make the entire trip (see Equation 2.1);

= _ xcart + X walk

vtrip - P
trip

Solving this equation for Lip and substituting the resulting expression into Equation 1 yields

X +Xx
¢ cart walk ¢ (2)

walk — — cart
vtrip

The distance traveled by the cartis x_ =V, and the distance walked by the golfer is

rt cart tcart ’

Substituting these expressions for x_, , and x,, into Equation 2 gives

Xwalk = Vwalktwalk . cart

t _ Vcarttcatt + Vwalktwalk — ¢
walk — = cart

Vtrip
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The unknown variable 7, appears on both sides of this equation. Algebraically solving for

this variable gives

_ vcarttcart - ‘7triptcart
twalk - = -
trip Vwalk
SOLUTION The time that the golfer spends walking is
Veartlcart ~ Virip! 3.10 m/s)(28.0 s)—(1.80 m/s)(28.0
twalk _ cart_cart _trlp cart  _ ( S)( S) ( S)( S) _
Virip ~ Vwalk (1.80 m/s)—(1.30 m/s)

84. REASONING The definition of average velocity is given by Equation 2.2 as the

displacement divided by the elapsed time. When the velocity is constant, as it is for car A,
the average velocity is the same as the constant velocity. We note that, since both
displacement and time are the same for each car, this equation gives the same value for car
B’s average velocity and car A’s constant velocity.

Since the acceleration of car B is constant, we know that its average velocity is given by
Equation 2.6 as v, :%(VB +VB0)’ where vy is the final velocity and vy, =0 m/s is the initial

velocity (car B starts from rest). Thus, we can use Equation 2.6 to find the final velocity.

Car B’s constant acceleration can be calculated from Equation 2.4 (v = v, + agf), which is
one of the equations of kinematics and gives the acceleration as [ag = (v — v)/f]. Since car
B starts from rest, we know that vy, = 0 m/s. Furthermore, 7 is given. Therefore, calculation
of the acceleration ay requires that we use the value calculated for the final velocity vg.

SOLUTION
a. According to Equation 2.2, the velocity of car A is the displacement L divided by the time
t. Thus, we obtain

:£_460m:

v =
ATt 210

b. The average velocity of car B is given by Equation 2.6 as v, :%(VB +VB0)’ where vy is

the final velocity and vy, is the initial velocity. Solving for the final velocity and using the
fact that car B starts from rest (v, = 0 m/s) gives

vg =2vg —vp, = 2vp (1)

As discussed in the REASONING, the average velocity of car B is equal to the constant
velocity of car A. Substituting this result into Equation (1), we find that
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vy =2V =2v, =2(22m/s) =

c. Solving Equation 2.4 (v = v, + agt) for the acceleration shows that

_v R
“B:VB 30:4.4m/s 0m/s:0.021m/32

t 210s

85. REASONING We choose due north as the positive direction. Our solution is based on the
fact that when the police car catches up, both cars will have the same displacement, relative
to the point where the speeder passed the police car. The displacement of the speeder can be
obtained from the definition of average velocity given in Equation 2.2, since the speeder is
moving at a constant velocity. During the 0.800-s reaction time of the policeman, the police
car 1s also moving at a constant velocity. Once the police car begins to accelerate, its

displacement can be expressed as in Equation 2.8 (x:v0t+%at2), because the initial

velocity v, and the acceleration a are known and it is the time ¢ that we seek. We will set the

displacements of the speeder and the police car equal and solve the resulting equation for the
time ¢.

SOLUTION Let t equal the time during the accelerated motion of the police car. Relative to
the point where he passed the police car, the speeder then travels a time of # + 0.800 s before
the police car catches up. During this time, according to the definition of average velocity
given in Equation 2.2, his displacement is

Xpeeder = Vspeeder (£ +0-800 8) =(42.0 m/s)(1+0.800 s)

The displacement of the police car consists of two contributions, the part due to the constant-
velocity motion during the reaction time and the part due to the accelerated motion. Using
Equation 2.2 for the contribution from the constant-velocity motion and Equation 2.9 for the
contribution from the accelerated motion, we obtain

— 1,42
xPolice car VO, Police car (0800 S) + VO, Police cart + 2 at
Constant velocity motion, Accelerated motion,
Equation 2.2 Equation 2.8

= (18.0 m/s)(0.800 )+ (18.0 ms) -+ 1 (5.00 mys? 2
Setting the two displacements equal we obtain

(42.0 m/s)(£+0.800 s)=(18.0 m/s)(0.800 s)+(18.0 m/s)t+%(5.00 m/sz)tz

Displacement of speeder Displacement of police car
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Rearranging and combining terms gives this result in the standard form of a quadratic
equation:

(250 m/s? ) = (24.0 m/s) =192 m =0

Solving for ¢ shows that

— (240 m/s)i\/(—24.0 m/s)” —4(2.50 m/s? ) (~19.2 m)

f= =103s

2(2.50 m/sz)

We have ignored the negative root, because it leads to a negative value for the time, which is
unphysical. The total time for the police car to catch up, including the reaction time, is

0.800 s+10.3s=[11.15s]

86. REASONING AND SOLUTION We measure the positions of the balloon and the pellet
relative to the ground and assume up to be positive. The balloon has no acceleration, since it
travels at a constant velocity vy, so its displacement in time 7 is vyz. Its position above the

ground, therefore, is
yg = H, o T Vgt

where H, = 12 m. The pellet moves under the influence of gravity (a = -9.80 m/s?), so its
position above the ground is given by Equation 2.8 as

D
But y,, = yg at time £, so that

vot+%at2 =H,+vyt
Rearranging this result and suppressing the units gives
Lar? +(vy—vg)t—Hy=1(-9.80)¢ +(30.0-7.0)r -12.0=0

4.90¢% - 23.0t+12.0=0

| 23.0%/23.07 - 4(4.90)(12.0)

t= =4.09s or 0.602s
2(4.90)

Substituting each of these values in the expression for y, gives
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yg =12.0 m+(7.0 m/s)(4.09 s)=| 41 m

yg =12.0 m+(7.0 m/s)(0.602 s)=| 16 m

87. REASONING Since 1 mile = 1609 m, a quarter-mile race is L = 402 m long. If a car
crosses the finish line before reaching its maximum speed, then there is only one interval of
constant acceleration to consider. We will first determine whether this is true by calculating

the car’s displacement x, while accelerating from rest to top speed from Equation 2.9

2 2 . _ _ .
(v =V, +2ax), with Vo = Om/sandv = Voax-

vrznaX =(0 m/s)2 +2ax; or X 2;—2" (1)

If x, > L, then the car crosses the finish line before reaching top speed, and the total time for

its race is found from Equation 2.8 (x =Vt +%at2) , withx =L and vy =0 m/s:

L=(0m/s)t+%a12=%at2 or t= 2L (2)
a

On the other hand, if a car reaches its maximum speed before crossing the finish line, the
race divides into two intervals, each with a different constant acceleration. The displacement
x, is found as given in Equation (1), but the time f; to reach the maximum speed is most

easily found from Equation 2.4 (v=v, +at), withvy=0m/sandv=v_ :
v

o =0m/s+at  or tlz% (3)

vm
The time ¢, that elapses during the rest of the race is found by solving Equation 2.8

(x = vot+%at2). Let x, = L — x, represent the displacement for this part of the race. With
2

the aid of Equation (1), this becomes x, = L —%. Then, since the car is at its maximum
speed, the acceleration is a = 0 m/s?, and the displacement is
L vrznax
Xy =v ..t +%(0 m/sz)tz2 =v b, or t,= % 2a _ L _ Vi 4)
Vmax vmax Vmax 2a

Using this expression for 7, and Equation (3) for 7, gives the total time for a two-part race:
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\% L v L \%
t=t +t, =%+ - ;a" = + ;m Q)
a vmax a vmax a

SOLUTION First, we use Equation (1) to determine whether either car finishes the race
while accelerating:
2 2
106 m/
Car A X = s _ 5)

2a _2(11.0 1n/s,2):Sllm

2 2
92.4 m/
Car B X = Vmax = ( S) =368 m

2a 2(11.6 m/sz)

Therefore, car A finishes the race before reaching its maximum speed, but car B has
402 m — 368 m = 34 m to travel at its maximum speed. Equation (2) gives the time for car A
to reach the finish line as

2(402
Car A (= /2—L: (—mz):s.55s
a \11.0ms

Equation (5) gives the time for car B to reach the finish line as

L v 402 m 92.4m/s
+ = +

max

- 1 =833s
Voax 20 92.4m/s 2(11.6m/s)

CarB t=

| Car B wins the race | by 8.55 s — 8.33 s = .
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88. REASONING AND SOLUTION During the first phase of the acceleration,

a, =—
|
4

During the second phase of the acceleration,

v=034m/s)-(1.1 m/sz)(1.2 s)=2.1 m/s
Then

g =2 ms L el

1 1.5s

89. REASONING When the jet is accelerating, its velocity is changing. The displacement
of the jet during a given time interval is equal to the product of its average velocity during that
interval and the time, the average velocity being equal to one-half the sum of the jet's initial
and final velocities (Equation 2.7). The initial and final velocities are known, but the time is
not. However, the time can be determined from a knowledge of the jet's acceleration.

SOLUTION The displacement x of the jet is given by Equation 2.7:

1
x= E(V0 +V)t,

where the initial (v,) and final velocities (v) are known. The time ¢ is not given in the problem,
but can be written in terms of the acceleration from Equation 2 .4:

g%
t
Solving for ¢ yields the following: = ""%  We can now substitute this result into Equation
a
1 1 v—y V=,
27 x==,+v)t=—(,+ L |= ¢,
X 2(v0 V) 2(v0 v)( - ) 22

Using the values given in the problem, we find the displacement of the jet to be:

Vv (#62 m/s)* — (0 m/s)

= = 62
T 2431 m/s?) Hem
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90. CONCEPTS (i) Since her speed is increasing, the acceleration vector must point in the same

direction as the velocity vector, which points in the negative y direction. Thus the
acceleration is negative.

(ii) Since her speed is decreasing, the acceleration vector must point opposite to the velocity
vector. Since the velocity vector points in the negative y direction, the acceleration
vector must point in the positive y direction. Thus the acceleration is positive.

CALCULATIONS (a) Since the skydiver is moving in the negative y direction, her initial

velocity is v, = =16 m/s and her final velocity is v = —28 m/s. Her average acceleration @ is the
change in velocity divided by the elapsed time:

v—v, —28 m/s—(-16 m/s)
t 1.5

=|-8.0 m/s’

a=

As expected, her average acceleration is negative. Note that her acceleration is not that due to
gravity (— 9.8 m/s?) because of air resistance.

(b) Now the skydiver is slowing down, but still falling along the negative y direction. Her
initial and final velocities are v, =— 48 m/s and v = —26 m/s, respectively. The average
acceleration for this phase of the motion is

v—v, —26 m/s—(—48 m/s)
r 11s

= [+2.0 m/s®

a=

Now, as anticipated, her average acceleration is positive.

91.

CONCEPTS (i) Because the dragster has an acceleration of 40.0 m/s’, its velocity
changes by 40.0 m/s during each second of the travel. Therefore, since the dragster starts
from rest, the velocity is 40.0 m/s at the end of the first second, 2 X 40.0 m/s at the end of the
second second, 3 X 40.0 m/s at the end of the third second, and so on. Thus, when the time
doubles, the velocity also doubles. (Be sure to note that this is only true if the initial velocity
is equal to zero.)

(ii) The displacement of the dragster is equal to its average velocity multiplied by the elapsed
time. The average velocity V is just one-half the sum of the initial and final velocities, or

v=14(v+v) v, =0 m/s

one-half the final velocity, or” :%v. However, as we have seen, the final velocity is
proportional to the elapsed time, since when the time doubles, the final velocity also doubles.
Therefore, the displacement, being the product of the average velocity and the time, is
proportional to the time squared, or #*. Consequently, as the time doubles, the displacement
does not double, but increases by a factor of four. (Again, this is the case since the initial
velocity is equal to zero.)

. Since the initial velocity is zero, and the average velocity is just
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CALCULATIONS (a) According to Equation 2.4, the final velocity v, the initial velocity v,,

the acceleration a, and the elapsed time ¢ are related by ¥ = Vo +al The final velocities at the
two times are:

[1=20s] v=v,+ar=0 m/s+(400m/s) =[80 mys
[1=40s]  v=v,+ar=0m/s+(40.0 m/s’)(4

We see that the velocity doubles when the time doubles, as expected.

(b) The displacement x is equal to the average velocity multiplied by the time, so

x= %(VO +v) =4t
Average velocity
vo =0 m/s. According to Equation 2.4, the final velocity is

V=votat  giv=at gince*o = 0 m/s. Therefore, the

where we have used the fact that

related to the acceleration by

—lyr=1 -1
displacement can be written as x=yvi=5(at)t=

are then

" The displacements at the two times
[r=20s]  x=}at®=4(40.0 m/s*)(2.0
[r=40s]  x=4ar’ =4(40.0 m/s*)(4.0

As predicted, the displacement at # = 4.0 s is four times that at # = 2.0 s.
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