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Chapter 2 
Atomic Structure 

 
2–6  

(a) Aluminum foil used for storing food weighs about 0.3 g per square inch. How 
many atoms of aluminum are contained in one square inch of foil? 

(b) Using the densities and atomic weights given in Appendix A, calculate and 
compare the number of atoms per cubic centimeter in (i) lead and (ii) lithium. 

 
Solution: (a) In a one square inch sample: 

0.3 g( ) 6.022 × 1023  atoms/mol( )
26.981 g/mol( )

= 6.7 × 1021  atoms  

 (b) (i) In lead: 

11.36 g/cm3( ) 6.022 × 1023  atoms/mol( )
207.19 g/mol( )

= 3.30 × 1022  atoms/cm3 

       (ii) In lithium: 

0.534 g/cm3( ) 6.022 × 1023  atoms/mol( )
6.94 g/mol( )

= 4.63 × 1022  atoms/cm3  

 Despite the different mass densities of Pb and Li, their atomic 
densities are approximately the same. 

  
2–7  

(a) Using data in Appendix A, calculate the number of iron atoms in one ton (2000 
pounds) of iron. 

(b) Using data in Appendix A, calculate the volume in cubic centimeters occupied 
by one mole of boron. 

 
Solution:  (a) 

2000 lb( ) 453.59 g/lb( ) 6.022 × 1023  atoms/mol( )
55.847 g/mol( )

= 9.8 × 1027  atoms  

  
(b) 1 mol( ) 10.81 g/mol( )

2.36 g/cm3 = 4.6 cm3
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2–11 Suppose an element has a valence of 2 and an atomic number of 27. Based only 
on the quantum numbers, how many electrons must be present in the 3d energy 
level? 
 
Solution: We can let x be the number of electrons in the 3d energy level. Then: 

1s22s22p63s23p64s23dx (must be 2 electrons in 4s for valence = 2) 
Since 27 – (2+2+6+2+6+2) = 7 = x there must be 7 electrons in the 3d 
level. 
 

2–12 Indium, which has an atomic number of 49, contains no electrons in its 4f energy 
levels. Based only on this information, what must be the valence of indium? 
 
Solution:  We can let x be the number of electrons in the outer sp energy level.  

Then: 

[49] = 1s22s22p63s23p64s23d104p65s#4d105p# 

49 – (2+2+6+2+6+2+10+6+10) = 3 

Therefore the outer 5sp level must be 

5s25p1 or valence = 3. 

 
2–14 Bonding in the intermetallic compound Ni3Al is predominantly metallic. Explain 

why there will be little, if any, ionic bonding component. The electronegativity of 
nickel is about 1.8. 
 
Solution: The electronegativity of Al is 1.5, while that of Ni is 1.8 – 1.9. These 

values are relatively close, so we wouldn’t expect much ionic 
bonding. Also, both are metals and prefer to give up their electrons 
rather than share or donate them. 
 

2–15 Plot the melting temperatures of elements in the 4A to 8–10 columns of the 
periodic table versus atomic number (i.e., plot melting temperatures of Ti through 
Ni, Zr through Pd, and Hf through Pt). Discuss these relationships, based on 
atomic bonding and binding energies: (a) as the atomic number increases in each 
row of the periodic table and (b) as the atomic number increases in each column 
of the periodic table. 
 
Solution: Ti – 1668 Zr – 1852 Hf – 2227 
 V – 1910 Nb – 2468 Ta – 2996 
 Cr – 1907 Mo – 2623 W – 3422 
 Mn – 1244 Tc – 2157 Re – 3186
 Fe – 1538 Ru – 2334 Os – 3033
 Co – 1495 Rh – 1963 Ir – 2447 
 Ni – 1453 Pd – 1552 Pt – 1769 
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As the atomic number increases, the melting temperature decreases, in 
contrast to the trend found in Problem 2–15. 
 

2–17 Compare and contrast metallic and covalent primary bonds in terms of 

(a) the nature of the bond; 
(b) the valence of the atoms involved; and 
(c) the ductility of the materials bonded in these ways. 

 
Solution: (a) Metallic bonds are formed between the one or two free electrons 

of each atom. The free electrons form a gaseous cloud of electrons 
that move between atoms. Covalent bonds involve the sharing of 
electrons between atoms. 

 (b) In metallic bonding, the metal atoms typically have one or two 
valence electrons that are given up to the electron “sea.” Covalent 
bonds form between atoms of the same element or atoms with 
similar electronegativities. 

 (c) Metallic bonds are non-directional. The non-directionality of the 
bonds and the shielding of the ions by the electron cloud lead to 
high ductilities. Covalent bonds are highly directional – this limits 
the ductility of covalently bonded materials by making it more 
difficult for the atoms to slip past one another. 
 

2–18 What type of bonding does KCl have? Fully explain your reasoning by referring 
to the electronic structure and electronic properties of each element. 
 
Solution: KCl has ionic bonding. The electronic structure of [K] = 

1s22s22p63s23p64s1 = [Ar] 4s1. The electronic structure of [Cl] = 
1s22s22p63s23p5 = [Ne] 3s23p5. Therefore, K wants to give up its 4s1 
electron in order to achieve a stable s2p6 configuration, and Cl wants 
to gain an electron in order to gain the stable s2p6 configuration. Thus 
an electron is transferred from K to Cl, and the bonding is ionic. 
 

2–19 Methane (CH4) has a tetrahedral structure similar to that of SiO2, with a carbon 
atom of radius 0.77 × 10–8 cm at the center and hydrogen atoms of radius 0.46 × 
10–8 cm at four of the eight corners. Calculate the size of the tetrahedral cube for 
methane. 
 
Solution: Let a be the length of the sides of the tetrahedral cube and r be the 

radius of the two types of atoms. 

1
2

a 3 = rC + rH  

  a =
2rC + 2rH

3
=

2 0.77 × 10−8  cm + 0.46 × 10−8  cm( )
3

= 1.42 × 10−8  cm  
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2–32 Would you expect Al2O3 or aluminum to have the higher coefficient of thermal 
expansion? Explain. 

 
Solution: Al2O3 with ionic bonds has stronger bonds than the metallic bonds of 

Al; therefore, Al2O3 should have a lower thermal expansion 
coefficient than Al. In Al,  α = 25 × 10−6 DC−1; in Al2O3, 
 α = 6.7 × 10−6 DC−1. 

 
2–33 Aluminum and silicon are side-by-side in the periodic table. Which would you 

expect to have the higher modulus of elasticity (E)? Explain. 
 
Solution: Silicon has covalent bonds; aluminum has metallic bonds. Therefore, 

Si should have a higher modulus of elasticity. 
 

2–34 Explain why the modulus of elasticity of simple thermoplastic polymers, such as 
polyethylene and polystyrene, is expected to be very low compared to that of 
metals and ceramics. 
 
Solution: The chains in polymers are held to other chains by van der Waals 

bonds, which are much less stiff and weaker than metallic, ionic, and 
covalent bonds. For this reason, much less force is required to shear 
these weak bonds and to unkink and straighten the chains. 

 
2–35 Steel is coated with a thin layer of ceramic to help protect against corrosion. What 

do you expect to happen to the coating when the temperature of the steel is 
increased significantly? Explain. 
 
Solution: Ceramics are expected to have a low coefficient of thermal expansion 

due to strong ionic/covalent bonds; steel has a high thermal expansion 
coefficient. When the structure heats, steel expands more than the 
coating. Thus the coating may crack and expose the underlying steel 
to corrosion. 
 

2–37 An aluminum-alloy bar of length 2 meters at room temperature (300 K) is 
exposed to a temperature of 100 ˚C (α = 23 × 10–6 K–1). What will be the length of 
this bar at 100˚C? 

 
Solution: 100 ˚C is 373 K. 

 

α =
1
L

dL
dT

⎛
⎝⎜

⎞
⎠⎟

23 × 10−6  K−1( ) =
1

2 m( )
dL

73 K( )
dL = 23 × 10−6  K−1( ) 2 m( ) 73 K( ) = 0.0034  cm
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2–40 You want to design a material for making a mirror for a telescope that will be 
launched in space. Given that the temperatures in space can change considerably, 
what material will you consider using? Remember that this material should not 
expand or contract at all, if possible. It also should be as strong and have as low a 
density as possible, and one should be able to coat it so that it can serve as a 
mirror. 

 
Solution: The temperatures encountered in space vary considerably; thus, a 

major consideration for selecting materials for telescope mirrors is a 
low coefficient of thermal expansion. Schott Glass Corporation has 
developed a material called Zerodur (see Chapter 15) that has 
essentially a zero thermal expansion coefficient. The material can be 
coated on one side to provide a mirror surface. It also has a low 
density (~ 2.5 g/cm3). 

 
2–41 You want to use a material that can be used for making a catalytic converter 

substrate. The job of this material is to be a carrier for the nanoparticles of metals 
(such as platinum and palladium), which are the actual catalysts. The main 
considerations are that this catalyst-support material must be able to withstand the 
constant, cyclic heating and cooling to which it will be exposed. (Note: The gases 
from automobile exhaust reach temperatures up to 500 ˚C, and the material will 
get heated up to high temperatures and then cool down when the car is not being 
used.) What kinds of materials can be used for this application? 

 
Solution: A major consideration in selecting a material for this application 

would be whether there is sufficient thermal shock resistance. 
Thermal shock resistance is the ability of a material to withstand the 
thermal stresses induced by thermal expansion and contraction. 
Secondly, the material should be inert in that it should not react with 
the nanoparticles of Pt/Pd/Rh that function as catalysts. Inertness also 
means that the catalytic substrate itself should be able to withstand 
the reducing and oxidizing chemical environments to which it will be 
exposed. Thus, most metallic materials can be ruled out on the basis 
of chemical inertness. Most polymers will not be able to withstand the 
high temperatures. Also the thermal coefficient of most polymers is 
relatively large. Thus, the choice is between ceramic materials. 
Regular inorganic glasses will not work because the thermal 
expansion coefficient is too high and repeated heating and cooling 
will cause them to fracture. Thus, ceramics such as alumina, zirconia 
etc. may work. A key would also be that there should be no phase 
transformation or change in crystal structure that causes an abrupt 
volume change over the temperature range of interest. A candidate is 
a ceramic material known as cordierite (Mg2Al4Si5O18). This is a 
magnesium aluminosilicate. It has a small thermal expansion 
coefficient (~ 4 × 10–7/˚C), it is relatively stable, and it is not too 
expensive. 


