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 MOTION IN A STRAIGHT LINE 

EXERCISES 

Section 2.1 Average Motion 

 12. INTERPRET We need to find average speed, given distance and time. 

DEVELOP From Equation 2.1, the average speed (velocity) is / ,= Δ Δv x t  where xΔ  is the distance of the race, 

and tΔ  is the time it took Ursain Bolt to finish. 

EVALUATE Plugging in the values,  

(100 m)/(9.58 s) 10.4 m/s.= =v  

ASSESS This is equivalent to 23 mi/h. 

 13. INTERPRET We need to find the average runner speed, and use that to find how long it takes them to run the 

additional distance.  

DEVELOP The average speed is /= Δ Δv x t  (Equation 2.1). Looking ahead to part (b), we will express this answer 

in terms of yards per minute. That means converting miles to yards and hours to minutes. A mile is 1760 yards (see 

Appendix C). Once we know the average speed, we will use it to determine how long ( / )Δ = Δt x v  it would take a 

top runner to go the extra mile and 385 yards that was added to the marathon in 1908. 

EVALUATE (a) First converting the marathon distance to yards and time to seconds  

 

1760 yd26 mi 385 yd 46,145 yd
1 mi

60 min2 h 3 min 123 min
1 h

x

t

⎛ ⎞Δ = + =⎜ ⎟
⎝ ⎠

⎛ ⎞Δ = + =⎜ ⎟
⎝ ⎠

 

Dividing these quantities, the average velocity is 375 yd/min.=v  

(b) The extra mile and 385 yards is equal to 2145 yd. The time to run this is  
2145 yd 5.72 min 

375 yd/ min
ΔΔ = = =xt
v

 

ASSESS The average speed that we calculated is equivalent to about 13 mi/h, which means top runners can run 26 

mi marathons in roughly 2 hours. The extra distance is about 5% of the total distance, and correspondingly the 

extra time is about 5% of the total time, as it should be.  

 14. INTERPRET This is a one-dimensional kinematics problem that involves calculating your displacement and 

average velocity as a function of time. There are two different parts to the problem: in the first part we travel north 

and in the second part where we travel south. 

DEVELOP It will help to plot our displacement as a function of time (see figure below). We are given three 

points: the point where we start (t, y) = (0 h, 0 km), the point where we stop after traveling north at (t, y) = (2.5 h, 

24 km), and the point where we return home at (t, y) = (4 h, 0 km). We can use Equation 2.1, / ,= Δ Δv x t  to 

calculate the average velocity. To calculate the displacement we will subtract the initial position from the final 

position. 
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EVALUATE (a) After the first 2.5 hours, you have traveled north 24 km, so your change in position (i.e., your 

displacement) is 0 24 km 0 km 24 km,Δ = − = − =x x x  where the x0 is the initial position and x is the final position. 

(b) The time it took for this segment of the trip is 0 2.5 h 0 h 2.5 h.Δ = − = − =t t t  Inserting these quantities into 

Equation 2.1, we find the average velocity for this segment of the trip is  

24 km 9.6 km/h
2.5 h

xv
t

Δ= = =
Δ

 

(c) For the homeward leg of the trip, 0 0 km 24 km 24 km,Δ = − = − = −x x x  and 0 4.0 h 2.5 h 1.5 h,Δ = − = − =t t t  

so your average velocity is 

24 km 16 km/h.
1.5 h

xv
t

Δ −= = = −
Δ

 

(d) The displacement for the entire trip is 0 0 km 0 km 0 km,x x xΔ = − = − =  because you finished at the same 

position as you started. 

(e) For the entire trip, the displacement is 0 km, and the time is 4.0 h, so the average velocity is 

0 km 0 km/h
1.5 h

xv
t

Δ= = =
Δ

 

ASSESS We see that the average velocity for parts (b) and (c) differ in sign, which is because we are traveling in 

the opposite direction during these segments of the trip. Also, because we return to our starting point, the average 

velocity for the entire trip is zero—we would have finished at the same position had we not moved at all! 

 15. INTERPRET This problem asks for the time it will take a light signal to reach us from the edge of our solar 

system.  

DEVELOP The time is just the distance divided by the speed: / .Δ = Δt x v  The speed of light is 
83.00 10 m/s× (recall Section 1.2).  

EVALUATE Using the above equation 
9

4
8

(14 10 mi) 1609 m 7.5 10 s 21 h
(3.00 10 m/s) 1 mi

Δ × ⎛ ⎞Δ = = = × =⎜ ⎟× ⎝ ⎠

xt
v

 

ASSESS It takes light from the Sun 8.3 minutes to reach Earth. This means that the Voyager spacecraft will be 150 

times further from us than the Sun. 

 16. INTERPRET We interpret this as a task of summing the distances for the various legs of the race and then dividing 

by the time to get the average speed.  

DEVELOP The average speed is /= Δ Δv x t  (Equation 2.1). After summing the distances of the different legs, we 

will want to convert the time to units of seconds. 

EVALUATE The three legs have a combined distance of (1.5 40 10)km 51.5 km.Δ = + + =x  The elapsed time is  

 3600 s 60 s1 h 58 min 27.66 s 7107.66 s
1 h 1 min

t ⎛ ⎞ ⎛ ⎞Δ = + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Dividing these quantities, the average velocity is  
51500 m 7.25 m/s
7107.66 s

xv
t

Δ= = =
Δ

 

ASSESS In common units, the triathlete’s average speed is 16 mi/h. This is faster than the marathoner’s pace in 

Problem 2.13, which might seem surprising, but we have to remember that part of the race is on a bike.  



Motion in a Straight Line  2-3 

 
© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may 

be reproduced, in any form or by any means, without permission in writing from the publisher. 

 17. INTERPRET The problem asks for the Earth’s speed around the Sun. We’ll use the fact that the Earth completes a 

full revolution in a year.  

DEVELOP The distance the Earth travels is approximately equal to the circumference (2 )π r  of a circle with 

radius equal to 81.5 10 km.×  It takes a year, or roughly 710 s,π ×  to complete this orbit.  

EVALUATE (a) The average velocity in m/s is 
11

4
7

2 2 (1.5 10 m) 3.0 10  m/s
10 s

π π
π

×= = = ×
Δ ×

rv
t

 

(b) Using 1609 m 1 mi=  gives 19 mi/s.=v  

ASSESS It’s interesting that the Earth’s orbital speed is 1/104 of the speed of light.  

 18. INTERPRET This problem involves converting units from m/s to mi/h. 

DEVELOP Using the data from Appendix C, we find that 1 mi = 1.609 km or 1 mi = 1609 m. We also know that 

there are 60 minutes in an hour and 60 seconds in a minute, so 1 h = (60 s/min)(60 min) = 3600 s, or 1 = 3600 s/h. 

We can use these formulas to convert an arbitrary speed in m/s to the equivalent speed in mi/h. 

EVALUATE Using the conversion factors from above, we convert x from m/s to mi/h:  

mm/sx x=
s

1 mi
1609 m

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

3600 s⎛ ⎞
⎜ ⎟
⎝ ⎠

conversion
factor

mi /h
h

x
⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠

 

From this formula, we see that the conversion factor is 1 1(3600 mi s)/(1609 km h) 2.237 mi s km h .− −⋅ ⋅ = ⋅ ⋅ ⋅  

ASSESS Notice that we have retained 4 significant figures in the answer because the conversion factor from s to h 

is a definition, so it has infinite significant figures. Thus, the number of significant figures is determined by the 

number 1.609, which has 4 significant figures. Also notice that the conversion factor has the proper units so that 

the final result is in mi/h. 

Section 2.2 Instantaneous Velocity 

 19. INTERPRET This problem asks us to plot the average and instantaneous velocities from the information in the text 

regarding the trip from Houston to Des Moines. The problem statement does not give us the times for the 

intermediate flights, nor the length of the layover in Kansas City, so we will have to assign these values ourselves.  

DEVELOP We can use Equation 2.1, ,= Δ Δv x t  to calculate the average velocities. Furthermore, because each 

segment of the trip involves a constant velocity, the instantaneous velocity is equivalent to the average velocity, so 

we can apply Equation 2.1 to these segments also. To calculate the Δ-values, we subtract the initial value from the 

final value (e.g., for the first segment from Houston to Minneapolis, Δx = x – x0 = 700 km − (−1000 km) = 1700 km.  

EVALUATE See the figure below, on which is labeled the coordinates for each point and the velocities for each 

segment. The average velocity for the overall trip is labeled .v  

 
ASSESS Although none of instantaneous velocities are equivalent to the average velocity, they arrive at the same 

point as if you traveled at the average velocity for the entire length of the trip.  
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 20. INTERPRET This problem involves interpreting a graph of position vs. time to determine several key values. 

Recall that instantaneous velocity is the tangent to the graph at any point, and that the average velocity is simply 

the total distance divided by the total time. 

DEVELOP We know that the largest instantaneous velocity corresponds to the steepest section of the graph 

because this is where the largest displacement in the least amount of time occurs [see region (a) of figure below]. 

For the instantaneous velocity to be negative, the slope of the tangent to a point on the graph must descend in going 

from left to right, so that the final position will be less than the initial position [see region (b) of figure below] A 

region of zero instantaneous velocity is where the tangent to the graph is horizontal, indicating that there is no 

displacement in time [see regions (c) of figure below]. Finally, we can apply Equation 2.1 to find the average 

velocity over the entire period [see (d) in figure below]. To estimate the instantaneous velocities, we need to 

estimate the slope dx/dt of the graph at the various points. 

    
EVALUATE (a) The largest instantaneous velocity in the positive-x direction occurs at approximately t = 2 s and 
is approximately v = dx/dt ≈ Δx/Δt = (1.8 m)/(0.6 s) = 3 m/s. 
(b) The largest negative velocity occurs at approximately t = 4 s and is approximately v = dx/dt ≈ Δx/Δt = 
−(1 m)/(0.7 s) = −1.4 m/s. 
(c) The instantaneous velocity goes to zero at t = 3 s and t = 5 s, because the graph has extremums (i.e., maxima or 
minima) at these points, so the slope is horizontal. 
(d) Applying Equation 2.1 to the total displacement, we find the average velocity is 

0

0

3 m 0 m 0.5 m/s.
6 s 0 s

x x xv
t t t

Δ − −= = = =
Δ − −

 

ASSESS The average velocity is positive, as expected, because the final position is greater than the initial 

position. 

 21. INTERPRET This problem involves using calculus to express velocity given position as a function of time. We 

must also understand that zero velocity occurs where the slope (i.e., the derivative) of the plot is zero. 

DEVELOP  The instantaneous velocity ( )v t  can be obtained by taking the derivative of ( ).y t  The derivative of a 

function of the form nbt  can be obtained by using Equation 2.3. 
EVALUATE (a) The instantaneous velocity as a function of time is 

2dyv b ct
dt

= = −  

(b) By using the general expression for velocity, we find that it goes to zero at 

2

0 2
82 m/s 8.4 s

2 4.9 m/s

v b ct
bt
c

= = −

= = =
 

ASSESS From part (a), we see that at t = 0, the velocity is 82 m/s. This velocity decreases as time progresses due 

to the term −2ct, until the velocity reverses and the rocket falls back to Earth. Note also that the units for part (b) 
come out to be s, as expected for a time. 

Section 2.3 Acceleration 

 22. INTERPRET Solar material is accelerated from rest ( 0)=v  to a high speed. We are asked to find the average 

acceleration. 

DEVELOP Equation 2.4 gives the average acceleration / .= Δ Δa v t   
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EVALUATE Over 1 hour, the average acceleration is  

2(450 km/s) (0) 125 m/s
1 h

Δ −= = =
Δ

va
t

 

ASSESS This is 13 times the gravitational acceleration on Earth.  

 23. INTERPRET The object of interest is the subway train that undergoes acceleration from rest, followed by 

deceleration through braking. The kinematics are one-dimensional, and we are asked to find the average 

acceleration over the braking period. 

DEVELOP The average acceleration over a time interval tΔ  is given by Equation 2.4: / .a v t= Δ Δ  

EVALUATE Over a time interval 2 1 48 s ,t t tΔ = − =  the velocity of the train (along a straight track) changes from 

1 0v =  (starting at rest) to 2 17 m/s.v =  The change in velocity is thus 2 1 17 m/s 0.0 m/s 17 m/s.v v vΔ = − = − =  

Thus, the average acceleration is  

217 m/s 0.35 m/s
48 s

va
t

Δ= = =
Δ

 

ASSESS We find that the average acceleration only depends on the change of velocity between the starting point 

and the end point; the intermediate velocity is irrelevant. 

 24. INTERPRET This problem involves calculating an average acceleration given the initial and final times and 

velocities. We will also need to convert units from min to s (to express the quantities in consistent units) and from 

km to m (to express the answer in convenient units). 

DEVELOP The average acceleration over a time interval tΔ  is given by Equation 2.4: / .a v t= Δ Δ  Because the 

space shuttle starts at rests, v1 = 0, so Δv = v2 – v1 = 7.6 km/s − 0.0 km/s = 7.6 km/s = 7600 m/s. The time interval 

Δt = (8.5 min)(60 s/min) = 510 s. 

EVALUATE The average acceleration of the space shuttle during the given period is 

27600 m/s 15 m/s
510 s

va
t

Δ= = =
Δ

 

ASSESS The result is in m/s2, as expected for an acceleration. The acceleration is positive, which means the 

velocity of the space shuttle increased during this period. Note that the magnitude of this acceleration is greater 

than that due to gravity, which is −9.8 m/s2 (i.e., directed toward the Earth). 

 25. INTERPRET For this problem, the motion can be divided into two stages: (i) free fall, and (ii) stopping after 

striking the ground. We need to find the average acceleration for both stages. 

DEVELOP We chose a coordinate system in which the positive direction is that of the egg’s velocity. For stage 

(i), the initial velocity is (i)
1 0.0 m/s,=v  and the final velocity is (i)

2 11.0 m/s,=v  so the change in velocity is 
(i) (i) (i)

2 1 11.0 m/s 0.0 m/s 11.0 m/s.Δ = − = − =v v v  The time interval for this stage is (i) 1.12 s.Δ =t  For the second 

stage, the initial velocity is (ii)
1 11.0 m/s,=v  the final velocity is (ii)

2 0.0 m/s,=v  so the change in velocity is 
(ii) (ii) (ii)

2 1 0 m/s 11 m/s 11.0 m/s.Δ = − = − = −v v v  The time interval for the second stage is (ii) 0.131s.Δ =t  Insert 

these values into Equation 2.4, / ,= Δ Δa v t  to find the average acceleration for each stage. 

EVALUATE (a) While undergoing free fall - stage (i), the average acceleration is 
(i)

(i) 2
(i)

11.0 m/s 9.82 m/s
1.12 s

va
t

Δ= = =
Δ

 

(b) For the stage (ii), where the egg breaks on the ground, the average acceleration is 
(ii)

(ii) 2
(ii)

11.0 m/s 84.0 m/s
0.131s

va
t

Δ −= = = −
Δ

 

ASSESS For stage (i), the acceleration is that due to gravity, and is directed downward toward the Earth. It is in 

the same direction as the velocity so the velocity increases during this stage. For stage (ii), the acceleration is in the 

opposite direction (i.e., upward away from the Earth) so the velocity decreases during this stage. 
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 26. INTERPRET For this problem, we need to calculate the time it takes for the airplane to reach its take off speed 

given its acceleration. Notice that this is similar to the previous problems, except that we are given the velocity and 

acceleration and are solving for the time, whereas before we were given the velocity and time and solved for 

acceleration. 

DEVELOP We can use Equation 2.4, / ,a v t= Δ Δ  to solve this problem. We can assume the airplane’s initial 

velocity is v1 = 0 km/h, and we are given the final velocity (v2 = 320 km/h), so the change in the airplane’s velocity 

is Δv = v2 – v1 = 320 km/h. The average acceleration is given as 22.9 m/s .=a  Notice that the velocity and the 

acceleration are given in different units, so we will convert km/h to m/s for the calculation. 

EVALUATE Insert the known quantities into Equation 2.4 and solve for the time interval, Δt. This gives 

3

2

320 km/h 10 m 1 h 31s
2.9 m/s km 3600 s

va
t
vt

a

Δ=
Δ

⎛ ⎞⎛ ⎞ ⎛ ⎞ΔΔ = = =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

ASSESS With an average acceleration of 22.9 m/s ,  the airplane’s velocity increases by just under 3 m/s each 

second. Given that 320 km/h is just under 90 m/s, the answer seems reasonable because if you increment the 

velocity by 3 m/s 30 times, it will attain 90 m/s.  

 27. INTERPRET The object of interest is the car, which we assume undergoes constant acceleration. The kinematics 

are one-dimensional. 

DEVELOP We first convert the units km/h to m/s, using the conversion factor 

 km 1000 m 1 h1 km/h 1 0.278 m/s
h 1 km 3600 s

⎛ ⎞⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

and then use Equation 2.4, / ,= Δ Δa v t  to find the average acceleration. 

EVALUATE The speed of the car at 16 s is 1000 km/h, or 278 m/s. Therefore, the average acceleration is 

22 1

2 1

(278 m/s) (0) 17 m/s
16 s 0 s

− −= = =
− −

v va
t t

 

ASSESS The magnitude of the average acceleration is about 1.8g, where g = 9.8 m/s2 is the gravitational 

acceleration. An object undergoing free fall attains only a speed of 157 m/s after 16.0 s, compared to 278 m/s for 

the supersonic car. Given the supersonic nature of the vehicle, the value of a is completely reasonable. 

Section 2.4 Constant Acceleration 

 28. INTERPRET The problem states that the acceleration of the car is constant, so we can use the constant-

acceleration equations and techniques developed in this chapter. We’re given initial and final speeds, and the time, 

and we’re asked to find the distance. 

DEVELOP Equation 2.9 relates distance to initial speed, final speed, and to time—that’s just what we need. The 

distance traveled during the given time is the difference between x and x0. We also need to be careful with our units 

because the problem gives us speeds in km/h and time in seconds, so we will convert everything to meters and 

seconds so that everything has consistent and convenient units. 
EVALUATE First, convert the speeds to units of m/s. This gives 

3

3

km 10 m 1 h70 km /h 70 19.4 m/s
h 1 km 3600 s

km 10 m 1 h80 km /h 80 22.2 m/s
h 1 km 3600 s

⎛ ⎞⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

where we have retained more significant figures than warranted because this is an intermediate result. Insert these 

quantities into Equation 2.9 and solve for the distance, x – x0. This gives  

0 0
1 1( ) ( ) (19.4 m/s 22.2 m/s)(6 s) 125 m
2 2

− = − = + =x x v v t  
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Because we know the time to only a single significant figure (6 s), we should report our answer to a single 

significant, which is 100 m. 

ASSESS This distance for passing seems reasonable. Note that the answer actually implies that the passing 

distance is 100 ± 50 m. 

 29. INTERPRET The problem is designed to establish a connection between the equation for displacement and the 

equation for velocity in one-dimensional kinematics.  

DEVELOP Recall that the derivative of position with respect to time dx/dt is the instantaneous velocity (see 

Equation 2.2b, dx/dt = v). Thus, by differentiating the displacement x(t) given in Equation 2.10 with respect to t, 
we obtain the corresponding velocity v(t). We can use Equation 2.3 for evaluating the derivatives. 

EVALUATE Differentiating Equation 2.10, we obtain 

2
0 0 0

0

1 10 (2 )
2 2

dx d x v t at v a t
dt dt

v v at

⎛ ⎞= + + = + + ⋅⎜ ⎟
⎝ ⎠

= +
 

which is Equation 2.7. Notice that we have used Equation 2.2b and that we have used the fact that the derivative 

(i.e., the change in) the initial position x0 with respect to time is zero, or dx0/dt = 0. 

ASSESS Both Equations 2.7 and 2.10 describe one-dimensional kinematics with constant acceleration a, but whereas 

Equation 2.10 gives the displacement, Equation 2.7 gives the final velocity. 

 30. INTERPRET The acceleration is constant, so we can use equations from Table 2.1. 

DEVELOP We’re given the distance and the final velocity but no time, so Equation 2.11 seems appropriate for 

finding the acceleration 

 
2 2

0

02( )
−=
−

v va
x x

 

Once we have a, we can use Equation 2.7, 2.9 or 2.10 to find the time. Equation 2.7 would seem to be the simplest.  

EVALUATE (a) We assume the electrons start at the origin ( 0)=x  and at rest 0( 0).=v  
2 2 7 2 2

14 20

0

(1.2 10  m/s) (0) 4.8 10 m/s
2( ) 2(0.15 m 0)

− × −= = = ×
− −

v va
x x

 

(b) Using this acceleration in Equation 2.7 allows us to solve for the time 

 
7

80
14 2

1.2 10 m/s 2.5 10 s 25 ns
4.8 10 m/s

v vt
a

−− ×= = = × =
×

 

ASSESS The electron has such a small mass that it can be accelerated rather easily. Here, it is accelerated to 4% of 

the speed of light in a few nanoseconds. 

 31. INTERPRET This is a one-dimensional kinematics problem with constant acceleration. We are asked to find the 

acceleration and the assent time for a rocket given its speed and the distance it travels. 

DEVELOP The three quantities of interest; displacement, velocity, and acceleration, are related by Equation 2.11, 
2 2

0 02 ( ).v v a x x= + −  Solve this equation for acceleration for part (a). Once the acceleration is known, the time 

elapsed for the ascent can be calculated by using Equation 2.7, 0 .v v at= +  

EVALUATE (a) Taking x to indicate the upward direction, we know that 0 085 km 85,000 m,  0x x v− = = =  (the 

rocket starts from rest), and 2.8 km/s 2800 m/s.v = =  Therefore, from Equation 2.11, the acceleration is 
2 2

0 0

2 2 2 2
20

0

2 ( )

(2800 m/s) (0 m/s) 46 m/s
2( ) 2(85,000 m)

= + −

− −= = =
−

v v a x x
v va
x x

 

(b) From Equation 2.7, the time of flight is  

0
2

2800 m/s (0 m/s) 61s
46 m/s

− −= = =v vt
a
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ASSESS An acceleration of 46 m/s2 or approximately 5g (g = 9.8 m/s2), is typical for rockets during liftoff. This 

enables the rocket to reach a speed of 2.8 km/s in just about one minute.  

 32. INTERPRET This problem asks us to find the acceleration given the initial and final velocities and the time 

interval. 

DEVELOP (a) From Table 2.1, we find Equation 2.7 0v v at= +  contains the acceleration, velocity (initial and 

final), and time. Thus, given the initial and final velocity and the time interval, we can solve for acceleration. The 

initial velocity v0 = 0 because the car starts from rest, the final velocity v = 88 km/h, and the time interval is t = 12 s. 

We chose to convert the velocity to m/s, because these will be more convenient units for the calculation. By using 

the data in Appendix C, we find the final velocity is v = (88 km/h)(1000 m/1 km)(1 h/3600 s) = 24.4 m/s (where 

we keep more significant figures than warranted because this is an intermediate result). (b) To find the distance 

travled during the accleration period, use Equation 2.10, which relates distance to velocity (initial and final), 

acceleration, and time.  

EVALUATE (a) Inserting the given quantities in Equation 2.7 gives  

0

20 24.4 m/s 0.0 m/s 2.0 m/s
12 s

v v at
v va

t

= +
− −= = =

 

where we have retained two significant figures in the answer, as warranted by the data.  

(b) Inserting the acceleration just calculated into Equation 2.10, we find 

2 2 2
0 0

1 1(0 m/s)(12 s) (2.04 m/s )(12 s) 150 m
2 2

− = + = + =x x v t at  

where we have retained 3 significant figures in the acceleration because it’s now an intermediate result, but have 

retained only 2 significant figures in the final result because the data is given to only 2 significant figures. 

ASSESS Is this answer reasonable? If we increase our velocity by 2 m/s every second, in 12 seconds we can 

expect to be moving at 12 × 2 m/s = 24 m/s, which agrees with the data. To see if 150 m is a reasonable distance, 

imagine traveling at the average velocity of about 12 m/s (how do we know it’s 12 m/s?) for 12 s. In this case we 

would travel 12 s × 12 m/s = 144 m, which is close to our result. 

 33. INTERPRET The object of interest is the car that undergoes constant deceleration (via braking) and comes to a 

complete stop after traveling a certain distance. 

DEVELOP The three quantities, displacement, velocity, and deceleration (negative acceleration), are related by 

Equation 2.11, 2 2
0 02 ( ).= + −v v a x x  This is the equation we shall use to solve for a. Since the distance to the light 

is in feet, we can convert the initial speed  

 0
5280 ft 1 h50 mi/h 73.3 ft/s

1 mi 3600 s
v ⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

EVALUATE Since the car stops (v = 0) after traveling 0 100 ftx x− =  from an initial speed of 0 73.3 ft/s,=v  

Equation 2.11 gives 
2 2 2

20

0

0 (73.3 ft/s) 27 ft/s
2( ) 2(100 ft)

− −= = = −
−

v va
x x

 

The magnitude of the deceleration is the absolute value of a: 227 ft/s .=a  

ASSESS With this deceleration, it would take about 2
0/ (73 ft/s)(27 ft/s ) 2.7 s= = =t v a  for the car to come to a 

complete stop. The value is in accordance with our driving experience. 

 34. INTERPRET The electrons are accelerated to high-speed beforehand. We are only asked to consider the rapid 

deceleration that occurs when they slam into the tungsten target.  

DEVELOP We are given the initial and final velocities, as well as the time duration of the deceleration. We are not 

asked what the deceleration is, but merely what distance the electrons penetrate the tungsten before stopping. 

Equation 2.9 is therefore what we will use.  
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EVALUATE Plugging in the given values we find the stopping distance is 
1 1 8 9

0 02 2( ) (10 m/s 0)(10 s) 0.05 m−− = + = + =x x v v t  
ASSESS The electrons are initially travelling close to the speed of light, but only a thin sheet of tungsten is needed 

to stop them. The X rays that are produced in this way are called bremsstrahlung, which means “braking 

radiation.” 

 35. INTERPRET This question asks us to calculate the advance warning needed for the BART train to brake and come 

to a safe speed when the earthquake strikes. 

DEVELOP The initial speed of the train is v0 = 112 km/h = 31.1 m/s. The acceleration that brings the train to a 

complete stop in 24 s is 2(0 31.1 m/s)/24 s 1.30 m/s .= − = −a  We want to apply this acceleration to reduce the 

train speed to v = 42 km/h = 11.7 m/s.   

EVALUATE Using Eq. 2.11: 0 ,v v at= +  we find the time needed to be    

0
2

11.7 m/s 31.1 m/s 15 s
1.30 m/s

v vt
a
− −= = =

−
 

ASSESS The 15 s advance warning may not seem long, but it allows the train operator to slow down and take 

appropriate steps to ensure the safety of the passengers. 

 36. INTERPRET This question asks us to derive an expression for the acceleration needed to stop before hitting a 

moose with your car. 

DEVELOP We are given the distance, d, and the initial velocity, v0. Since we don’t know the time, the equation to 

use is 2.11: 2 2
0 02 ( ),= + −v v a x x  where 0.= −d x x  

EVALUATE Since the goal is to stop before the moose, the final velocity is zero. Solving for a gives  
2
0

2
va
d

−=  

ASSESS The acceleration is negative, reflecting the fact that the car is dropping in speed as it stops. 

Section 2.5 The Acceleration of Gravity 

 37. INTERPRET This problem involves constant acceleration due to gravity. We are asked to calculate the distance 

traveled by the rock before it hit the water. 

DEVELOP We chose a coordinate system where the positive-x axis is downward. We are given the rock’s 

constant acceleration (gravity, g = 9.8 m/s2), its initial velocity v0 = 0.0 m/s, and its travel time t = 4.4 s. Insert this 

data into Equation 2.10 and solve for the displacement x − x0. 

EVALUATE From Equation 2.10, we find 

2 2
0 0 0

2 2

1 1
2 2

1(0.0 m/s)(4.4 s) (9.8 m/s )(4.4 s) 95 m
2

− = + = +

= + =

x x v t at v t gt
 

ASSESS When the travel time of the sound is ignored, the depth of the well is quadratic in t. The depth of the well 

is about the length of an American football field. If we use the speed of sound s = 340 m/s, how will that change 

our answer? 

 38. INTERPRET This problem involves the constant acceleration due to gravity. We are asked to calculate the initial 

velocity required for an object to travel a given distance under the influence of constant acceleration (directed 

opposite to the initial velocity). 

DEVELOP We chose a coordinate system where the positive-x axis points upward. We are given the apple’s 

constant acceleration (gravity, g = −9.8 m/s2), its final velocity v = 0.0 m/s, and the distance traveled x − x0 = 6.5 m. 

These quantities are related to the initial velocity v0 by Equation 2.11. 
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EVALUATE  Insert this data into Equation 2.11 and solve for the initial velocity v0. This gives 
2 2

0 0

2 2 2
0 0

2 ( )

2 ( ) (0.0 m/s) 2( 9.8 m/s )(6.5 m)
11 m/s

= + −

= ± − − = ± − −

=

v v a x x

v v a x x  

where we choose the positive square root because we throw the apple upwards, which is the positve-x direction in 

our chosen coordinate system. 

ASSESS Is this a hard throw to make? Compare this velocity to an MLB pitcher’s fastball, which is routinely 

clocked at 90 mi/h = (90 mi/h)(1609 m/mi)(1 h/3600 s) = 40 m/s. So, you only have to generate about 25% of the 

velocity of a major-league pitcher. 

 39. INTERPRET The problem involves constant acceleration due to gravity. We are asked to find the maximum 

altitude reached by a model rocket that is launched upward with the given velocity. In addition, we need to find the 

speed and altitude at three different times, counting from the launch time. 

DEVELOP We choose a coordinate system in which the upward direction corresponds to the positive-x direction. 

We are given the initial velocity, v0 = 49 m/s, and we know that the velocity at the peak of the rocket’s flight is v = 

0 m/s, the rocket’s acceleration is a = g = −9.8 m/s2 (i.e., it accelerates downward toward the Earth), and its initial 

position is x0 = 0 m. Equation 2.11, 2 2
0 02 ( ),= + −v v a x x  relates these quantities to the rocket’s displacement x. For 

parts (b), (c), and (d), use Equation 2.7, 0 ,= +v v at  to find the rocket’s speed at the different times, and then 

Equation 2.9, 0 0( ) 2,− = +x x v v t  to find its displacement (i.e., altitude).  

EVALUATE (a) At the peak of the rocket’s flight, Equation 2.11 gives 
2 2

0 0
2 2 2 2

0
0 2

2 ( )

(0.0 m/s) (49 m/s) 0.0 m 123 m
2 2( 9.8 m/s )

= + −

− −= + = + =
−

v v a x x
v vx x

a
 

(b) At t = 1 s, the speed and the altitude are 
2

0

2 2 2
0 0

49 m/s (9.8 m/s )(1 s) 39 m/s
1 10.0 m/s (49 m/s)(1 s) (9.8 m/s )(1 s) 44 m
2 2

= − = − =

= + − = + − =

v v gt

x x v t gt
 

The first quantity (39 m/s) is known to two significant figures because we know the intial velocity to this precision, 

so subtacting a less-precise quantity from it does not change its precision. The second quantity should be rounded 

to 40 m because both non-zero terms in Equation 2.9 are known to a single significant figure. 

(c) At t = 1 s, the speed and the altitude are 
2

0

2 2 2
0 0

49 m/s (9.8 m/s )(4 s) 9.8 m/s
1 10.0 m/s (49 m/s)(4 s) (9.8 m/s )(4 s) 118 m
2 2

= − = − =

= + − = + − =

v v gt

x x v t gt
 

Again, we need to round the second result to a single significant figure, which gives 100 m as the final answer. 

(d) At t = 7 s, the speed and the altitude are 

( )

2
0

2 2 2
0 0

49 m/s (9.8 m/s )(7 s) 20 m/s
1 10.0 m/s (49 m/s) 7 s (9.8 m/s )(7 s) 103 m
2 2

= − = − = −

= + − = + − =

v v gt

x x v t gt
 

Again, we need to round the second result to a single significant figure, which gives 100 m as the final answer. 

ASSESS As the rocket moves vertically upward, its velocity decreases due to gravitational acceleration, which is 

oriented downward. Upon reaching its maximum height, the velocity reduces to zero. It then falls back to Earth with a 

negative velocity. From (c) and (d), we see that the velocities have different signs at t = 4 s and t = 7 s, so we conclude 

that the rocket reaches its maximum height between 4 and 7 s. Calculating the time it takes to reach its maximum height 

using Equation 2.7 gives 2
0( ) (0.0 m/s 49 m/s) ( 9.8 m/s ) 5.0 s,= − = − − =t v v a  in agreement with our expectation. 

 40. INTERPRET This problem involves one-dimensional motion under the influence of gravity. We are asked to 

calculate how high a ball will rise and how long it remains airborne given its initial velocity. 
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DEVELOP Choose a coordinate system in which the positive-x direction is upward. From the problem statement, 

we know that the ball’s initial velocity is v0 = 23 m/s. From physics, we know that the velocity of the ball at the 

summit of its flight is v = 0 m/s, and that during its flight it is accelerated by gravity at a = g = −9.8 m/s2. To find 

how high the ball rises, use Equation 211, 2 2
0 02 ( ),= + −v v a x x  and to find the total time the ball is airborne, use 

Equation 2.10, 2
0 0 2.= + +x x v t at  

EVALUATE (a) Inserting the known quantities into Equation 2.11 gives 
2 2

0 0
2 2 2 2

0
0 2

2 ( )

(0.0 m/s) (23 m/s) 0.0 m 27 m
2 2( 9.8 m/s )

= + −

− −= + = + =
−

v v a x x
v vx x

a
 

(b) Inserting the known quantities into Equation 2.10 gives 

2
0 0

0
2

10
2

2 2(23 m/s) 4.7 s
9.8 m/s

− = = +

− −= = =
−

x x v t at

vt
a

 

where we have used the fact that x = x0 because the ball returns to the level at which it left the bat. 

ASSESS If the ball goes straight up as it leaves the bat and stays airborne for almost 5 s, what are the chances the 

catcher will catch the ball?  

 41. INTERPRET This problem involves one-dimensional motion under the influence of gravity. We are asked to 

calculate what initial velocity of the rock is needed so that it is traveling at 3 m/s when it reaches the Frisbee. 

DEVELOP  Choose a coordinate system in which the positive-x direction is upward. When the rock hits the 

Frisbee, its velocity and height are v = 3 m/s and x = 6.5 m, and the rocks initial position is x0 = 1.3 m. These 

quantities are related by Equation 2.11: 
2 2

0 02 ( )= + −v v a x x  

EVALUATE Solving this equation for the initial velocity, we obtain 
2 2

0 0

2 2
0 0

2 ( )

2 ( ) (3 m/s) 2( 9.8 m/s )(6.5 m 1.3 m) 11 m/s

= + −

= ± − − = ± − − − =

v v a x x

v v a x x
 

where we have chosen the positive square root because the rock must be travelling upward. 

ASSESS The initial velocity 0v  must be positive since the rock is thrown upward. In addition, 0v  must be greater 

than the final velocity 3 m/s. These conditions are met by our result. 

 42. INTERPRET This problem involves one-dimensional motion under the influence of gravity. We need to find the 

acceleration due to gravity on an unknown planet, and to identify the planet by comparing our result with the data 

in Appendix E. 

DEVELOP  Choose a coordinate system in which the positive-x direction is upward. We know the initial position 

of the watch is x0 = 1.70 m, the final position is x = 0 m, and the time it takes to fall is 0.95 s. Furthermore, we 

know that the initial velocity of the watch is v0 = 0.0 m/s, so we can use Equation 2.10, 2
0 0 2,= + +x x v t at  to find 

the acceleration of the watch. 

EVALUATE Solving this equation for the acceleration, we obtain 

2
0 0

20 0
2 2

1
2

2( ) 2[1.70 m 0.00 m (0.00 m/s)(0.95 m/s)] 3.8 m/s
(0.95 s)

= + +

− − − −= = =

x x v t at

x x v ta
t

 

This acceleration is closest to the gravity listed for Mars in Appendix E, so our earthling must be on Mars.  

ASSESS This value for the acceleration due to gravity is approximately one-third of the gravitational acceleration 

on the surface of the Earth. 
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PROBLEMS 

 43. INTERPRET This is a one-dimensional problem involving two travel segments. We are asked to calculate the 

average velocity for the second segment of the trip. 

DEVELOP The trip can be divided into two time intervals, t1 and t2 with t = t1 + t2 = 40 min = 2/3 h. The total 

distance traveled is x = x1 + x2 = 25 mi, where x1 and x2 are the distances covered in each time interval. 

EVALUATE During the first time interval, t1 = 15 min (or 0.25 h), and with an average speed of 1v  = 20 mi/h, the 

distance traveled is 

1 1 1 (20 mi/h)(0.25 h) 5 mi= = =x v t  

Therefore, the remaining distance 2 1 25 mi 5mi 20 mix x x= − = − =  must be covered in 

2 1
540 min 15 min 25 min  h

12
t t t= − = − = =  

This implies an average speed of 

 2
2

2

20 mi 48 mi/h
5 h 12

xv
t

= = =  

ASSESS The overall average speed was pre-determined to be  

25 mi 37.5 mi/h
2 h/3

xv
t

= = =  

When you drive slower during the first segment, you make it up by driving faster during the second. In fact, the 

overall average speed equals the time-weighted average of the average speeds for the two parts of the trip: 

1 2 1 1 2 2 1 2
1 2

15 min 25 min(20 mi/h) (48 mi/h) 37.5 mi/h
40 min 40 min

x x x v t v t t tv v v
t t t t t

+ + ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = + = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 44. INTERPRET This problem involves calculating the time it takes the ball to travel from the pitcher to the catcher, 

then calculating how fast the catcher must throw the ball to get it to second base before the base runner.  

DEVELOP We can break this problem into two segments: the time it takes the ball to travel from pitcher to 

catcher, and the time it takes the catcher to get the ball to second base. For the first segment, convert mi/h to ft/s to 

have consistent units. The conversion is (90 mi/h)(5280 ft/mi)(1 h/3600 s) = 132 ft/s. Therefore the time it takes 

the ball to reach the catcher is 

1
61 ft 0.462 s

132 ft/s
dt
v

= = =  

(Note that were retaining more significant figures than warranted for the intermediate calculations.) Taking into 

account the time it takes the catcher to release the ball towards second plate, the ball must travel to second base in 

a time t2 give by 

2 13.4 s 0.45 s 2.95 0.462 2.49 st t= − − = − =  

Now calculate the distance to second base and divide by the time t2 to find the necessary speed with which the 

catcher must throw the ball. 

EVALUATE The diagonal of a square 90 ft on a side is 90 2 ft 127.3 ft,=  so the catcher must throw the ball with 

a speed  

2

90 2 ft 51 ft/s
2.49 s

dv
t

= = =  

Because we know the size of the baseball diamond (90 ft) to a single significant figure, we must round our answer 

to a single significant figure, which give 50 ft/s as the average velocity for the catcher’s throw. 

ASSESS  This speed is about one-third the speed of the pitcher’s fast ball. 
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 45. INTERPRET This is a one-dimensional kinematics problem that involves calculating the average velocity of two 

brothers. In particular, we are asked to calculate much sooner the slower brother must start to arrive at the finish 

line at the same time as the faster brother. 

DEVELOP Because the brothers desire to have a tie race over 100 meters, they must both cover that distance. 

Thus, the head start must be in time, not distance. The average velocity of the fast brother is 20% greater than that 

of the slow brother, so 

slow fast

fast
slow

(1.00 0.20)
9.0 m/s 7.5 m/s

1.20 1.20

+ =

= = =

v v
vv

 

Knowing the speed of both brothers, calculate the difference in this time for them to cover 100 m. This time is the 

head start needed by the slower brother. 

EVALUATE  The time it takes for each brother to cover Δx = 100 m is  

fast
fast

slow
slow

100 m 11.1s
9.0 m/s

100 m 13.3 s
7.5 m/s

xt
v

xt
v

Δ= = =

Δ= = =
 

The difference between these times is the head start needed by the slower brother. This is Δt = tslow − tfast = 13.3 s – 11.1 s = 2.2 s.  

ASSESS What if both brothers started at the same time, but the slower one was given a head start in distance—
what distance would be needed? The distance needed is simply the distance the slower brother covers in his 2.2-s 

head start, or slow (7.5 m/s)(2.222 s) 16.7 m 17 mΔ = Δ = = ≈x v t  to two significant figures. 

 46. INTERPRET This is a one-dimensional kinematics problem that asks us to calculate the point at which two 

jetliners will meet given their starting points and average velocities. 

DEVELOP Given the average speed, the distance traveled during a time interval can be calculated using Equation 

2.1, .x v tΔ = Δ  An important point here is to recognize that at the instant the airplanes pass each other, the sum of 

the total distance traveled by both airplanes is Δx = 4600 km.  

EVALUATE Suppose that the two planes pass each other after a time tΔ  from take-off. We then have  

1 2 1 2 1 2( )x x x v t v t v v tΔ = Δ + Δ = Δ + Δ = + Δ  

which yields 

1 2

4600 km 2.56 h 2.6 h
1100 km/h 700 km/h

xt
v v

ΔΔ = = = ≈
+ +

 

Thus, the encounter occurs at a point about 1 1 (1100 km/h)(2.56 h) 2811 km 2800 kmΔ = Δ = = ≈x v t  from San 

Francisco, or 2 2 (700 km/h)(2.56 h) 1789 km 2000 kmΔ = Δ = = ≈x v t  from New York. The approximate results 

are those with the correct number of significant figures. 

ASSESS The point of encounter is closer to New York than San Francisco. This makes sense because the plane 

that leaves from New York travels at a lower speed. If we sum the distances covered by the two airplanes when 

they encounter, we find Δx = 2811 km + 1789 km = 4600 km, which is the distance from San Francisco to New 

York, as expected. 

 47. INTERPRET The goal of this problem is to gain an understanding of the limiting procedure at the root of calculus. 

We are to estimate an object’s instantaneous velocity to ever-increasing precision without using calculus, then 

compare the results with the result obtained with calculus. 

DEVELOP Use Equation 2.1, ,= Δ Δv x t  to calculate the average speed for each time interval. To do this, we need 

to know the displacements, which we can calculate using the given formula for position as a function of time. This gives 
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( )( ) ( )( )

a 3 3
1
a 3 3
2
b 3 3
1

3b 3
2

c
1

(1.50 m/s)(1.00 s) (0.640 m/s )(1.00 s) 2.140 m

(1.50 m/s)(3.00 s) (0.640 m/s )(3.00 s) 21.78 m

(1.50 m/s)(1.50 s) (0.640 m/s )(1.50 s) 4.410 m

1.50 m/s 2.50 s 0.640 m/s 2.50 s 13.75 m

(1.50 m/

x
x
x

x

x

= + =

= + =

= + =

= + =

=

(a)

(b)

(c) 3 3

c 3 3
2

s)(1.95 s) (0.640 m/s )(1.95 s) 7.671 m

(1.50 m/s)(2.05 s) (0.640 m/s )(2.05 s) 8.589 mx
+ =

= + =

 

The instantaneous velocity may be found by differentiating the given formula for position (see Equation 2.3). 

EVALUATE From Equation 2.1, we find the following average velocities:  
a a

a 2 1
a a a

a 2 1
b b

b 2 1
b b b

b 2 1

c c
c 2 1

c c c
c 2 1

21.78 m 2.140 m 9.82 m/s
3.00 s 1.00 s

13.75 m 4.410 m 9.34 m/s
2.50 s 1.50 s

8.589 m 7.671 m 9.18 m/s
2.05 s 1.95 s

x x xv
t t t
x x xv
t t t
x x xv
t t t

Δ − −= = = =
Δ − −

Δ − −= = = =
Δ − −

Δ − −= = = =
Δ − −

(a)

(b)

(c)

 

(d) Differentiating the given formula for position, and evaluating it at t = 2 s give 
2

3 2

( ) 3
(2 s) 1.50 m/s 3(0.640 m/s )(2 s) 9.18 m/s

= = +
= + =

v t dx dt b ct
v

 

We find that the average velocity provides an ever-increasing precise estimation of the instantaneous velocity as 

the time interval over which the average velocity is calculated shrinks. 

ASSESS As the interval surrounding 2 s gets smaller, the average and instantaneous velocities approach each 

other; the values in parts (c) and (d) differ by less than 0.02% (if you retain more significant figures). 

 48. INTERPRET This is a one-dimensional kinematics problem involving finding the instantaneous velocity as a 

function of time, given the position as a function of time. We must also show that the average velocity from t = t1 = 

0 to any arbitrary time t = t2 is one-fourth of the instantaneous velocity at t2. 

DEVELOP The instantaneous velocity v(t) can be obtained by taking the derivative of x(t). The derivative of a 

function of the form btn can be obtained by using Equation 2.3. The average velocity for any arbitrary time interval 

Δt = t2 − t1 may be calculated by using Equation 2.1, ,= Δ Δv x t  where Δx is determined by evaluating x = bt4 for 

the two times t1 and t2. 

EVALUATE The instantaneous velocity is 4 3( ) ( ) 4 .= = =v t dx dt d dt bt bt  The average velocity over the time 

interval from t = 0 to any time t > 0 is 
4

3( ) (0)
0

Δ −= = = =
Δ −

x x t x btv bt
t t t

 

which is just ¼ of v(t) from above.  

ASSESS Note that v  is not equal to the average of (0)v  and ( ),v t  as stated in Equation 2.8. That is applicable 

only when acceleration is constant, which is clearly not the case here. 

 49. INTERPRET This is a one-dimensional kinematics problem in which we need to use calculus to calculate the 

velocity and acceleration given the expression for position as a function of time. We must find the time at which 

the car passes two points, and calculate the average velocity for the car between these points from these 

measurements. Finally, we need to calculate the difference between this average velocity and the instantaneous 

velocity midway between the two points. 

DEVELOP The instantaneous velocity v(t) can be obtained by taking the derivative of 2( ) =x t bt  (see Equation 

2.2b). Thus we have 
2( )

( ) 2 2

=

= = = ±

x t bt
dxv t bt xb
dt

 



Motion in a Straight Line  2-15 

 
© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may 

be reproduced, in any form or by any means, without permission in writing from the publisher. 

Where we have used the x(t) to eliminate t in the expression v(t). The first equation will tell us the times at which 

the car passes the two observers, and we can use Equation 2.1 v x t= Δ Δ  to find the average velocity calculated by 

each observer. The instantaneous velocity at 200 m is given by the second equation. 

EVALUATE (a) Using the expression x(t), we find the time at which the car passes the two observers is 

2

2

180 m 9.4868 s (first observer)
2.000 m/s

220 m 10.488 s (second observer)
2.000 m/s

⎧
± =⎪

⎪= ± = ⎨
⎪± =⎪
⎩

xt
b

 

Using Equation 2.1, the observers find an average velocity of 

220 m 180 m 39.95 m/s
10.488 s 9.4868 s

xv
t

Δ −= = =
Δ −

 

(b) Using the expression v(t) for the instantaneous velocity at x = 200 m is  

( )( )22 2 200 m 2.000 m/s 40.00 m/sv xb= ± = ± =  

which differs from the average velocity by (100%)(39.95 m/s 40.00 m/s) (40.00 m/s) 0.13%.− = −  

ASSESS What would happen if the observers were not symmetrically positioned about the 200-m mark? How 

would that affect the result? At 220 m, we see that the instantaneous velocity is 
22 (220 m/s)(2 m/s ) 41.95 m/s,= =v  which is a 4.8% difference with respect to the average velocity.  

 50. INTERPRET This problem is a mathematical exercise desinged to familiarize us with the kinetic equations for 

one-dimensional motion with constant acceleration.  

DEVELOP Equation 2.7 is 0v v at= +  and Equation 2.11 is 2 2
0 02 ( ).= + −v v a x x  

EVALUATE  Squaring Equation 2.7 gives 2 2 2 2 2
0 0 0( ) 2 .= + = + +v v at v v at a t  Equating the result to Equation 2.11 

gives ( )2 2
0 02 2 ,v at a t a x x+ = −  or 21

0 0 2x x v t at− = +  which is Equation 2.10. 

ASSESS Can you derive other relationships between the equations of motion?  

 51.  INTERPRET This problem deals with the landing of spacecraft Curiosity on Mars. We apply a simple one-

dimensional kinematics with constant deceleration.   

DEVELOP The initial speed of the Curiosity is v0 = 32.0 m/s. Its speed then decreases steadily to v = 0.75 m/s as 

its altitude is dropped from 142 m to 23 m.  We use Equation 2.11: ( )2 2
0 02v v a x x= + −  to solve for the 

acceleartion a. 

EVALUATE  Using Equation 2.11, we find the acceleration to be 

( )
2 2 2 2

20

0

(0.75 m/s) (32.0 m/s) 4.3 m/s
2 2(142 m 23 m)
v va

x x
− −= = = −
− −

 

Thus, the magnitude of the spacecraft’s acceleration is 4.3 m/s2.  

ASSESS This is about 1.16 times the surface gravity of Mars: 2
Mars 3.71 m/s .=g  The duration of this CD phase 

can be calculated using Equation 2.7:  

0
2

0.75 m/s 32 m/s 7.3 s.
4.3 m/s

v vt
a
− −= = =

−
    

 52. INTERPRET This is a data-analysis problem, where the position of a car in a drag race is given at various times. 

We analyze the data and look for a quantity, which when position is plotted against it, gives a straight line.  

DEVELOP The car starts from rest (x0 = 0, v0 = 0) and undergoes constant acceleration. From one-dimensional 

kinematics, the position of the car as a function of time can be written as 2 / 2,x at=  where a is the acceleration. 

Thus, plotting x against t2 should give a straight line with slope a/2.  
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EVALUATE  A plot of position versus t2 is given below. 

 

  The plot yields a best-fit line with slope a/2 = 1.6 m/s2. Thus, the acceleration of the car is approximately 3.2 m/s2.   

ASSESS   This is about 0.3g. For Formula One race, the initial acceleration is typically around 1.5g.     

 53. INTERPRET The problem involves constant acceleration due to gravity. We have a fireworks rocket that explodes 

at a given height, with some fragments traveling upward and some downward. We want to know the time interval 

of the fragments hitting the ground.  

DEVELOP The fragment that travels vertically downward will hi the ground first, while the one that move 

vertically upward will come down last. We choose a coordinate system in which the upward direction corresponds 

to the positive-y direction. For the first (downward) fragment, the initial height is y0 = 82 m, and v10 = −7.68 m/s 

(the negative sign indicates that the fragment moves downward), Equation 2.10 gives 

 2 2 2
1 0 10

1 182.0 m ( 7.68 m/s) (9.80 m/s )
2 2

y y v t gt t t= + − = + − −  

Setting y1 = 0, and solving the quadratic equation, the time for the fragment to reach the ground is t1 = 3.382 s. 

Similarly, for the upward traveling fragment, we have       

2 2 2
2 0 20

1 182.0 m (16.7 m/s) (9.80 m/s )
2 2

y y v t gt t t= + − = + −  

Setting y2 = 0, and solving the quadratic equation, the time for the fragment to reach the ground is t2 = 6.136 s. 

EVALUATE The time interval over which the fragments hit the ground is 2 1 2.75 s,Δ = − ≈t t t  to three significant 

figures. 

ASSESS   A fragment that undergoes free fall would have reached the ground in 02 / 5.79 s.=y g  Travel time is 

longer for fragments having an upward velocity, but shorter for fragments with a downward velocity.     

 54. INTERPRET In this problem, we want to know how high a grasshopper can jump with a given initial velocity.  

DEVELOP We choose a coordinate system in which the upward direction corresponds to the positive-y direction. 

We note that the grasshopper is momentarily at rest when it reaches the maximum height. We use Equation 

2.11: ( )2 2
0 02v v a x x= + −  to solve for the maximum height. 

EVALUATE Rewriting the equation as 2 2
0 max2 ,v v gy= −  where v = 0, we find the maximum height to be 

2 2
0

max 2

(3.0 m/s) 0.46 m
2 2(9.8 m/s )
vy
g

= = =  

ASSESS   The body length of a grasshopper is between 1 and 7 cm, depending on the species. The maximum 

height calculated here means that grasshoppers can make jumps that are many times the length of their bodies, a 

task not possible for humans.  

 55. INTERPRET  This as a one-dimensional problem involving a car subjected to constant deceleration. We need to 

relate the car’s stopping distance to its stopping time.  

DEVELOP  For motion with constant acceleration, the stopping distance and the stopping time are related by 

Equation 2.9, 0 0( ) 2.− = +x x v v t  
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EVALUATE Let 0v  be the initial velocity and 0v =  be the final velocity. Equation 2.9 can then be rewritten as 

( )0 0 0
1 1
2 2

x x v v t v t− = + =  

Thus, we see that the stopping distance, x – x0, is proportional to the stopping time, t, so both are reduced by the 

same amount (55%).  

ASSESS Anti-lock brakes optimize the deceleration by controlling the wheels so that they roll just at the point of 

skidding.  

 56. INTERPRET  This as a one-dimensional problem involving a car subjected to constant deceleration. We need to 

relate the car’s stopping distance to its stopping time.  

DEVELOP  In this problem we must use −α for the acceleration in Table 2.1. Because we are given the 

acceleration, the displacement (x – x0 = 0), and the initial velocity, we can use Equation 2.10 to find the time. 

EVALUATE  (a) A return to the initial position means that ( ) 0x t x=  for t > 0. From Equation 2.10, 
2 21

0 0 02 ( ) ,  or 2 .α α= + + − =x x v t t v t t  Because 0,t ≠  we can divide to get 02 / ,α=t v  which is the time at which the 

particle returns to the starting point. 

(b) The speed, or magnitude of the velocity, can be found from Equation 2.7, 0 .= +v v at  Taking the magnitude of the 

velocity gives 0 0 0 0 0| | | ( ) | | (2 / )| | | .v v t v v v vα α α= + − = − = − =  The speed is the same, but the direction of motion is 

reversed. 

ASSESS This means that if you throw a ball straight up in the air, it will return to the ground at the same speed at 

which it departed (ignoring air resistance). 

 57. INTERPRET We interpret this as a one-dimensional kinematics problem with the hockey puck being the object of 

interest. 

DEVELOP We are told that the hockey puck undergoes constant deceleration while moving through the snow. 

Equation 2.9, 1
0 02 ( ) ,= + +x x v v t  provides the connection between the initial velocity 0 32 m/s,=v  the final 

velocity 18 m/s,=v  the travel time t, and the distance traveled 0.35 m.=x  For part (b), we use Equation 11, 

( )2 2
0 02v v a x x= + −  to find the acceleration, and then use the same equation again to find the minimum thickness 

of the snow, xmin, needed to stop the hockey puck entirely (v = 0). 

EVALUATE (a) Solving for the time  

( )
( )

( )
( )

0
1 1

02 2

0.35 m 0
0.014 s

32 m/s 18 m/s
x x

t
v v
− −

= = =
+ +

 

(b) First we solve for the acceleration 

( )
( )

( ) ( )( )
( )

2 22 2
0 2

0

18 m/s 32 m/s
1000 m/s

2 2 0.35 m 0

v v
a

x x

−−
= = = −

− −
 

Then we plug this back in to the same equation to find the minimum snow thickness for stopping the puck 

( ) ( )( )
( )

22 2
0

min 2

0 32 m/s
0.51 m 51 cm

2 2 1000 m/s

v v
x

a

−−
= = = =

−
 

ASSESS We find the minimum thickness to be proportional to 2
0v  and inversely proportional to the deceleration 

.−a  This agrees with our intuition: The greater the speed of the puck, the thicker the snow needed to bring it to a 

stop; similarly, less snow would be needed with increasing deceleration. 

 58. INTERPRET This is a one-dimensional kinematics problem in which we are asked to find the average acceleration 

of the train (magnitude and direction) and the distance required for it to stop.  

DEVELOP We choose a coordinate system in which the positive-x axis indicates the direction in which the train is 

traveling. Because we are given the initial velocity (v0 = 110 km/h), the final velocity (v = 0), and the time interval 

(t = 1.2 min = 0.020 h), we can use Equation 2.7, 0 ,= +v v at  to find the acceleration. Once we find the 

acceleration we can use Equation 2.9, 0 0( ) 2,− = +x x v v t  to find the stopping distance x – x0. 
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EVALUATE  (a) Inserting the given quantities into Equation 2.7 gives the acceleration as 

( )
0

23
2 20 0.0 m/s 110 km/h 10 m 1 h5500 km/h 0.42 m/s

0.020 h km 3600 s

v v at

v va
t

= +

⎛ ⎞⎛ ⎞− −= = = − = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) Because a < 0, the acceleration must be directed opposite to the train’s motion. In other words, it’s a 

deceleration. 

(c) Using Equation 2.9, we find a stopping distance of 

( ) ( ) ( )0 0

110 km/h 0.0 km/h1 0.020 h 1.1 km
2 2

x x v v t
+

− = + = =  

ASSESS Notice that we had to be careful to keep proper track of the initial and final speed to get the correct 

direction of acceleration. Had we inverted the two, we would have found an acceleration in the same direction as 

the train’s motion, which would have meant that the train accelerated to hit the cow!  

 59. INTERPRET This is a one-dimensional kinematics problem. We assume the jetliner slows down on the runway 

with constant deceleration. 

DEVELOP Equation 2.9, 1
0 02 ( ) ,= + +x x v v t  relates distance, initial velocity, and final velocity. The equation can 

be used to solve for the shortest runway. 

EVALUATE With 29 s (29/3600) h,= =t  and the final velocity v set to zero, Equation 2.9 gives 

( ) ( )( )1 1
0 02 2 220 km/h 29 / 3600 h 0.89 kmx x v v t− = + = =  

ASSESS The length is a bit short compared to the typical minimum landing runway length of about 1.5 km for 

full-size jetliners. 

 60. INTERPRET This is a one-dimensional kinematics problem with constant deceleration. We are given the final 

velocity, the acceleration distance, and the acceleration distance, and we are asked to find the initial velocity and 

the acceleration time. 

DEVELOP We choose a coordinate system in which the positive-x direction is in the direction of the car’s initial 

velocity. Using the known quantities (v = 18 kh/h, a = −6.3 m/s2, x –x0 = 34 m), solve Equation 2.11, 
2 2

0 02 ( ),= + −v v a x x  for the initial velocity v0. Then use the result for v0 in Equation 2.7, 0 ,= +v v at  to find the 

acceleration time t. Converting the final velocity to m/s for the calculation, we have v = (18 km/h)(1 h/3600 s)(103 

m/km) = 5.0 m/s. 

EVALUATE (a) Inserting the known quantities into Equation 2.11 gives  

( ) ( ) ( )( )22 2
0 02 5.0 m/s 2 6.3 m/s 34 m 21 m/sv v a x x= − − = − − =  

(b) Inserting this result for v0 into Equation 2.7 gives 

0
2

5.0 m/s 21.3 m/s 2.6 s
6.3 m/s

v vt
a
− −= = =

−
 

where we have retained more significant figures for v0 because it serves as an intermediate result for this part. 

ASSESS In km/h, the initial velocity is v0 = (21.3 m/s)(10–3 km/m)(3600 s/h) = 77 km/h.  

 61. INTERPRET This is a one-dimensional kinematics problem in which we are asked to find the initial velocity of a 

racing car given its initial velocity, it acceleration, the distance covered, and the time interval.  

DEVELOP We chose a coordinate system in which the positive-x direction is in the direction of the car’s velocity. 

We are told that the car undergoes constant acceleration, so we can use the equations from Table 2.1. For part (a), 

we are given the distance, time, and final velocity, so we can use Equation 2.9, 0 0( ) 2,− = +x x v v t  to find the 

initial velocity. For part (b), find the acceleration of the car and use the result in Equation 2.11, 
2 2

0 02 ( ),= + −v v a x x  to solve for the distance travelled. 

EVALUATE (a) The distance covered x − x0 = 140 m, the time interval is t = 3.6 s, and the final velocity is v = 53 

m/s. Inserting these quantities into Equation 2.9 and solving for the intial velociy v0 gives 
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( )
( ) ( )

0 0

0
0

1
2
2 2 140 m

53 m/s 24.8 m/s 25 m/s
3.6 s

x x v v t

x x
v v

t

− = +

−
= − = − = =

 

(b) From Equation 2.7, we find the acceleration to be 

20 53 m/s 24.8 m/s 7.84 m/s
3.6 s

v va
t

− −= = =  

Upon substituting the result into Equation 2.11, the distance traveled starting from rest (v0 = 0) to a velocity v = 53 

m/s is 
2 2 2

0
0 2

(53 m/s) 0 180 m
2 2(7.84 m/s )

v vx x
a

− −− = = =  

to two significant figures. 

ASSESS  Comparing parts (a) and (b), the car travels a distance of 179 m from rest to the end of the 140-m 

distance. Using Equation 2.11, we can show that the additional 39 m (=179 m − 140 m) is the distance traveled to 

bring the car from rest to an initial speed of 0 24.8 m/s:v =  
2 2
0

0 2

(24.8 m/s) 39 m
2 2(7.84 m/s )
vx x
a

− = = =  

 62. INTERPRET This problem asks us to calculate the stopping distance for two cars given their acceleration and 

initial velocity, and to compare this distance with their initial separation to see if the cars will collide and, if so, at 

what speed. We are also asked to plot the cars’ displacement as a function of time.  

DEVELOP To find the stopping distance, use Equation 2.11, ( )2 2
0 02v v a x x= + −  with v0 = (88 km/h) 

(103 m/km)(1 h/3600 s) = 24.4 m/s, v = 0.0 m/s, and a = −8 m/s2. If the result is less than 85/2 m = 42.5 m, the cars 

will not collide. 

EVALUATE Inserting the given quantities into Equation 2.11 gives a stopping distance of 

( )
( ) ( )

( )

2 2
0 0

2 22 2
0

0 2

2

0.0 m/s 24.4 m/s
37.3 m 42.5 m

2 2 8 m/s

v v a x x

v vx x
a

= + −

−−− = = = <
−

 

so the cars will not collide. When they stop, they will be separated by 85 − 2(37.3 m) = 10.3 m. To plot x versus t, 
use Equation 2.10 for each car and choose the origin at the midpoint of the separation between the cars, with 

positive x in the direction of the initial velocity of the first car, and 0t =  when the brakes are applied. The graph of 

1( )x t  and 2 ( )x t  is shown below 

 
ASSESS Note that the accelration is negative for each car because each car is decelerating. 

 63. INTERPRET We interpret this as two problems involving one-dimensional kinematics with constant acceleration. 

We are asked to find the acceleration needed so that the two runners arrive at the finish line simultaneously.  
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DEVELOP Calculate the speed of the runner B (the leader) from the distance she’s already covered. This gives  

( )( )
( )( )

39 km 0.1 km 10 m/km
4.33 m/s

35 min 60 s/min
B xv

t
+Δ= = =

Δ
 

The remaining 900 m will take her ( )900 m 4.33 m/s 207.7 st = =  to cover. The initial speed of the trailing 

runner A is 

( )( )0
9000 m 4.29 m/s

35 min 60 s/min
A xv

t
Δ= = =
Δ

 

Use these results in Equation 2.10 to find the acceleration needed so that both runners finish at the same time. 

EVALUATE The acceleration needed so that both runners finish simultaneously can be found by inserting the time 

into Equation 2.10, and solving for the acceleration, which gives 

( ) ( )( )
( )

2
0

0 2
22

1
2

2 2 1000 m 4.29 m/s 207.7 s
0.0051 m/s

207.7 s

A
A

A
A

x v t at

x v t
a

t

= +

⎡ ⎤− −⎣ ⎦= = =
 

ASSESS For runner A to catch up to runner B, he must run faster than the speed at which he was initially running, 

so his acceleration is positive. When runner A crosses the finish line, his speed is 
2

0 4.29 m/s (0.0051 m/s )(207.7 s) 5.34 m/s,= + = + =A Av v at  or an increase of about 25% with respect to his 

initial speed.  

 64. INTERPRET We are asked to calculate the minimum separation between two cars, one which moves at constant 

speed and the other which moves at constant acceleration. This change in this separation as a function of time (i.e., 

their relative velocity) is the time derivative of the difference Δx in the cars’ positions, and this quantity will be 

zero when the cars are at their minimum separation. 
DEVELOP The car in front has constant speed 2,0 (60 km/h)(1000 h/km)(1 h/3600 s) 23.6 m/s,= =v  so its 

equation for position is 2 2 2,0 2,0, orv x t x x v t= Δ Δ = +  where x2,0 = 10 m is the distance between the two cars at t = 0. 

At 0,t =  the car coming from behind has initial position x1,0 = 0, initial velocity 

( )( )( )1,0 85 km/h 1000 m/s 1 h/3600 s 16.7 m/s,v = =  

and acceleration a1 = −4.2 m/s2 and its equation of motion is 2 21 1
1 1,0 1,0 1 1,0 12 2x x v t a t v t a t= + + = + (x1,0 = 0). The 

distance between the two cars is 2
2 1 2,0 2,0 1,0 1( 2).Δ = − = + − +x x x x v t v t a t  The minimum separation between the 

cars occurs when their relative speed is zero, or 0.Δ =d x dt  If this position is zero or less, the cars collide, if not, 

we can evaluate the separation Δx at the minimum-separation time to find how close the cars approach. 
EVALUATE Evaluating the time derivative d x dtΔ  gives 

( ) ( )

( )

2,0 21
2,0 1,0 12

2,0 1,0 1

8 8
1,0 2,0

2
1

0

3.06 10 m/s 2.16 10 m/s 1.65 s
4.2 m/s

dxd x d dv t v t a t
dt dt dt dt

v v a t
v v

t
a

Δ = + − +

= + − −

− × − ×= = =
− − −

 

Insert this time into the equation for xΔ  to obtain their minimum separation 
21

min 2,0 1,0 2,0 12( ) 4.33 m 4 m,Δ = + − − = ≈x x v v t a t  where we retain no figures to the right of the decimal point 

because x2,0 has no figures to the right of the decimal point. Because the result is positive, the cars do not collide. 

ASSESS The cars do not collide, and the minimum distance between them is 4.33 m, which occurs 1.65 s after the 

driver of the trailing car applies the brakes. 

 65. INTERPRET This as a one-dimensional kinematics problem in which we are asked to find the initial velocity of an 

object given its acceleration due to gravity (on Mars) and its maximum height.  

DEVELOP Choose a coordinate system in which x indicates the upward direction from the surface of Mars, with 

the origin at the surface (i.e., x0 = 0). Use Equation 2.11, ( )2 2
0 02 ,v v a x x= + −  to describe the vertical motion of the 
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Mars rover Spirit. Because the impact speed is the same as the rebound speed, both are given by v0 (note that the 

impact velocity is opposite in sign to the rebound velocity). The spacecraft attains a maximum height of x = 15 m 

when v = 0. Note that the gravitational acceleration of Mars is 2
Mars 3.71 m/sg =  (Appendix E). 

EVALUATE Solving Equation 2.11 with 2
Mars 3.71 m/s ,a g= − = −  the impact speed is  

( ) ( ) ( )( )2 2
0 0 Mars 02 2 2 3.71 m/s 15 m 10.55 m/s 11 m/sv v a x x g x x= − − = − = = =  

where we have retained two significant figures in the answer. 

ASSESS We find the impact speed to be proportional to 0 ,−x x  which is the square root of the rebound height. 

This agrees with our expectation that the greater the impact speed, the higher the rover will rebound.  

 66. INTERPRET We are asked to find the speed at which an object should be tossed upward so that the entire up-and-

down trajectory takes 1 second. This problem involves constant acceleration because the acceleration of the object 

is due to gravity at the surface of the Earth. 

DEVELOP Choose a coordinate system in which the positive-x direction indicates the distance above the surface 

of the Earth. Define the initial and final positions of the atom cluster as x0 = x = 0. The acceleration of the cluster is 

a = g = −9.82 m/s, and the time interval t = 1.0 s. Solve Equation 2.10, 21
0 0 2 ,= + +x x v t at  for the initial speed v0. 

EVALUATE Solving Equation 2.10 for v0 gives 

( )( )

0 0
2

0 0

2

0

1
2

9.82 m/s 1.0 s
4.9 m/s

2 2

x x v t at

gtv

= =

= + +

− −−= = =

 

ASSESS Note that the answer is independent of what is thrown. Whether we throw a ball, or “throw” a cluster of 

atoms, the acceleration due to gravity is the same and they have the same behavior (ignoring air resistance and 

what-not). 

 67. INTERPRET This is a one-dimensional kinematics problem that involves finding the vertical distance of an object 

as a function of time. 

DEVELOP  Choose a coordinate system in which the positive-x direction is upward. Equation 2.10, 
2

0 0( ) 2,= + +x t x v t at  describes the vertical position x(t) of an object falling from x0 as a function of time. 

Because the object was dropped from a stationary position, v0 = 0 so 2
0( ) 2.= +x t x at  Furthermore, we are free to 

choose the origin of the x axis where we like, so we let x0 = 0, which gives ( ) 2 2.x t at=   

Finally, the acceleration is a = −g = −9.8 m/s2, which points downward, so our Equation 2.10 takes the form 
2( ) 2.= −x t gt  The problem states that x(t) – x(t − 1) = x(t)/4, from which we can solve for t, which we can insert 

into x(t) to find x (i.e., the height from which it was dropped). Notice that x will be negative because the object’s 

final position is below its initial position. 

EVALUATE  

( ) ( ) ( )

( )

( )

22 2

2

2

1
4

1 1 11
2 2 8

1 11 2
2 8

8 4 0

4 2 3 m/s

x t
x t x t

gt g t gt

g t gt

t t

t

− − =

⎡ ⎤− − − − = −⎢ ⎥⎣ ⎦

− = −

− + =

= ±

 

(We discarded the negative square root because t > 1 s.) Inserting this result into x(t) gives 

( ) ( ) ( ) 2
2 21 1 9.8 m/s 4 2 3 s 270 m

2 2
x t gt ⎡ ⎤= − = − + = −

⎣ ⎦
 

to two significant figures. Thus, the object must be dropped from a height of 273 m. 



2-22 Chapter 2 

 
© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may 

be reproduced, in any form or by any means, without permission in writing from the publisher. 

ASSESS During a free fall, the vertical distance traveled is proportional to 2.t  Therefore, we expect the object to 

travel a greater distance during the latter time interval. In general, we must also take into consideration air 

resistance. 

 68. INTERPRET We have to calculate the final velocity of an object falling from the given height above the surface of Io. 

DEVELOP From Appendix E, the surface gravity of Io is 21.8 m/s .=g  We know the height 0( 100 m)=y  at 

which the probe is at rest 0( 0),=v  so Equation 2.11 can tell us the final velocity when the probe hits the ground 

( 0) :=y  

( )2
0 0 02 2v v g y y gy= − − =  

EVALUATE Plugging in the values  
22(1.8 m/s )(100 m) 19 m/s= =v  

ASSESS This is approximately 43 mi/h. With special shock absorbers, it’s reasonable to assume the probe could 

withstand a crash landing at this speed. 

 69. INTERPRET This is a gravitational acceleration problem where two balls are dropped at the same time, but they 

have different initial positions and velocities. 

DEVELOP The first ball starts at a height of 10 / 2y h=  and velocity of 10 0.=v  The second ball starts at a height 

of 20 ,=y h  but we are asked to find its initial velocity. The goal is to have them hit the ground 1 2( 0)= =y y  at the 

same time. We’ll use Equation 2.10, 1 2
0 0 2 ,= + −y y v t gt  for each ball.  

EVALUATE The time it takes the first ball to reach the ground is  

10 10
1
2

2y y ht
g g g

−= = =
−

 

This is the same time for the second ball, so we can use this to find its initial velocity: 
1 1 1

20 202 2 2/v gt y t hg hg hg= − = − = −  
The corresponding initial speed is 1

2 .hg  

ASSESS The velocity is negative since the second ball has to be thrown downwards to catch up with the first ball. 

 70. INTERPRET This is a one-dimensional, constant acceleration kinematics problem that asks us to calculate an 

object’s final speed given its initial speed and acceleration. 

DEVELOP  Choose a coordinate system where the positive-x direction is upward, so a = g = –9.8 m/s2, and x – x0  

= −15 m, because the rock’s final position is below its initial position. Use Equation 2.11 in the form of 

( )2 2
T 0,T 02v v a x x= + −  and 2 2

D 0,D 02 ( ),= + −v v a x x  with 0,T 10 m/sv = −  (for the rock thrown downward) and 

0,D 0.0 m/sv =  (for a rock that is dropped). Solve each equation for the final velocity and take the difference to find 

how much faster the thrown rock is moving when it reaches the ground. 

EVALUATE For the thrown rock, we find 

( )
( ) ( )( )

2 2
T 0,T 0

2 2
T

2

10 m/s 2 9.8 m/s 15 m 19.85 m/s

v v a x x

v

= + −

= ± − − − = −
 

where we retain the negative solution because the rock is moving downward (negative-x direction). Repeating the 

calculation for the rock that is dropped gives 

( )
( ) ( )( )

2 2
T 0,D 0

2 2
D

2

0.0 m/s 2 9.8 m/s 15 m 17.15 m/s

v v a x x

v

= + −

= ± − − = −
 

The difference in speed is −19.85 m/s − (−17.15 m/s) = 2.7 m/s, where we retain two significant figures in our 

answer. 

ASSESS The result would be the same if the rock is thrown upward with 0 10 m/s,=v  but then the attackers would 

have more time to get out of the way. 
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 71. INTERPRET We interpret this as two problems involving one-dimensional kinematics with constant acceleration 

due to gravity. We are asked to find the final velocity of two divers given their initial speed, and to find which 

diver hits the water first and by how much time. 

DEVELOP We choose a coordinate system in which the positive-x direction is upward. Let A be the diver who 

jumps upward at 1.80 m/s, and B be the one who steps off the platform. The velocity of diver A as he passes B on 

his way down is 1.80 m/s,v = −  which can be found by inserting x = x0 in Equation 2.11, ( )2 2
0 02v v a x x= + −  

with v0 = 1.80 m/s. Thus, the initial velocity of diver A for the remainder of his trajectory is 0,A 1.80 m/s.= −v  The 

initial velocity of diver B is 0,B 0.00 m/s.=v  Applying Equation 2.11 to both divers gives 

( )
( ) ( )

2 2
A 0,A 0

2 2
B 0,B 0 0

2

2 2

v v g x x

v v g x x g x x

= − −

= − − = − −
 

which we can solve to find the speeds at the water. Note that the acceleration is a = −g, which points downward. For 

part (b), use Equation 2.10, 2
0 0 2,= + +x x v t at  to express the vertical position of the divers as a function of time. 

EVALUATE (a) At the water’s surface, x = 0, and the speeds of the divers are  

( ) ( ) ( )( )

( ) ( )( )

22 2
A 0 0

2
B 0

2 1.80 m/s 2 9.82 m/s 0.00 m 3.00 m 7.88 m/s

2 2 9.82 m/s 0.00 m 3.00 m 7.67 m/s

v v g x x

v g x x

= − − = − − − =

= − − = − − =
 

(b) From Equation 2.10, the vertical position of the divers as a function of time is 

( ) ( ) ( )
( ) ( )

2 2 2
A 0 0

2 2 2
B 0

1 1( ) 3.00 m 1.80 m/s 9.82 m/s
2 2

1 1( ) 3.00 m 9.82 m/s
2 2

x t x v t at t t

x t x at t

= + + = + − −

= + = −
 

The divers hit the water when x(t) = 0. Solving the equations above, we find A 1.61st =  and B 0.782 s.=t  

Therefore, diver A hits about B A 0.782 s 0.620 s 0.162 st t tΔ = − = − =  before diver B. 

ASSESS We expect diver A to hit the water first because he has a non-zero initial velocity for the trajectory from 

the platform to the water.  

 72. INTERPRET This is a one-dimensional, constant-acceleration problem. A ball is thrown upward by a person who 

is rising at 10 m/s. We must calculate how long the ball is in the air before the person catches it. 

DEVELOP We choose a coordinate system in which the positive-x direction is upward. The initial velocity of the 

ball is 12 m/s relative to the passenger who throws it. Because the passenger is moving upward with a constant velocity 

of 10 m/s, the initial velocity of the ball relative to the ground is 0,B 22 m/s.=v  The acceleration of the ball is = a g−   

=  –9.82 m/s2. From Equation 2.10, the position of the ball is ( ) 2 2
B 0,B 0,B 0,B2 2x t x v t at v t gt= + + = −  because its 

initial position is x0,B = 0 m. The position of the passenger ( )Px t  can be expressed using Equation 2.9, with 

0,P P 10 m/sv v= =  because the balloon rises without acceleration. This gives ( ) ( )P 0,P 0.P P P2 .x t x v v t v t= + + =  When 

the passenger catches the ball, ( ) ( ),=B Px t x t  from which we can solve for the time t that the ball is in the air. 

EVALUATE Inserting the given values gives 

( ) ( )

( ) ( )

2
0,

0,
2

2

2 2 22 m/s 10 m/s
2.4 s

9.8 m/s

B P

B P

B P

x t x t

v t gt v t

v v
t

g

=

− =

− −
= = =

 

ASSESS If the balloon were stuck to the ground, v0,B = 12 m/s and vP = 0, and the result would be identical. This is 

because when the balloon moves with constant velocity it still constitutes an inertial reference frame (i.e., a 

reference frame that does not accelerate). Consider tossing a ball up in the air in a car moving at constant speed 

down the highway—there is no difference between this and executing the same task while standing on the ground. 
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 73. INTERPRET This is a one-dimensional kinematics problem involving a spacecraft that undergoes free fall under 

the influence of the gravitational acceleration of the Moon. We are asked to find the spacecraft’s impact speed and 

the time of its fall given the height from which it falls. 

DEVELOP We choose a coordinate system in which the positive-x direction is downward. Using Equation 2.10, 
2

0 0 2,= + +x x v t at  the vertical position of the spacecraft falling from x0 as a function of time is 

2 2
0 0 0 Moon

1 1( )
2 2

x t x v t at x g t= + + = +  

because v0 = 0 (the spacecraft falls from a stationary position), and the gravitational acceleration of the Moon is 

gMoon is downward. Note that when the spacecraft impacts the Moon, it will have fallen x – x0 = 12 m. From 

Appendix E, we find that .  / .=g 2
Moon 1 62 m s  

EVALUATE Solving this equation for the time t, we find that the amount of time it takes the spacecraft to drop  

12 m from rest is  

( ) ( )0
2

Moon

2 2 12 m
3.849 s 3.8 m/s

1.62 m/s
x x

t
g

−
= = = ≈  

to two significant figures. From Equation 2.7, the velocity at impact is 

( )( )2
0 Moon 0.00 m/s+ 1.62 m/s 3.85 s 6.2 m/s.v v g t= + = =  

ASSESS Our result indicates that t is proportional to 1/ 2.−g  Therefore, the greater the gravitational acceleration, 

the less time it takes for the free fall and the higher the velocity at impact. The same fall on the Earth would result 
in a velocity at impact of 2 2 1 2(9.8 m/s )[2(12 m) (9.8 m/s )] 15 m/s.= =v  

 74. INTERPRET The question is asking you how long the rocket would be inside the clouds, and thus out of sight. 
DEVELOP The band of clouds extend between the altitudes of B 1.9 kmy =  and T (1.9 5.3)km 7.2 km.= + =y  

The rocket’s altitude is given by Equation 2.10: 1 2
2 ,=y at  where we assume 0 0 0.= =y v  From this, the time can 

be solved for as a function of altitude 

 ( ) 2yt y
a

=  

EVALUATE The time spent in the clouds is then 

( ) ( ) ( ) ( )T B
T B 2

2 7200m 2 1900m2 2 27 s
4.6 m/s

y yt y t y
a a

−
− = − = =  

This is less than 30 s, so yes, the rocket can launch. 

ASSESS The rocket is accelerating against Earth’s gravity. If it had the same thrust in outer space, it would 

accelerate at 2 2(4.6 9.8)m/s 14.4 m/s .= + =a  

 75. INTERPRET  We’re asked to find the relative speed between the two subway trains when they collide. We can 

interpret this as two problems involving one-dimensional kinematics with constant acceleration.The two objects of 

interest are the two trains. 

DEVELOP  Let the fast train be A and the slow train be B. While B maintains a constant speed, A tries to slow 
down to avoid collision with a constant deceleration. We take the origin x = 0 and t = 0 at the point where A begins 
decelerating, with positive x in the direction of motion. Position as a function of time is given by Equation 2.10, 

1 2
0 0 2 .= + +x x v t at  We write two versions of this equation, one for xA and one for xB. The condition that both trains 

collide may be expressed as xA = xB. 
EVALUATE We first rewrite the initial speeds of the trains as 

0

0

km 1000 m 1 h80 kmh 80 22.22 m/s
h 1 km 3600 s

km 1000 m 1 h25 kmh 25 6.94 m/s
h 1 km 3600 s

A

B

v

v

⎛ ⎞⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠
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We can express the positions of trains A and B as 

1 2 2 2
0 2

0 0

1(22.22 m/s) ( 2.1 m/s )
2

50 m (6.94 m/s)

A A A

B B B

x v t a t t t

x x v t t

= + = + −

= + = +
 

When the trains collide, xA = xB. The above equations then give 

2 2 2
0 0 0

1 ( ) 0 ( 1.05 m/s ) (15.28 m/s) (50 m) 0
2 A A B Ba t v v t x t t+ − − = ⇒ − + − =  

Using the quadratic formula to solve for the smaller root, we find t = 4.97 s. The velocity of train A at the time of 

the collision is 
2

0 (22.22 m/s) ( 2.1 m/s )(4.97 s) 11.78 m/sA A Av v a t= + = + − =  
Therefore, their relative speed at the collision is 

rel 0 11.78 m/s 6.94 m/s 4.84 m/sA Bv v v= − = − =  
or 17.4 km/h. 

ASSESS  The initial relative speed is rel,0 0 0 22.22 m/s 6.94 m/s 15.28 m/s.= − = − =A Bv v v  Braking reduces the 

speed of train A, and the relative speed between A and B, but the deceleration a = • 2.1 m/s2 is not enough to 

prevent collision. 

 76. INTERPRET Although the book must have a horizontal component of velocity, this will remain constant, so we 

can consider this as a one-dimensional kinematics problem involving an object undergoing constant acceleration 

due to gravity. We need to find the (vertical) velocity of the book at a given height given its starting position, its 

acceleration, and the maximum height it attains. 

DEVELOP We choose a coordinate system in which the positive-x direction is upward. Use Equation 2.11, 
2 2

0 02 ( ),= + −v v a x x  to find the velocity v0 with which the book leaves your hand. For part (a), the final velocity is 

v = 0, because the book is at the top of its trajectory. The acceleration is a = −g = −9.8 m/s2, and the displacement x 

– x0 = 4.2 m – 1.5 m = 2.7 m. Insert the result for the initial velocity into Equation 2.10, 2
0 0 2,= + +x x v t at  to 

find the time at which it hits the floor (x = 4.2 m – 0.87 m = 3.33 m). 

EVALUATE (a) Solving Equation 2.11 for the initial velocity, we find 

( )
( ) ( ) ( )( )

2 2
0 0

22 2
0 0

2

2 0.0 m/s 2 9.8 m/s 2.7 m 7.27 m/s 7.3 m/s

v v a x x

v v a x x

= + −

= ± − − = ± − − = =
 

where we have retained two significant figures. 

(b) Inserting this result into Equation 2.10 and solving for the time t gives 

( ) ( )

( ) ( ) ( )( )

2
0 0

2
0 0

2 22
0 0 0

2

2

0
2

7.27 m/s 7.27 m/s 2 9.8 m/s 3.33 m 1.50 m2
9.8 m/s

1.2 s

x x v t at
a t v t x x

v v a x x
t

a

= + +

⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

− − + − −− ± + −
= =

−
=

 

to two significant figures. We have taken the negative sign of the square root because we are looking for the longer 

of the two times at which the book passes the 3.33-m level (it passes once on its way up and once on its way 

down). 

ASSESS We neglect air resistance and the size of the book in this problem. If we use the positive sign for the 

square root in part (b), we find that the book passes the 3.33-m level at t = 0.32 s. 

 77. INTERPRET This is a one-dimensional kinematics problem involving two travel segments. The key concept here 

is the average speed. 

DEVELOP  The average speed is the total distance divided by the total time, or / .v x t= Δ Δ  For both cases, we 

shall find the total distance traveled and the time taken.  
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EVALUATE (a) Let the distances traveled during the two time intervals be L1 and L2. The total distance is the sum 

of the distances covered at each speed:  

( )1 2 1 2 1 2
1

2 2 2
t tL L L v v v v t⎛ ⎞ ⎛ ⎞= + = + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

so 

( )1 2
1
2

Lv v v
t

= = +  

(b) In this case, let t1 and t2 be the two time intervals. The total time is the sum of the times traveled at each speed:  

1 2
1 2

1 1 1 2

/2 /2
2

L L L v vt t t
v v v v

⎛ ⎞+= + = + = ⎜ ⎟
⎝ ⎠

 

Therefore, the average speed is 

1 2

1 2

2L v vv
t v v

′ = =
+

 

(c) The difference between the two cases is  

( ) ( )2 2 21 2 1 2 1 2
1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 2 2( ) 2 0
2 2( ) 2( )

v v v v v vv v v v v v v v v v
v v v v v v

⎡ ⎤′− = + − = + − = + >⎣ ⎦+ + +
 

So the first case gives a greater average speed. 
ASSESS The average speed v  is the time-weighted average of the separate speeds: 1 1 2 2( / ) ( / ) .v t t v t t v= +  With this 

in mind, the result in part (a) may be rewritten as  

1 2(1/2) (1/2)v v v= +  

and for part (b),  

1 1 2 1 1 2
1 2 1 2

1 2 1 2 1 2

2t t v v v vv v v v v
t t v v v v v v

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 78. INTERPRET This problem involves calculating the instantaneous velocity and acceleration given the position as a 

function of time.  

DEVELOP Using the formulas in Appendix A, we can differentiate the given formula with respect to time to get 

the instantaneous velocity. We then differentiate the resulting expression for velocity to find the instantaneous 

acceleration. 

EVALUATE  (a) For ( ) ( ) ( ) ( )0 0sin , / cosx t x t dx dt v t x tω ω ω= = =  and 

( ) ( ) ( )2 2 2 2
0/ / sin .dv dt d x dt a t x t x tω ω ω= = = − = −  

(b) Because the maximum value of the sine or cosine functions is 1, max 0v xω=  and 2
max 0.a xω=   

ASSESS The motion described by ( )x t  is called simple harmonic motion; see Chapter 13. 

 79. INTERPRET  This as a one-dimensional kinematics problem that involves finding the vertical position of a 

leaping person as a function of time. 

DEVELOP We choose a coordinate system in which the positive-x direction is upward. Using Equation 2.10, the 

vertical position of a person as a function of time may be written as (setting x0 = 0) 

( ) 2
0 0

2
0

1
2

1 0
2

x t x v t at

gt v t x

= + +

− + =
 

Note that the acceleration is ,a g= −  which points downward. The quadratic formula gives two times when the 

leaper passes a particular height: 

2
0 0 2v v gx

t
g±

± −
=  
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The smaller value, ,t−  corresponds to the time for going up and the larger value, ,t+  corresponds to the time for 

coming down. Therefore, the time spent above that height is  

( )
2 2 2

0 0 0 0 02 2 2 2v v gx v v gx v gx
t x t t

g g g+ −

+ − − − −
Δ = − = − =  

Using Equation 2.11, 2 2
0 02 ( ),= + −v v a x x  we find that in order to reach a maximum height h, the initial velocity 

must be 0 2 .=v gh  Therefore, the above expression for ( )t xΔ  may be simplified as 

( ) ( )2 2g h x
t x

g
−

Δ =  

EVALUATE The total time spent in the air is the time spent above the ground. Setting x = 0, we have  

( ) 2 2 20 2
gh ht

g g
Δ = =  

Similarly, the time spent in the upper half, above x = h/2, is 

( ) ( )2 2 /2
/2 2

g h ht h
g g

Δ = =  

Therefore, 

( )
( )
/2 2 / 1 0.707
0 2 2 / 2

t h h g
t h g

Δ
= = =

Δ
 

or 70.7%. 

ASSESS Our result indicates that while in the air, a person spends 70.7% of the time on the upper half of the 

height. Such a large fraction of time is what gives the illusion of “hanging” almost motionless near the top of the 

leap. 

 80. INTERPRET This problem considers a balloon falling under the influence of gravity.  

DEVELOP If the balloon was dropped from height y0 at time t = 0, then its height at any later time is 
1 2

0 2 .= −y y gt  When it passes the top of the window, 1 2
1 0 12 ,= −y y gt  and when passing the bottom, 

1 2
2 0 22 .= −y y gt  We will use the length of the window 1 2( 1.3 m)− =y y  and the time the balloon is in front of the 

window 2 1( 0.22 s)− =t t  to solve for the initial height 0 1( ).−y y  

EVALUATE Subtracting the equations for the window height gives 

( ) ( )( )
( )
( )

( )
( )( )

1 12 2
1 2 2 1 2 1 2 12 2

1 2
2 1 2

2 1

2 2 1.3 m
 1.21 s

9.8 m/s 0.22 s

y y g t t g t t t t

y y
t t

g t t

− = − = − +

−
⇒ + = = =

−

 

Combining this result for 2 1t t+  with 2 1t t−  gives  

( )1 1.21s 0.22s / 2 0.495 st = − =  
Plugging this into the equation for y1, we finally have the drop height 

( )( )21 12 2
0 1 12 2 9.8 m/s 0.495 s 1.2 my y gt− = = =  

ASSESS We had to assume the balloon was dropped from rest. The balloon could have been given an initial 

velocity by the thrower, and this would invalidate our result for the initial height. 

 81. INTERPRET This is a one-dimensional kinematics problem involving constant deceleration. We are asked to 

calculate an acceleration given the distance and the initial and final velocities.  

DEVELOP Equation 2.11, 2 2
0 02 ( )v v a x x= + −  relates the distance traveled to the initial speed, the final speed, 

and the acceleration. We shall use this equation to solve for the acceleration.  

EVALUATE The motorist has to reduce his speed within x – x0 = 0.9 km from v0 = 110 km/h to v = 70 km/h. This 

requires a constant acceleration of 
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( )
( ) ( )

( )

2 22 2
0

0

2 1 1 2

70 km/h 110 km/h
2 2 0.9 km

4000 km/h 1.11 km h s 0.31 m/s

v va
x x

− −

−−= =
−

= − = − ⋅ ⋅ = −

 

ASSESS The result means that the speed must be decreased by 1.11 km/h in each second. So, in 36 seconds, the 

speed is decreased from 110 km/h − (1.11 km·h−1·s−1)(36 s) = 70 km/h. 

 82. INTERPRET  Given an equation for a non-constant acceleration, we are asked to find equations for the 

instantaneous velocity and the position as a function of time.  

DEVELOP We cannot use the constant-acceleration equations (2.7, 2.9–2.11), but we can use the definitions of 

instantaneous velocity ( )dx
dtv ≡  and acceleration ( )dv

dta ≡  and work backward (i.e., integrate) to get the equations 

we need. For example: 

( ) ( ) ( ) ( ) ( )dva t a t dt dv dv a t dt v t a t dt
dt

= ⇒ = ⇒ = ⇒ =∫ ∫ ∫  

The initial position (at 0t = ) is x0 and the initial velocity is v0. 
EVALUATE (a) Integrating the given equation for acceleration gives us the velocity 

( ) ( ) 21
0 0 12v t adt a bt dt a t bt C= = + = + +∫ ∫  

To find the constant 1,C  note that 1 0( 0) ,= = =v t C v  so 21
0 0 2( ) .= + +v t v a t bt  

(b) Use the same procedure to find an expression for position: 

( ) ( ) ( )2 2 31 1 1
0 0 0 0 22 2 6x t v t dt v a t bt dt v t a t bt C= = + + = + + +∫ ∫  

The position at t = 0 is x0, so C2 = x0 and 2 31 1
0 0 02 6( ) .= + + +x t x v t a t bt  

ASSESS Note that the derivative of a(t) for this problem is a constant. The derivative of acceleration is called jerk, 

so we have just derived the equations for constant-jerk motion. 

 83. INTERPRET This problem considers a car falling through a camera’s field of view in a given time duration.  

DEVELOP Let’s assume the car starts at rest at the position y0. Let’s also define the top of the field of view as y1 

and the bottom as y2. As the car falls, it reaches y1 at time t1 with velocity v1, and similarly for y2. By definition, 

1 2y y h− =  and 2 1 .− = Δt t t  We are looking for the height the car is released above the top of the field of view, 

0 1 .− =y y H  We can solve for H using the equations in Table 2.1. 

EVALUATE From Equation 2.11, we have 

( )
2

2 1
1 1 02   

2
vv g y y H
g

= − − → =  

We need to relate v1 to the variables we were given: h  and .Δt  We can do that with Equation 2.10: 

( ) ( )21
2 1 1 2 1 2 12

2

1 1
2

y y v t t g t t

h g tv
t h

= + − − −

⎛ ⎞Δ
⇒ = −⎜ ⎟Δ ⎝ ⎠

 

Plugging this into the above equation for H gives us  
22

2

2 1
4 2
h h g tH

g t h
⎛ ⎞⎛ ⎞ Δ= −⎜ ⎟⎜ ⎟Δ⎝ ⎠⎝ ⎠

 

ASSESS This problem is actually the same as Problem 2.80, with the car and camera view replacing the balloon 

and window view. If you substitute the values from that problem ( 1.3 m=h  and 0.22 s)Δ =t  into the expression 

for H, you find the answer comes out right ( 1.2 m).=H  

 84. INTERPRET This problem, like Example 2.6, involves constant acceleration of a ball due to gravity. We are asked 

to find the speed with which the ball hits the floor and the time that it hits the floor given several initial conditions. 

DEVELOP The ball in Example 2.6 starts at a height of 1.5 meters (x0 = 1.5 m), with an initial upward speed of v0 

= 7.3 m/s. The second ball starts at the same height with the same speed, but downward 0( 7.3 m/s).′ = −v  We’re 

asked to find the speed of both balls just before they hit the floor (x = 0.0 m) and the time at which the second ball 

hits the floor. We can use the constant-acceleration equations, because the only acceleration is due to gravity  
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(a = −g = −9.8 m/s2). Start with Equation 2. 2.11, 2 2
0 02 ( ),= + −v v a x x  to find the final velocities, then use 

Equation 2.10, 21
0 0 2 ,= + +x x v t at  to find the time. 

EVALUATE (a) Inserting the given quantities into Equation 2.11 and solving for the initial final velocity gives  

( )
( ) ( )( )

2 2
0 0

2 2

2

7.3 m/s 2 9.8 m/s 0.0 m 1.5 m 9.1 m/s

v v a x x

v

= + −

= ± + − − = ±
 

which is the speed with which the first ball hits the floor. The positive answer corresponds to the ball “hitting” the 

floor on the way up (i.e., at the point where the ball’s trajectory crosses the point x = 0 for t < 0 in Figure 2.13). 

This answer is non-physical because the ball was not thrown up from the floor with a velocity of + 9.1 m/s, but was 

thrown upward from a height of 1.5 m. The negative answer corresponds to the ball hitting the floor on the way 

down, after it has executed the trajectory shown in Figure 2.13. This answer is physical and corresponds to the real 

velocity of the ball when it hits the floor. 

(b) Repeating the calculation for the second ball gives  

( )
( ) ( )( )

2 2
0 0

2 2

2

7.3 m/s 2 9.8 m/s 0.0 m 1.5 m 9.1 m/s

v v a x x

v

′= + −

= ± − + − − = ±
 

where the positive sign corresponds to the ball passing through the floor on the way up, as if it had been thrown up 

from the floor with a velocity of +9.1 m/s. This answer is non-physical because the ball was thrown downward 

from a height of 1.5 m, not upward from the floor. The negative sign corresponds to the ball passing the floor on 

the way down, after being thrown downward from a height of 1.5 m. This answer is physical and corresponds to 

the real velocity of the ball when it hits the floor. 
(c) To find when the ball hits the floor, insert the known quantities into Equation 2.10. This gives  

( ) ( )( )

21
0 0 2

21
0 0 2

2 22
0 0 0

2

0

7.3 m/s 7.3 m/s 2 9.8 m/s 1.5 m2
1.7 s, 0.18 s

9.8 m/s

x x v t at

x v t gt

v v x g
t

g

′= + +

′= + −

± − + −′ ′− ± +
= = = −

−

 

The negative solution corresponds to the positive solution of part (b). In other words, it corresponds to the ball 

passing through the floor on the way up, as if it were thrown upward from the floor at a speed of 9.1 m/s. This 

result is non-physical because the ball was not thrown upward from the floor, but down from a height of 1.5 m. 

The positive solution corresponds to the ball hitting the floor on the way down after being thrown down from the 

height of 1.5 m. This result is physical and corresponds to the real time at which the ball hits the floor. 

ASSESS Note that the answers to parts (a) and (b) are the same. This makes sense, because the speed of the ball 

when it comes back down to the 1.5-m level in part (a) is the same as the initial speed of the ball in part (b). 

 85. INTERPRET This problem involves one-dimensional kinematics under constant acceleration. We are asked to find 

the frequency with which drops of water hit the sink given the initial conditions. 

DEVELOP There are exactly three drops falling at any time: two partway down and one either hitting the sink or 

just leaving the faucet. Find the time it takes one drop to fall and divide that by three to get the time between drops. 

Use Equation 2.10, 21
0 0 2x x v t at= + +  with x = 0, x0 = 19.6 cm = 0.196 m, v0 = 0, and a = −g = −9.8 m/s2. The 

question asks for drops per second, so convert seconds per drop to drops per second for the final answer.  

EVALUATE From Equation 2.10, the time it takes one drop to fall is 

( )

2
0 0

2
0

0
2

1
2

10
2

2 0.196 m2 0.20 s
9.8 m/s

x x v t at

x gt

xt
g

= + +

= −

= = =
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There are three drops that hit the sink in this time interval, so the time between drops is (0.20 s) (3 drops) 0.067 s/drop.=  

Thus, the frequency with which the drops hit the sink is 1/(0.067 s/drop) = 15 drops/s. 
ASSESS This is pretty fast for a leaky faucet, but the time looks about right for the distance involved.  

 86. INTERPRET This problem involves calculating the time it takes a water balloon to reach the ground.  

DEVELOP We know from previous problems that the balloon will reach the ground in a time of 2 / ,=t h g  where 

h is the height from which it is released. In order for the balloon to hit its target, the distance, d, between the X and 

the impact point must be ,vt  where v here is the typical velocity of students entering the building.  

EVALUATE Putting together the information above 

( ) ( )
( )2

2 20 m2 2 m/s 4 m
9.8 m/s

hd vt v
g

= = = =  

ASSESS Since not all the students will be walking at the average 2 m/s, a more effective strategy would be to use 2 

X’s on the ground farther out from the building. By measuring the time it takes a given student to walk between the 

X’s, you can measure his/her speed. From that, you can more accurately predict when they will be underneath your 

window, and you will therefore know for sure when to release your balloon.  

 87. INTERPRET You are asked to integrate Equation 2.7 in order to derive Equation 2.10. 

DEVELOP Recall the general formula for integrating a polynomial 

 11 constant
1

n nt dt t
n

+= +
+∫  

EVALUATE Let’s integrate Equation 2.7 over the time variable, ,′t  from 0t′ =  to t t′ =  

( )00 0

t t
vdt v at dt= +∫ ∫  

By definition, the time integral of ( )v t  is ( ),x t  so the equation transforms to 

( ) ( ) ( )1 12 2
0 02 20

0
t

x t x v t at v t at′ ′− = + = +  

Since ( ) 00x x=  by definition, this is Equation 2.10. 

ASSESS For those who want a challenge, it’s also possible to derive Equation 2.11 by integrating /v dx dt=  over 

velocity. 

 88. INTERPRET This is a one-dimensional kinematics problem in which we need to use calculus to calculate the 

velocity and then position given the expression for acceleration as a function of time.  

DEVELOP The instantaneous velocity v(t) can be obtained by integrating over a(t) = bt2. Thus we have 

( ) 2 3( )
3
bv t a t dt bt dt t= = =∫ ∫  

where v0 = 0 since we are told that the object starts from rest. Integrating over t one more time then gives x(t).   
 EVALUATE   Using the expression for v(t), we integrate and obtain 

3 4( ) ( )
3 12
b bx t v t dt t dt t= = =∫ ∫  

With 40.041 m/s ,b =  the distance traveled by the object in 6.3 s is 

4
3 4(0.041 m/s )( 6.3 s) ( ) (6.3 s) 5.4 m

3 12
bx t v t dt t dt= = = = =∫ ∫  

ASSESS This problem involves non-constant acceleration. In physics, the rate of change of acceleration is called 

jerk, and the rate of change of jerk is called jounce or snap. So jerk is the third derivative, and jounce is the fourth 

derivative of the position vector with respect to time.   

 89. INTERPRET This is a one-dimensional kinematics problem in which acceleration is given as a function of time. 

We need to use calculus to calculate the velocity and then position.  

DEVELOP The instantaneous velocity v(t) can be obtained by integrating over 0( ) cos .a t a tω= −  Integrating v(t) 
over t then gives x(t).  
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EVALUATE   (a) Integrating a(t) over t leads to 

( ) 0
0( ) cos sinav t a t dt a tdt tω ω

ω
= = − = −∫ ∫  

where v0 = 0 since we are told that the object starts from rest.   

 (b) Integrating v(t) over t, we obtain position as a function of time: 

0 0
2( ) ( ) sin cosa ax t v t dt tdt tω ω

ω ω
= = − =∫ ∫  

(c) From the expression for v(t), we see that the magnitude is at a maximum when | sin | 1.tω =  Thus, max 0 / .v a ω=  

Similarly, for x(t), its magnitude is at a maximum when | cos | 1,tω =  leading to 2
max 0 / .x a ω=  

  ASSESS The type of motion described here is called simple harmonic motion. In this type of motion, the 

acceleration is proportional and in the opposite direction of the displacement: 2( ) ( ).a t x tω= −  

 90. INTERPRET This is a one-dimensional kinematics problem in which acceleration decreases exponentially with 

time. We need to use calculus to calculate the velocity and then position.  

DEVELOP The instantaneous velocity v(t) can be obtained by integrating over 0( ) .bta t a e−=  Integrating v(t) over t 
then gives x(t).  
EVALUATE   (a) Integrating a(t) over t leads to 

( ) 0
0 0( ) bt btav t a t dt a e dt e v

b
− −= = = − +∫ ∫  

The condition that v(0) = 0 implies 0 0 / .v a b=  Therefore, 0( ) (1 ).btav t e
b

−= −   

 (b) No, the speed does not increase indefinitely.  As ,t → ∞ 0( ) / .v t a b→  

 (c) Integrating v(t) over t tobtain position as a function of time, we have  

0
0

( ) ( ) (1 )btax t v t dt e dt
b

∞ −= = − → ∞∫ ∫  

Clearly, the object will continue to move indefinitely, and travel infinitely far from the origin.  

  ASSESS Since the acceleration a(t) decreases exponentially, at large t, ( ) 0,a t →  and the object essentially moves 

with a constant speed 0 0 / .v a b=  

 91.  INTERPRET This problem involves one-dimensional kinematics under constant acceleration. We have two balls, 

one dropped from height h0, and the other launched upward simultaneously from the ground with speed v0. We are 

interested in finding the condition on v0 such that the two balls collide in mid-air.  

DEVELOP We first consider just the ball that’s dropped from rest at height h0. Since 2
0 0 / 2,h gt=  the time for it to 

reach the ground is 0 02 / .t h g=  Now, with the two balls described in the problem, suppose they collide in mid-

air after t seconds, then the distances traveled are 21
1 2h gt=  and 21

2 0 2h v t gt= −  such that  

2 2
0 1 2 0 0

1 1
2 2

h h h gt v t gt v t⎛ ⎞= + = + − =⎜ ⎟
⎝ ⎠

 

The balls collide in mid-air if t < t0.  

EVALUATE (a) The condition t < t0 implies 0 0

0

2 ,<h h
v g

 or 0
0 .

2
> ghv  

(b) Substituting 0 0/=t h v  into the expression for h2, we find the height at which the balls collide to be   

2 2
2 0 0 0

2 0 0 0 2
0 0 0

1 1
2 2 2

h h ghh v t gt v g h
v v v

⎛ ⎞ ⎛ ⎞
= − = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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ASSESS The greater the speed v0, the greater the height at which the two balls collide. In the limit where the 

launch speed is much greater than 0/2,gh  the height where they meet would be very close to h0.  

 92. INTERPRET We’re asked to interpret the graph of a tiger’s velocity. 

DEVELOP The tiger is at rest when the velocity is zero. 

EVALUATE The velocity is zero at points A, E and H. 

The answer is (b). 
ASSESS The tiger starts at rest, moves to the right (positive direction), stops (at point E), then turns and moves to 

the left (negative direction) before stopping. 

 93. INTERPRET We’re asked to interpret the graph of a tiger’s velocity. 

DEVELOP The tiger has zero acceleration when the velocity is not changing, i.e., when the curve is flat. 

EVALUATE The acceleration is zero at points C and F. 

The answer is (c). 
ASSESS The tiger first accelerates to the right, but then at point C it starts to slow down and comes to a stop at 

point E. She then immediately begins to accelerate to the left, but then at point F it starts to slow down and comes 

to a stop at point H. 

 94. INTERPRET We’re asked to interpret the graph of a tiger’s velocity. 

DEVELOP The tiger has greatest speed at the point in the graph farthest from zero.  

EVALUATE The two points C and F are extreme points, but it appears that C is larger than F. 

The answer is (b). 
ASSESS The point C is where the tiger is going the fastest to the right, whereas the point F is where the tiger is 

going the fastest to the left. 

 95. INTERPRET We’re asked to interpret the graph of a tiger’s velocity. 

DEVELOP The tiger has greatest acceleration at the point in the graph where the velocity is changing the fastest, 

i.e., where the slope is greatest.  

EVALUATE The slope appears to be the greatest at point D. 

The answer is (c). 
ASSESS At point C, the tiger is moving quickly to the right, but it suddenly slows down at point D and comes to a 

stop at point E. 

 96. INTERPRET We’re asked to interpret the graph of a tiger’s velocity. 

DEVELOP The tiger begins moving to the right, but it stops and comes back towards the left. Therefore the 

farthest it reaches away from its starting point must be the point where it stops.  

EVALUATE The farthest point is E. 

The answer is (b). 
ASSESS The distance traveled is the integral of velocity with respect to time: .= ∫x vdt  From A to E, this integral 

is positive, but after point E, it becomes negative, characterizing the fact that the tiger has turned around and is 

retracing its steps. 


