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Q2.1. Reason: The elevator must speed up from rest to cruising velocity. In the middle will be a period of constant 
velocity, and at the end a period of slowing to a rest. 
The graph must match this description. The value of the velocity is zero at the beginning, then it increases, then, 
during the time interval when the velocity is constant, the graph will be a horizontal line. Near the end the graph will 
decrease and end at zero. 
 

 
 

Assess: After drawing velocity-versus-time graphs (as well as others), stop and think if it matches the physical 
situation, especially by checking end points, maximum values, places where the slope is zero, etc. This one passes 
those tests. 

Q2.2. Reason: (a) The sign conventions for velocity are in Figure 2.7. The sign conventions for acceleration are in 
Figure 2.26. Positive velocity in vertical motion means an object is moving upward. Negative acceleration means the 
acceleration of the object is downward. Therefore the upward velocity of the object is decreasing. An example would 
be a ball thrown upward, before it starts to fall back down. Since it’s moving upward, its velocity is positive. Since 
gravity is acting on it and the acceleration due to gravity is always downward, its acceleration is negative. 
(b) To have a negative vertical velocity means that an object is moving downward. The acceleration due to gravity is 
always downward, so it is always negative. An example of a motion where both velocity and acceleration are 
negative would be a ball dropped from a height during its downward motion. Since the acceleration is in the same 
direction as the velocity, the velocity is increasing. 
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Assess: For vertical displacement, the convention is that upward is positive and downward is negative for both 
velocity and acceleration. 

Q2.3. Reason: Where the rings are far apart the tree is growing rapidly. It appears that the rings are quite far apart 
near the center (the origin of the graph), then get closer together, then farther apart again. 
 

 
 

Assess: After drawing velocity-versus-time graphs (as well as others), stop and think if it matches the physical 
situation, especially by checking end points, maximum values, places where the slope is zero, etc. This one passes 
those tests. 

Q2.4. Reason: Call “up” the positive direction. Also assume that there is no air resistance. This assumption is 
probably not true (unless the rock is thrown on the moon), but air resistance is a complication that will be addressed 
later, and for small, heavy items like rocks no air resistance is a pretty good assumption if the rock isn’t going too fast. 
To be able to draw this graph without help demonstrates a good level of understanding of these concepts. The 
velocity graph will not go up and down as the rock does—that would be a graph of the position. Think carefully 
about the velocity of the rock at various points during the flight. 
At the instant the rock leaves the hand it has a large positive (up) velocity, so the value on the graph at t = 0 needs to 
be a large positive number. The velocity decreases as the rock rises, but the velocity arrow would still point up. So 
the graph is still above the  t  axis, but decreasing. At the tippy-top the velocity is zero; that corresponds to a point on 
the graph where it crosses the  t  axis. Then as the rock descends with increasing velocity (in the negative, or down, 
direction), the graph continues below the  t  axis. It may not have been totally obvious before, but this graph will be a 
straight line with a negative slope. 
 

 

 

Assess: Make sure that the graph touches or crosses the t  axis whenever the velocity is zero. In this case, that is 
only when it reaches the top of its trajectory and the velocity vector is changing direction from up to down. 
It is also worth noting that this graph would be more complicated if we were to include the time at the beginning 
when the rock is being accelerated by the hand. Think about what that would entail. 
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Q2.5.  Reason:  Let t
0

= 0 be when you pass the origin. The other car will pass the origin at a later time t
1
 and 

passes you at time 2.t  
 

 
 

Assess:  The slope of the position graph is the velocity, and the slope for the faster car is steeper. 

Q2.6. Reason: Yes. The acceleration vector will point south when the car is slowing down while traveling north. 
Assess: The acceleration vector will always point in the direction opposite the velocity vector in straight line motion 
if the object is slowing down. Feeling good about this concept requires letting go of the common every day 
(mis)usage where velocity and acceleration are sometimes treated like synonyms. Physics definitions of these terms 
are more precise and when discussing physics we need to use them precisely. 

Q2.7. Reason: A predator capable of running at a great speed while not being capable of large accelerations could 
overtake slower prey that were capable of large accelerations, given enough time. However, it may not be as effective 
as surprising and grabbing prey that are capable of higher acceleration. For example, prey could escape if the safety 
of a burrow were nearby. If a predator were capable of larger accelerations than its prey, while being slower in speed 
than the prey, it would have a greater chance of surprising and grabbing prey, quickly, though prey might outrun it if 
given enough warning.  
Assess: Consider the horse-man race discussed in the text. 

Q2.8. Reason: We will neglect air resistance, and thus assume that the ball is in free fall.  
(a) g−  After leaving your hand the ball is traveling up but slowing, therefore the acceleration is down (i.e., 

negative). 
(b) −g  At the very top the velocity is zero, but it had previously been directed up and will consequently be directed 
down, so it is changing direction (i.e., accelerating) down. 
(c) −g  Just before hitting the ground it is going down (velocity is down) and getting faster; this also constitutes an 
acceleration down. 
Assess: As simple as this question is, it is sure to illuminate a student’s understanding of the difference between 
velocity and acceleration. Students would be wise to dwell on this question until it makes complete sense. 

Q2.9. Reason: (a) Once the rock leaves the thrower’s hand, it is in free fall. While in free fall, the acceleration of 
the rock is exactly the acceleration due to gravity, which has a magnitude g and is downward. The fact that the rock 
was thrown and not simply dropped means that the rock has an initial velocity when it leaves the thrower’s hand. 
This does not affect the acceleration of gravity, which does not depend on how the rock was thrown. 
(b) Just before the rock hits the water, it is still in free fall. Its acceleration remains the acceleration of gravity. Its 
velocity has increased due to gravity, but acceleration due to gravity is independent of velocity. 
Assess: No matter what the velocity of an object is, the acceleration due to gravity always has magnitude g and is 
always straight downward. 

Q2.10. Reason: (a) Sirius the dog starts at about 1 m west of a fire hydrant (the hydrant is the x = 0 m  position) 
and walks toward the east at a constant speed, passing the hydrant at t = 1.5 s.  At t = 4 s  Sirius encounters his 
faithful friend Fido 2 m east of the hydrant and stops for a 6-second barking hello-and-smell. Remembering some 
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important business, Sirius breaks off the conversation at t = 10 s and sprints back to the hydrant, where he stays for  
4 s and then leisurely pads back to his starting point. 
(b) Sirius is at rest during segments B (while chatting with Fido) and D (while at the hydrant). Notice that the graph 
is a horizontal line while Sirius is at rest. 
(c) Sirius is moving to the right whenever x  is increasing. That is only during segment A. Don’t confuse something 
going right on the graph (such as segments C and E) with the object physically moving to the right (as in segment A). 
Just because  t  is increasing doesn’t mean x  is. 
(d) The speed is the magnitude of the slope of the graph. Both segments C and E have negative slope, but C’s slope is 
steeper, so Sirius has a greater speed during segment C than during segment E. 
Assess: We stated our assumption (that the origin is at the hydrant) explicitly. During segments B and D time 
continues to increase but the position remains constant; this corresponds to zero velocity. 

Q2.11. Reason: There are five different segments of the motion, since the lines on the position-versus-time graph 
have different slopes between five different time periods. 
(a) A fencer is initially still. To avoid his opponent's lunge, the fencer jumps backwards very quickly. He remains 
still for a few seconds. The fencer then begins to advance slowly on his opponent. 
(b) Referring to the velocities obtained in part (a), the velocity-versus-time graph would look like the following 
diagram. 
 

 
 

Assess: Velocity is given by the slope of lines on position-versus-time graphs. See Conceptual Example 2.1 and the 
discussion that follows. 

Q2.12. Reason: (a) A’s speed is greater at t = 1 s.  The slope of the tangent to B’s curve at t = 1 s  is smaller than the 
slope of A’s line.  
(b) A and B have the same speed just before t = 3 s. At that time, the slope of the tangent to the curve representing 

B’s motion is equal to the slope of the line representing A’s motion.  
Assess: The fact that B’s curve is always above A’s doesn’t really matter. The respective slopes matter, not how 
high on the graph the curves are. 

Q2.13. Reason: (a) D. The steepness of the tangent line is greatest at D.  
(b) C, D, E. Motion to the left is indicated by a decreasing segment on the graph.  
(c) C. The speed corresponds to the steepness of the tangent line, so the question can be re-cast as “Where is the 
tangent line getting steeper (either positive or negative slope, but getting steeper)?” The slope at B is zero and is 
greatest at D, so it must be getting steeper at C.  
(d) A, E. The speed corresponds to the steepness of the tangent line, so the question can be re-cast as “Where is the 
tangent line getting less steep (either positive or negative slope, but getting less steep)?” 
(e) B. Before B the object is moving right and after B it is moving left.  
Assess: It is amazing that we can get so much information about the velocity (and even about the acceleration) from 
a position-versus-time graph. Think about this carefully. Notice also that the object is at rest (to the left of the origin) 
at point F. 

Q2.14. Reason: (a) For the velocity to be constant, the velocity-versus-time graph must have zero slope. Looking 
at the graph, there are three time intervals where the graph has zero slope: segment A, segment D and segment F. 
(b) For an object to be speeding up, the magnitude of the velocity of the object must be increasing. When the slope of 
the lines on the graph is nonzero, the object is accelerating and therefore changing speed.  
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Consider segment B. The velocity is positive while the slope of the line is negative. Since the velocity and 
acceleration are in opposite directions, the object is slowing down. At the start of segment B, we can see the velocity 
is +2 m/s, while at the end of segment B the velocity is 0 m/s. 
During segment E the slope of the line is positive which indicates positive acceleration, but the velocity is negative. 
Since the acceleration and velocity are in opposite directions, the object is slowing here also. Looking at the graph at 
the beginning of segment E the velocity is –2 m/s, which has a magnitude of 2 m/s. At the end of segment E the 
velocity is 0 m/s, so the object has slowed down.  
Consider segment C. Here the slope of the line is negative and the velocity is negative. The velocity and acceleration 
are in the same direction so the object is speeding up. The object is gaining velocity in the negative direction. At the 
beginning of that segment the velocity is 0 m/s, and at the end the velocity is –2 m/s, which has a magnitude of 2 m/s. 
(c) In the analysis for part (b), we found that the object is slowing down during segments B and E. 
(d) An object standing still has zero velocity. The only time this is true on the graph is during segment F, where the 
line has zero slope, and is along v = 0 m/s. The velocity is also zero for an instant at time t = 5 s between segments B 
and C. 
(e) For an object to be moving to the right, the convention is that the velocity is positive. In terms of the graph, 
positive values of velocity are above the time axis. The velocity is positive for segments A and B. The velocity must 
also be greater than zero. Segment F represents a velocity of 0 m/s. 
Assess: The slope of the velocity graph is the acceleration graph. 

Q2.15. Reason: This graph shows a curved position-versus-time line. Since the graph is curved the motion is not 
uniform. The instantaneous velocity, or the velocity at any given instant of time, is the slope of a line tangent to the 
graph at that point in time. Consider the graph below, where tangents have been drawn at each labeled time. 
 

 
 

Comparing the slope of the tangents at each time in the figure above, the speed of the car is greatest at time C. 
Assess: Instantaneous velocity is given by the slope of a line tangent to a position-versus-time curve at a given 
instant of time. This is also demonstrated in Conceptual Example 2.4. 

Q2.16. Reason: C. Negative, negative; since the slope of the tangent line is negative at both 1 and 2. 
Assess: The car’s position at 2 is at the origin, but it is traveling to the left and therefore has negative velocity in this 
coordinate system. 

Q2.17. Reason:  The velocity of an object is given by the physical slope of the line on the position-versus-time 
graph. Since the graph has constant slope, the velocity is constant. We can calculate the slope by using Equation 2.1, 
choosing any two points on the line since the velocity is constant. In particular, at t1 = 0 s the position is x1 = 5 m. At 
time t2 = 3 s the position is x2 = 15 m. The points on the line can be read to two significant figures. 
The velocity is  

v =
Δx

Δt
=

x
2
− x

1

t
2
− t

1

=
15 m − 5 m

3 s − 0 s
=

10 m

3 s
= +3.3 m/s  

The correct choice is C. 
Assess: Since the slope is positive, the value of the position is increasing with time, as can be seen from the graph. 
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Q2.18. Reason: We are asked to find the largest of four accelerations, so we compute all four from Equation 2.8: 

a
x

=
Δv

x

Δt
 

A a
x

=
10 m/s

5.0 s
= 2.0 m/s2  

B a
x

=
5.0 m/s

2.0 s
= 2.5 m/s2 

C a
x

=
20 m/s

7.0 s
= 2.9 m/s2 

D a
x

=
3.0 m/s

1.0 s
= 3.0 m/s2  

The largest of these is the last, so the correct choice is D. 
Assess: A large final speed, such as in choices A and C, does not necessarily indicate a large acceleration. 

Q2.19. Reason: The initial velocity is 20 m/s. Since the car comes to a stop, the final velocity is 0 m/s. We are 
given the acceleration of the car, and need to find the stopping distance. See the pictorial representation, which 
includes a list of values below.  
 

 
 

An equation that relates acceleration, initial velocity, final velocity, and distance is Equation 2.13.  

(v
x
)

f
2 = (v

x
)

i
2 + 2a

x
Δx  

Solving for Δx,  

Δx =
(v

x
)

f
2 − (v

x
)

i
2

2a
x

=
(0 m/s)2 − (20 m/s)2

2(−4.0 m/s2 )
= 50 m  

The correct choice is D. 
Assess: We are given initial and final velocities and acceleration. We are asked to find a displacement, so Equation 2.13  
is an appropriate equation to use.  

Q2.20. Reason: This is not a hard question once we remember that the displacement is the area under the velocity-
versus-time graph. The scales on all three graphs are the same, so simple visual inspection will attest that Betty 
traveled the furthest since there is more area under her graph. The correct choice is B. 
Assess: It is important to verify that the scales on the axes on all the graphs are the same before trusting such a 
simple visual inspection. 
In the same vein, it is important to realize that although all three cars end up at the same speed (40 m/s), they do not 
end up at the same place (assuming they started at the same position); this is nothing more than reiterating what was 
said in the Reason step above. On a related note, check the accelerations: Andy’s acceleration was small to begin 
with but growing toward the end, Betty’s was large at first and decreased toward the end, and Carl’s acceleration was 
constant over the 5.0 s. Mentally tie this all together. 

Q2.21. Reason: The slope of the tangent to the velocity-versus-time graph gives the acceleration of each car. At 
time t = 0 s the slope of the tangent to Andy’s velocity-versus-time graph is very small. The slope of the tangent to 
the graph at the same time for Carl is larger. However, the slope of the tangent in Betty’s case is the largest of the 
three. So Betty had the greatest acceleration at t = 0 s. See the figure below. 
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The correct choice is B. 
Assess: Acceleration is given by the slope of the tangent to the curve in a velocity-versus-time graph at a given time. 

Q2.22. Reason: Both balls are in free fall (neglecting air resistance) once they leave the hand, and so they will 
have the same acceleration. Therefore, the slopes of their velocity-versus-time graphs must be the same (i.e., the 
graphs must be parallel). That eliminates choices B and C. Ball 1 has positive velocity on the way up, while ball 2 
never goes up or has positive velocity; therefore, choice A is correct. 
Assess: Examine the other choices. In choice B ball 1 is going up faster and faster while ball 2 is going down faster 
and faster. In choice C ball 1 is going up the whole time but speeding up during the first part and slowing down 
during the last part; ball 2 is going down faster and faster. In choice D ball 2 is released from rest (as in choice A), 
but ball 1 is thrown down so that its velocity at t = 0 is already some non-zero value down; thereafter both balls have 
the same acceleration and are in free fall. 

Q2.23. Reason: There are two ways to approach this problem, and both are educational. Using algebra, first 
calculate the acceleration of the larger plane. 

a =
Δv

Δt
=

80 m/s
30 s

= 2.667 m/s2  

Then use that acceleration to figure how far the smaller plane goes before reading 40 m/s. 
2 2 2

2 2 f i
f i 2

( ) ( ) (40 m/s)
( ) ( ) 2 300 m

2 2(2.667 m/s )
x x

x x x
x

v v
v v a x x

a

−
= + Δ ⇒ Δ = = =  

So choice A is correct. 

The second method is graphical. Make a velocity vs. time graph; the slope of the straight line is the same for both 
planes. We see that the smaller plane reaches 40 m/s in half the time that the larger plane took to reach 80 m/s. And 
we see that the area under the smaller triangle is ¼ the area under the larger triangle. Since the area under the velocity 
vs. time graph is the distance then the distance the small plane needs is ¼ the distance the large plane needs. 
 

 
 

Assess: It seems reasonable that a smaller plane would need only ¼ the distance to take off as a large plane. 

Q2.24. Reason: The dots from time 0 to 9 seconds indicate a direction of motion to the right. The dots are getting 
closer and closer. This indicates that the object is moving to the right and slowing down. From 9 to 16 seconds, the 
object remains at the same position, so it has no velocity. From 16 to 23 seconds, the object is moving to the left. Its 
velocity is constant since the dots are separated by identical distances. 
The velocity-versus-time graph that matches this motion closest is B. 
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Assess: The slope of the line in a velocity-versus-time graph gives an object’s acceleration.  

Q2.25. Reason: This can be solved with simple ratios. Since 
G
a =

Δ
G
v

Δt
 and the a  stays the same, it would take 

twice as long to change 
G
v  twice as much. 

The answer is B. 
Assess: This result can be checked by actually computing the acceleration and plugging it back into the equation for 
the second case, but ratios are slicker and quicker. 

Q2.26. Reason: This can be solved with simple ratios. Since 
G
a =

Δ
G
v

Δt
 if 

G
a  is doubled then the car can change 

velocity by twice as much in the same amount of time. 
The answer is A. 
Assess: This result can be checked by actually computing the acceleration, doubling it, and plugging it back into the 
equation for the second case, but ratios are slicker and quicker. 

Problems 

P2.1. Prepare: The car is traveling to the left toward the origin, so its position decreases with increase in time.  
 

  

Time t (s) Position x (m) 
0 1200 
1 975 
2 825 
3 750 
4 700 
5 650 
6 600 
7 500 
8 300 

Solve: (a)  

9 0 
 
 
 
 
 
 
 
 
 

(b)   

 
 

Assess: A car’s motion traveling down a street can be represented at least three ways: a motion diagram, position-
versus-time data presented in a table (part (a)), and a position-versus-time graph (part (b)). 

P2.2. Prepare: Let us review our sign conventions. Position to the right of or above origin is positive, but to the 
left of or below origin is negative. Velocity is positive for motion to the right and for upward motion, but it is 
negative for motion to the left and for downward motion. 
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Solve:  

 Diagram Position Velocity 

 (a) 
(b) 
(c) 

Negative 
Negative 
Positive 

Positive 
Negative 
Negative 

P2.3. Prepare: The slope of the position graph is the velocity graph. The position graph has a shallow (negative) 
slope for the first 8 s, and then the slope increases. 
Solve:   
(a) The change in slope comes at 8 s, so that is how long the dog moved at the slower speed.  
(b) 
 

 
 

Assess: We expect the sneaking up phase to be longer than the spring phase, so this looks like a realistic situation. 

P2.4. Prepare: To get a position from a velocity graph we count the area under the curve. 
Solve:   
(a) 
 

 

 

(b) We need to count the area under the velocity graph (area below the x-axis is subtracted). There are 18 m of area 
above the axis and 4 m of area below. 18 m 4 m = 14 m.−  

Assess: These numbers seem reasonable; a mail carrier could back up 4 m. It is also important that the problem state 
what the position is at = 0,t  or we wouldn’t know how high to draw the position graph. 
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P2.5. Prepare: To get a position from a velocity graph we count the area under the curve. 
Solve:   
(a) 
 

 
 

(b) We need to count the area under the velocity graph (area below the x-axis is subtracted). There are 12 m of area 
below the axis and 12 m of area above. 12 m 12 m = 0 m.−   

(c) A football player runs left at 3 m/s for 4 s, then cuts back to the right at 3 m/s for 2 s, then walks (continuing to 
the right) back to the starting position.  
Assess: We note an abrupt change of velocity from 3 m/s left to 3 m/s right at 4 s. It is also important that the 
problem state what the position is at t = 0, or we wouldn’t know how high to draw the position graph. 

P2.6. Prepare: Note that the slope of the position-versus-time graph at every point gives the velocity at that point. 
Referring to Figure P2.9, the graph has a distinct slope and hence distinct velocity in the time intervals: from t = 0 to  
t = 20 s; from 20 s to 30 s; and from 30 s to 40 s. 
Solve: The slope at t = 10 s is  

v =
Δx

Δt
=

100 m − 50 m

20 s
= 2.5 m/s 

The slope at t = 25 s is 

v =
100 m −100 m

10 s
= 0 m/s  

The slope at t = 35 s is 

v =
0 m −100 m

10 s
= −10 m/s  

Assess: As expected a positive slope gives a positive velocity and a negative slope yields a negative velocity. 

P2.7. Prepare:  Assume that the ball travels in a horizontal line at a constant v
x
. It doesn’t really, but if it is a line 

drive then it is a fair approximation. 

mi

h

distance 60 ft 1 mi 60 min 60 s
time 0.43 s

speed 95 5280 ft 1 h 1 min
⎛ ⎞⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

Assess: Just under a half second is reasonable for a major league pitch. 

P2.8. Prepare: Assume that the ball travels in a horizontal line at a constant v
x
. It doesn’t really, but if it is a line 

drive then it is a fair approximation. 
Solve: 

43 ft 1 mi 3600 s
= = = 0.29 s

100 mi/h 5280 ft 1 hx

x
t

v

⎛ ⎞⎛ ⎞Δ
Δ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

Assess: This is a short but reasonable time for a fastball to get from the mound to home plate. 



Motion in One Dimension   2-11 

 

© Copyright 2015 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

P2.9. Prepare: A visual overview of Alan’s and Beth’s motion that includes a pictorial representation, a motion 
diagram, and a list of values is shown below. Our strategy is to calculate and compare Alan’s and Beth’s time of 
travel from Los Angeles to San Francisco. 
 

 
 

Solve: Beth and Alan are moving at a constant speed, so we can calculate the time of arrival as follows: 

v =
Δx

Δt
=

x
f
− x

i

t
f
− t

i

⇒ t
f
= t

i
+

x
f
− x

i

v
 

Using the known values identified in the pictorial representation, we find 

(t
f
)

Alan
= (t

i
)

Alan
+

(x
f
)

Alan
− (x

i
)

Alan

v
= 8:00 AM +

400 mile
50 miles/hour

= 8:00 AM + 8 hr = 4:00 PM

(t
f
)

Beth
= (t

i
)

Beth
+

(x
f
)

Beth
− (x

i
)

Beth

v
= 9:00 AM +

400 mile
60 miles/hour

= 9:00 AM + 6.67 hr = 3:40 PM

 

(a) Beth arrives first. 
(b) Beth has to wait 20 minutes for Alan. 
Assess: Times of the order of 7 or 8 hours are reasonable in the present problem. 

P2.10. Prepare: Assume that Richard only speeds on the 125 mi stretch of the interstate. We then need to compute 
the times that correspond to two different speeds for that given distance. Rearrange Equation 1.1 to produce 

time =
distance

speed
 

Solve: At the speed limit: 

1

125 mi 60 min
time 115.4 min

65 mi/h 1 h

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

At the faster speed: 

2

125 mi 60 min
time 107.1 min

70 mi/h 1 h

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

By subtracting we see that Richard saves 8.3 min. 
Assess: Breaking the law to save 8.3 min is normally not worth it; Richard’s parents can wait 8 min. 
Notice how the hours (as well as the miles) cancel in the equations. 

P2.11. Prepare: Since each runner is running at a steady pace, they both are traveling with a constant speed. Each 
must travel the same distance to finish the race. We assume they are traveling uniformly. We can calculate the time it 
takes each runner to finish using Equation 2.1. 
Solve: The first runner finishes in  

1
1

5.00 km
0.417 h

( ) 12.0 km/hx

x
t

v

Δ
Δ = = =  
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Converting to minutes, this is 
60 min

(0.417 h) 25.0 min
1 h

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 

For the second runner 

2
2

5.00 km
0.345 h

( ) 14.5 km/hx

x
t

v

Δ
Δ = = =  

Converting to seconds, this is  

60 min
(0.345 h) 20.7 min

1 h

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 

The time the second runner waits is 25.0 min – 20.7 min = 4.3 min 
Assess: For uniform motion, velocity is given by Equation 2.1. 

P2.12. Prepare: We’ll do this problem in multiple steps. Rearrange Equation 1.1 to produce 

time =
distance

speed
 

Use this to compute the time the faster runner takes to finish the race; then use distance = speed × time to see how 
far the slower runner has gone in that amount of time. Finally, subtract that distance from the 8.00 km length of the 
race to find out how far the slower runner is from the finish line. 
 

 
 

Solve: The faster runner finishes in 

t =
8.00 km

14.0 km/h
= 0.571 h  

In that time the slower runner runs d = (11.0 km/h) × (0.571 h) = 6.29 km.   
This leaves the slower runner 8.00 km − 6.29 km = 1.71 km  from the finish line as the faster runner crosses the line. 
Assess: The slower runner will not even be in sight of the faster runner when the faster runner crosses the line. 
We did not need to convert hours to seconds because the hours cancelled out of the last equation. Notice we kept 3 
significant figures, as indicated by the original data. 

P2.13. Prepare: Assume v
x
 is constant so the ratio 

Δx

Δt
 is also constant. 

Solve:   
(a) 

30 m 30 m
= =1.5 s =15 m

3.0 s 1.5 s 3.0 s

x
x

⎛ ⎞Δ
⇒ Δ ⎜ ⎟

⎝ ⎠
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(b) 

30 m 30 m
= = 9.0  s = 90 m

3.0  s 9.0 s 3.0 s

x
x

⎛ ⎞Δ
⇒ Δ ⎜ ⎟

⎝ ⎠
 

Assess: Setting up the ratio allows us to easily solve for the distance traveled in any given time. 

P2.14. Prepare: Assume v
x
 is constant so the ratio 

Δx

Δt
 is also constant. 

Solve:   
(a) 

100 m 400 m 400 m
= = 18 s = 72 s

18 s 100 m
t

t
⎛ ⎞⇒ Δ ⎜ ⎟Δ ⎝ ⎠

 

(b) 
100 m 1.0 mi 1.0 mi 1609 m

= = 18 s = 290 s = 4.8 min
18 s 100 m 1.0 mi

t
t

⎛ ⎞⎛ ⎞⇒ Δ ⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎝ ⎠
 

Assess: This pace does give about the right answer for the time required to run a mile for a good marathoner. 

P2.15. Prepare: The graph in Figure P2.17 shows distinct slopes in the time intervals: 0 – 1 s, 1 s – 2 s, and 
2 s 4 s.−  We can thus obtain the velocity values from this graph using v = Δx/Δt.  

 

Solve: (a) 

 
 

(b) There is only one turning point. At t = 2 s the velocity changes from +20 m/s to −10 m/s, thus reversing the 
direction of motion. At t = 1 s, there is an abrupt change in motion from rest to +20 m/s, but there is no reversal in 
motion. 
Assess: As shown above in (a), a positive slope must give a positive velocity and a negative slope must yield a 
negative velocity. 

P2.16. Prepare:  The distance traveled is the area under the v
y
 graph. 

Solve:   

(a) The area of a triangle is 
1

.
2

BH   

1 1
= area = = (0.20 s)(0.75 m/s) = 7.5 cm

2 2
y BHΔ  

(b)  We estimate the distance from the heart to the brain to be about 30 cm. 

Δt =
Δy

v
y

=
30 cm

7.5 cm/beat
= 4.0 beats  

Assess: Four beats seems reasonable. There is some doubt that we are justified using two significant figures here. 
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P2.17. Prepare: Since displacement is equal to the area under the velocity graph between ti and tf, we can find the 
car’s final position from its initial position and the area. 
Solve: (a) Using the equation xf = xi + area of the velocity graph between ti and tf, 

x
2 s
= 10 m + area of trapezoid between 0 s and 2 s

= 10 m +
1

2
(12 m/s + 4 m/s)(2 s) = 26 m

x
3 s
= 10 m + area of triangle between 0 s and 3 s

= 10 m +
1
2

(12 m/s)(3 s) = 28 m

x
4 s
= x

3 s
+ area between 3 s and 4 s

= 28 m +
1
2

(−4 m/s)(1 s) = 26 m

 

(b) The car reverses direction at t = 3 s, because its velocity becomes negative. 
Assess: The car starts at xi = 10 m at ti = 0. Its velocity decreases as time increases, is zero at t = 3 s, and then 
becomes negative. The slope of the velocity-versus-time graph is negative which means the car’s acceleration is 
negative and a constant. From the acceleration thus obtained and given velocities on the graph, we can also use 
kinematic equations to find the car’s position at various times. 

P2.18. Prepare: To make the estimates from the graph we need to read the slopes from the graph. Lightly pencil in 
straight lines tangent to the graph at t = 2 s  and t = 4 s. Then pick a pair of points on each line to compute the rise 
and the run. 
Solve:   
(a) 

v
x

=
200 m

4 s −1 s
= 67 m/s  

(b) 

v
x

=
400 m

5 s − 2 s
= 130 m/s  

Assess: The speed is increasing, which is indeed what the graph tells us. These are reasonable numbers for a drag 
racer. 

P2.19. Prepare: The graph in Figure P2.19 shows distinct slopes in the time intervals: 0 – 2 s and 2 s – 4 s. We can 
thus obtain the acceleration values from this graph using ax = Δvx/Δt. A linear decrease in velocity from t = 0 s to  
t = 2 s implies a constant negative acceleration. On the other hand, a constant velocity between t = 2 s and t = 4 s 
means zero acceleration. 
 

Solve:  

 

P2.20. Prepare: Displacement is equal to the area under the velocity graph between ti and tf, and acceleration is the 
slope of the velocity-versus-time graph. 
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Solve: (a) 

 
 

(b) From the acceleration versus t graph above, ax at t = 3.0 s is +1 m/s2. 
Assess: Because the velocity was negative at first, the train was moving left. There is a turning point at 2 s. 

P2.21. Prepare: Acceleration is the rate of change of velocity. The sign conventions for position are in Figure 2.1. 
Conventions for velocity are in Figure 2.7. Conventions for acceleration are in Figure 2.26. 
Solve: (a) Since the displacements are toward the right and the velocity vectors point toward the right, the velocity is 
always positive. Since the velocity vectors are increasing in length and are pointing toward the right, the acceleration 
is positive. The position is always negative, but it is only differences in position that are important in calculating 
velocity. 
(b) Since the displacements and the velocity vectors are always downward, the velocity is always negative. Since the 
velocity vectors are increasing in length and are downward, the acceleration is negative. The position is always 
negative, but it is only differences in position that are important in calculating velocity. 
(c) Since the displacements are downward, and the velocity vectors are always downward, the velocity is always 
negative. Since the velocity vectors are increasing in length and are downward, the acceleration is negative. The 
position is always positive, but it is only differences in position that are important in calculating velocity. 
Assess: The origin for coordinates can be placed anywhere. 

P2.22. Prepare: To figure the acceleration we compute the slope of the velocity graph by looking at the rise and the 
run for each straight line segment. 
Solve: Speeding up:  

a
y

=
Δv

y

Δt
=

0.75 m/s

0.05 s
= 15 m/s2  

Slowing down:  

a
y

=
Δv

y

Δt
=
−0.75 m/s

0.15 s
= −5 m/s2  

Assess: Indeed the slope looks three time steeper in the first segment than in the second. These are pretty large 
accelerations. 

P2.23. Prepare: From a velocity-versus-time graph we find the acceleration by computing the slope. We will 
compute the slope of each straight-line segment in the graph. 

a
x

=
(v

x
)

f
− (v

x
)

i

t
f
− t

i

 

The trickiest part is reading the values off of the graph. 
Solve: (a)  

a
x
=

5.5 m/s − 0.0 m/s

0.9 s − 0.0 s
= 6.1 m/s2  
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(b) 

a
x
=

9.3 m/s − 5.5 m/s

2.4 s − 0.9 s
= 2.5 m/s2  

(c) 

a
x
=

10.9 m/s − 9.3 m/s

3.5 s − 2.4 s
= 1.5 m/s2  

Assess: This graph is difficult to read to more than one significant figure. I did my best to read a second significant 
figure but there is some estimation in the second significant figure. 
It takes Carl Lewis almost 10 s to run 100 m, so this graph covers only the first third of the race. Were the graph to 
continue, the slope would continue to decrease until the slope is zero as he reaches his (fastest) cruising speed. 
Also, if the graph were continued out to the end of the race, the area under the curve should total 100 m. 

P2.24. Prepare: Use the definition of acceleration. Also, 60 ms = 0.060 s. 
Solve:  

a
y

=
Δv

y

Δt
=

3.7 m/s
0.060 s

= 62 m/s2  

Assess: Frogs are quite impressive!  Humans can’t jump with this kind of acceleration. 

P2.25. Prepare: We can calculate acceleration from Equation 2.8: 
Solve: For the gazelle: 

213 m/s
( ) 4.3 m/s

3.0 s
x

x

v
a

t

Δ⎛ ⎞= = =⎜ ⎟Δ⎝ ⎠
 

For the lion: 

29.5 m/s
( ) 9.5 m/s

1.0 s
x

x

v
a

t

Δ⎛ ⎞= = =⎜ ⎟Δ⎝ ⎠
 

For the trout: 

22.8 m/s
( ) 23 m/s

0.12 s
x

x

v
a

t

Δ⎛ ⎞= = =⎜ ⎟Δ⎝ ⎠
 

The trout is the animal with the largest acceleration. 
Assess: A lion would have an easier time snatching a gazelle than a trout. 

P2.26. Prepare: Acceleration is the rate of change of velocity. 

a
x

=
Δv

x

Δt
 

Where Δv
x

= 4.0 m/s and Δt = 0.11 s.  

We will then use that acceleration to compute the final position after the strike: 

xf =
1

2
ax (Δt)2  

where we are justified in using the special case because i( ) 0.0 m/sxv =  and i 0 m.x =   

Solve: (a) 

a
x
=
Δv

x

Δt
=

4.0 m/s

0.11 s
= 36 m/s2  

(b) 

xf =
1

2
ax (Δt)2 =

1

2
(36 m/s2 )(0.11s)2 = 0.22 m  

Assess: The answer is remarkable but reasonable. The pike strikes quickly and so is able to move 0.22 m in 0.11 s, 
even starting from rest. The seconds squared cancel in the last equation. 
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P2.27. Prepare: First, we will convert units: 

60
miles

hour
×

1 hour

3600 s
×

1609 m

1 mile
= 26.8 m/s  

We also note that g = 9.8 m/s2. Because the car has constant acceleration, we can use kinematic equations. 
Solve: (a) For initial velocity vi = 0, final velocity vf = 26.8 m/s, and Δt = 10 s, we can find the acceleration using 

v
f
= v

i
+ aΔt ⇒ a =

vf − vi

Δt
=

(26.8 m/s − 0 m/s)

10 s
= 2.68 m/s2 ≈ 2.7 m/s2  

(b) The fraction is a/g = 2.68/9.8 = 0.273. So a is 27% of g, or 0.27 g. 
(c) The displacement is calculated as follows: 

x
f
− x

i
= v

i
Δt +

1

2
a(Δt)2 =

1

2
a(Δt)2 = 134 m = 440 feet  

Assess: A little over tenth of a mile displacement in 10 s is physically reasonable. 

P2.28. Prepare: Fleas are amazing jumpers; they can jump several times their body height—something we 
cannot do. 
We assume constant acceleration so we can use the kinematic equations. The last of the three relates the three 
variables we are concerned with in part (a): speed, distance (which we know), and acceleration (which we want). 

(v
y
)

f
2 = (v

y
)

i
2 + 2a

y
Δy  

In part (b) we use Equation 2.11 because it relates the initial and final velocities and the acceleration (which we 
know) with the time interval (which we want). 

(v
y
)

f
= (v

y
)

i
+ a

y
Δt  

Part (c) is about the phase of the jump after the flea reaches takeoff speed and leaves the ground. So now it is (v
y
)

i
,  

that is 1.0 m/s instead of (v
y
)

f
. And the acceleration is not the same as in part (a)—it is now −g  (with the positive 

direction up) since we are ignoring air resistance. We do not know the time it takes the flea to reach maximum 
height, so we employ Equation 2.13 again because we know everything in that equation except Δy. 

Solve: (a) Use i( ) = 0.0 m/syv  and rearrange Equation 2.13. 
2 2
f 2( ) (1.0 m/s) 1000 mm

1000 m/s
2 2(0.50 mm) 1 m

y
y

v
a

y

⎛ ⎞
= = =⎜ ⎟Δ ⎝ ⎠

 

(b) Having learned the acceleration from part (a) we can now rearrange Equation 2.12 to find the time it takes to 
reach takeoff speed. Again use i( ) = 0.0 m/s.yv  

Δt =
(v

y
)

f

a
y

=
1.0 m/s

1000 m/s2
= .0010 s 

Assess: Just over 5 cm is pretty good considering the size of a flea. It is about 10–20 times the size of a typical flea. 
Check carefully to see that each answer ends up in the appropriate units. 

P2.29. Reason: Assume that the acceleration during braking is constant. 
There are a number of ways to approach this question. First, you probably recall from a driver’s education course that 
stopping distance is not directly proportional to velocity; this already tips us off that the answer probably is not 2d. 
Solve: Let’s look at a velocity-versus-time graph of the situation(s). Call time t = 0 just as the brakes are applied; 
this is the last instant the speed is v. The graph will then decrease linearly and become zero at some later time t1. Now 
add a second line to the graph starting at t = 0 and 2v. It must also linearly decrease to zero—and it must have the 
same slope because we were told the acceleration is the same in both cases. This second line will hit the t-axis at a 
time t

2
= 2t

1
.  Now the crux of the matter: the displacement is the area under the velocity-versus-time graph. 

Carefully examine the two triangles and see that the larger one has 4 times the area of the smaller one; one way is to 
realize it has a base twice as large and a height twice as large, another is to mentally cut out the smaller triangle and 
flip and rotate it to convince yourself that four copies of it would cover the larger triangle. Thus, the stopping 
distance for the 2v case is 4d. 
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Yet a third way to examine this question is with algebra. Equation 2.13 relates velocities and displacements at a 
constant acceleration. (We don’t want an equation with t  in it since t  is neither part of the supplied information nor 
what we’re after.) 

(vx )
f
2 = (vx )

i
2 + 2axΔx  

Note that the stopping distance is the Δx  in the equation, and that v
f

= 0. 

(vx )
i
2 = −2axΔx  

Given that a  is constant and the same in both cases, we see that there is a square relationship between the stopping 
distance and the initial velocity, so doubling the velocity will quadruple the stopping distance. 
Assess: It demonstrates clear and versatile thinking to approach a question in multiple ways, and it gives an 
important check on our work. 
The graphical approach in this case is probably the more elegant and insightful; there is a danger that the algebraic 
approach can lead to blindly casting about for an equation and then plugging and chugging. This latter mentality is to 
be strenuously avoided. Equations should only be used with correct conceptual understanding. 
Also note in the last equation above that the left side cannot be negative, but the right side isn’t either since a  is 
negative for a situation where the car is slowing down. So the signs work out. The units work out as well since both 

sides will be in  m
2/s2. 

P2.30.   Prepare: We’ll do this in parts, first computing the acceleration after the congestion. 
Solve:  

a =
Δv

Δt
=

12.0 m/s − 5.0 m/s

8.0 s
=

7.0 m/s

8.0 s
 

Now use the same acceleration to find the new velocity.  

2
f i

7.0
= = 12.0 m/s  m/s (16 s) = 26 m/s

8.0
v v a t

⎛ ⎞+ Δ + ⎜ ⎟
⎝ ⎠

 

Assess: The answer is a reasonable 58 mph. 

P2.31. Prepare: Because the skier slows steadily, her deceleration is a constant during the glide and we can use the 
kinematic equations of motion under constant acceleration.  
Solve: Since we know the skier’s initial and final speeds and the width of the patch over which she decelerates, we 
will use 

v
f
2 = v

i
2 + 2a(x

f
− x

i
)

⇒ a =
v

f
2 − v

i
2

2(x
f
− x

i
)
=

(6.0 m/s)2 − (8.0 m/s)2

2(5.0 m)
= −2.8 m/s2

 

The magnitude of this acceleration is 2.8 m/s2. 
Assess: A deceleration of 2.8 m/s2 or 6.3 mph/s is reasonable. 



Motion in One Dimension   2-19 

 

© Copyright 2015 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

P2.32. Prepare: The kinematic equation that relates velocity, acceleration, and distance is (v
x
)

f
2 = (v

x
)

i
2 + 2a

x
Δx. 

Solve for Δx.  

Δx =
(v

x
)

f
2 − (v

x
)

i
2

2a
x

 

Note that (v
x
)

i
2 = 0  for both planes. 

Solve: The accelerations are same, so they cancel.  

( )
( )

( )
( )

2
f

2 2

f fjet jet jet prop
jet prop2 22

prop f f fprop prop

prop

( )
2 ( ) (2 )

= = = = 4 = 4 = 4(1/4 mi) = 1 mi
( ) ( ) ( )
2

x

x x x

x x x

x

v
a v vx

x x
x v v v

a

⎛ ⎞
⎜ ⎟

Δ ⎝ ⎠ ⇒ Δ Δ
Δ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 

Assess: It seems reasonable to need a mile for a passenger jet to take off. 

P2.33. Prepare: Because the car slows steadily, the deceleration is a constant and we can use the kinematic 
equations of motion under constant acceleration.  
Solve: Since we know the car’s initial and final speeds and the width of the patch over which she decelerates, we 
will use 

2 2
f i f i

2 2 2 2
2f i

f i

2 ( )

(0 m/s) (90 m/s)
37 m/s

2( ) 2(110 m)

v v a x x

v v
a

x x

= + −

− −
⇒ = = = −

−

 

The magnitude of this acceleration is 37 m/s2. 
Assess: A deceleration of 37 m/s2 is impressive; it is almost 4 gs. 

P2.34. Prepare: We recall that displacement is equal to area under the velocity graph between ti and tf, and 
acceleration is the slope of the velocity-versus-time graph. 
Solve: (a) Using the equation, 
xf = xi + area under the velocity-versus-time graph between ti and tf 
we have, 

x (at t = 1 s) = x (at t = 0 s) + area between t = 0 s and t = 1 s = 0.0 m + (4 m/s)(1 s) = 4.0 m 
Reading from the velocity-versus-time graph, vx (at t = 1 s) = 4.0 m/s. Also, ax = slope = Δv/Δt = 0 m/s2. 
(b)  

(at 3.0 s) (at 0 s) area between 0 s and 3 s

0.0 m 4 m/s 2 s 2 m/s 1s (1/2) 2 m/s 1s 11.0 m

x t x t t t= = = + = =
= + × + × + × × =

 

Reading from the graph, vx (t = 3 s) = 2 m/s. The acceleration is 

2(at 4 s) (at 2 s)
( 3 s) slope 2.0 m/s

2 s
x x

x

v t v t
a t

= − =
= = = = −  

Assess: Due to the negative slope of the velocity graph between 2 s and 4 s, a negative acceleration was expected. 

P2.35. Prepare: A visual overview of the car’s motion that includes a pictorial representation, a motion diagram, 
and a list of values is shown below. We label the car’s motion along the x-axis. For the driver’s maximum (constant) 
deceleration, kinematic equations are applicable. This is a two-part problem. We will first find the car’s displacement 
during the driver’s reaction time when the car’s deceleration is zero. Then we will find the displacement as the car is 
brought to rest with maximum deceleration. 
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Solve: During the reaction time when a0 = 0, we can use 

  

x
1
= x

0
+ v

0
(t

1
− t

0
) +

1
2

a
0
(t

1
− t

0
)2

= 0 m + (20 m/s)(0.50 s − 0 s) + 0 m = 10 m
 

During deceleration, 

v
2
2 = v

1
2 + 2a

1
(x

2
− x

1
)   0 = (20 m/s)2 + 2(–6.0 m/s2)(x2 – 10 m) ⇒ x2 = 43 m 

She has 50 m to stop, so she can stop in time. 
Assess: While driving at 20 m/s or 45 mph, a reaction time of 0.5 s corresponds to a distance of 33 feet or only two 
lengths of a typical car. Keep a safe distance while driving! 

P2.36.  Prepare: Do this in two parts. First compute the distance traveled during the acceleration phase and what 
speed it reaches. Then compute the additional distance traveled at that constant speed. 
Solve: During the acceleration phase, since (v

x
)

i
= 0  and i 0,x =  

2 2 2
f

1 1
= ( ) = (250 m/s )(20 ms) = 0.05 m = 5.0 cm

2 2xx a tΔ  

We also compute the speed it attains.  

v
x

= a
x
Δt = (250 m/s2 )(20 ms) = 5.0 m/s  

Now the distance traveled at a constant speed of 5.0 m/s .  

Δx = v
x
Δt = (5.0 m/s)(30 ms) = 0.15 m = 15 cm  

Now add the two distances to get the total.  
Δx

total
= 5.0 cm +15 cm = 20 cm  

Assess: A 20-cm-long tongue is impressive, but possible. 

P2.37. Prepare: A visual overview of your car’s motion that includes a pictorial representation, a motion diagram, 
and a list of values is shown below. We label the car’s motion along the x-axis. For maximum (constant) deceleration 
of your car, kinematic equations hold. This is a two-part problem. We will first find the car’s displacement during 
your reaction time when the car’s deceleration is zero. Then we will find the displacement as you bring the car to rest 
with maximum deceleration. 
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Solve: (a) To find x2, we first need to determine x1. Using x1 = x0 + v0(t1 – t0), we get x1 = 0 m + (20 m/s) (0.50 s – 
0 s) = 10 m. Now, with a1 = 10 m/s2, v2 = 0 and v1 = 20 m/s, we can use 

2 2 2 2 2 2
2 1 1 2 1 2 22 ( ) 0 m /s (20 m/s) 2( 10 m/s )( 10 m) 30 mv v a x x x x= + − ⇒ = + − − ⇒ =  

The distance between you and the deer is (x3 – x2) or (35 m – 30 m) = 5 m. 
(b) Let us find v0 max such that v2 = 0 m/s at x2 = x3 = 35 m. Using the following equation,  

2 2 2 2 2 2
2 0 max 1 2 1 0 max 12 ( ) 0 m /s 2( 10 m/s )(35 m )v v a x x v x− = − ⇒ − = − −  

Also, x1 = x0 + v0 max (t1 – t0) = v0 max (0.50 s – 0 s) = (0.50 s)v0 max. Substituting this expression for x1 in the above 
equation yields 

−v
0 max
2 = (−20 m/s2 )[35 m − (0.50 s) v

0 max
]⇒ v

0  max
2 + (10 m/s)v

0 max
− 700 m2 /s2 = 0  

The solution of this quadratic equation yields v0 max = 22 m/s. (The other root is negative and unphysical for the 
present situation.) 
Assess: An increase of speed from 20 m/s to 22 m/s is very reasonable for the car to cover an additional distance of 
5 m with a reaction time of 0.50 s and a deceleration of 10 m/s2. 

P2.38. Prepare: There are three parts to this motion. The acceleration is constant during each part. We are given 
the acceleration and time for the first and last segments and are asked to find a distance. Equations 2.8, 2.11, 2.12, 
and 2.13 apply during these segments. During the middle constant velocity segment we can use Equation 2.5. 
Solve: Refer to the diagram below. 
 

 

 

(a) From x
1

 to x
2
 the train has a constant acceleration of (ax )

1
= +1.1 m/s2.  Placing the origin at the starting 

position of the train, x
1
= 0 m. Since the train starts from rest, (v

x
)

1
= 0 m/s. We can calculate the distance the train 

goes during this phase of the motion using Equation 2.12. 

2 2 2
2 1 1 2 1 1 2 1

1 1
( ) ( ) ( ) ( ) (1.1 m/s )(20 s) 220 m

2 2x xx x v t t a t t= + − + − = =  

From x
2
 to x

3
 the train is traveling with constant velocity. We are given that x3 – x2 = 1100 m, so  x3 = x2 + 1100 m 

= 220 m + 1100 m = 1320 m. 

From x
3
 to x

4
 the train has a constant negative acceleration of (ax )

3
= −2.2 m/s2. The train stops at the station so 

(v
x
)

4
= 0 m/s. We will need to find either the time the train takes to stop or its initial velocity just before beginning 

to stop in order to continue. We can find the velocity of the train just before it begins to stop by noticing that it is 
equal to the velocity of the train during the middle segment of the trip, (vx )3,  which is also equal to the velocity of 

the train at the end of the first segment of the trip: (vx )
3
= (vx )2. We can find (vx )2

 using Equation 2.11 during the 

first segment of the trip. 

(vx )
2
= (vx )

1
+ (ax )

1
(t

2
− t

1
) = (1.1 m/s2 )(20 s) = 22 m/s  
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We now have enough information to calculate the distance the train takes to stop using Equation 2.13: 

(v
x
)

4
2 = (v

x
)

3
2 + 2(ax )3(x4 − x3) 

Solving for (x
4
− x

3
), 

(x
4
− x

3
) =

(v
x
)

4
2 − (v

x
)

3
2

2(a
x
)

3

=
(0 m/s)2 − (22 m/s)2

2(−2.2 m/s)
= 110 m  

Finally, we can calculate x
4
= x

3
+110 m = 1320 m +100 m = 1430 m. 

The total distance the train travels is 1400 m to two significant figures. 
(b) We are given the time the train takes during the first part of the trip, t2 − t1 = 15 s. During the constant velocity 

segment, we know that the train travels x3 − x2 = 1100 m. We calculated its velocity during this segment in part (a) 

as (vx )
2
= 21 m/s.  Using Equation 2.5, we can calculate the time. 

t
3
− t

2
=

x
3
− x

2

(v
x
)

2

=
1100 m

22 m/s
= 50 s  

To calculate the time the train takes to stop, we can use Equation 2.8. 

t
4
− t

3
=

(vx )
4
− (vx )

3

(ax )
3

=
(0 m/s) − (22 m/s)

(−2.2 m/s)
= 10 s  

So the total time the train takes to go between stations is t
4
− t

1
= 20 s + 50 s + 10 s = 80 s. 

Assess: Note that a good visual overview with a velocity-versus-time graph was very useful in organizing this 
complicated problem. We had to calculate a velocity in an early segment to use as an initial velocity in a later 
segment. This is often the case in problems involving different motions such as this one. 

P2.39.  Prepare: Use kinematic equations for constant acceleration. Call the point where the motorcycle started 
the origin. 
Solve:  
(a)  

2

80 km/h 1 h 1000 m
2.78 s 2.8 s

8.0 m/s 3600 s 1 km

v v
a t

t a

Δ Δ ⎛ ⎞⎛ ⎞= ⇒ Δ = = = ≈⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎝ ⎠
 

(b) Compute the distance traveled in 10 s for each vehicle. 

For the car:    
1 h 1000 m

(80 km/h)(2.78 s) 61.7 m
3600 s 1 km

x v t
⎛ ⎞⎛ ⎞Δ = Δ = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

For the motorcycle: Δx =
1
2

a Δt( )2
=

1
2

8.0 m/s2( ) 2.78 s( )2
= 30.7 m  

The difference is the distance between the motorcycle and the car at that time. 61.7 m – 30.7 m = 31 m 
Assess: The motorcycle will never catch up if it never exceeds the speed of the car. 

P2.40.  Prepare: Use kinematic equations for constant acceleration. Call the point where the motorcycle started 
the origin. 
Solve:  
(a)  

( )2 2 22 2
2 2 2f i
f i

240 km/h( ) ( ) 1000 m 1 h
( ) = ( ) 2 23.4 m/s

2( ) 2(95 m) 1 km 3600 s
x x

x x x x

v v
v v a x a

x

− ⎛ ⎞ ⎛ ⎞+ Δ ⇒ = = =⎜ ⎟ ⎜ ⎟Δ ⎝ ⎠ ⎝ ⎠
 

This should be reported as 23 m/s2. 
(b)  

2

240 km/h 1000 m 1 h
2.9 s

23.4 m/s 1 km 3600 s

v v
a t

t a

Δ Δ ⎛ ⎞⎛ ⎞= ⇒ Δ = = =⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎝ ⎠
 

Assess: Navy pilots are used to such large accelerations.  
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P2.41. Prepare: We will use the equation for constant acceleration to find out how far the sprinter travels during 
the acceleration phase. Use Equation 2.11 to find the acceleration. 

v
x

= a
x
t
1

where v
0

= 0 and t
0

= 0  

a
x
=

v
x

t
1

=
11.2 m/s

2.14 s
= 5.23 m/s2  

Solve: The distance traveled during the acceleration phase will be  

Δx =
1

2
a

x
(Δt)2

=
1

2
(5.23 m/s2 )(2.14 s)2

= 12.0 m

 

The distance left to go at constant velocity is 100 m −12.0 m = 88.0 m. The time this takes at the top speed of 
11.2 m/s is 

Δt =
Δx

vx

=
88.0 m

11.2 m/s
= 7.86 s  

The total time is 2.14 s + 7.86 s = 10.0 s. 
Assess: This is indeed about the time it takes a world-class sprinter to run 100 m (the world record is a bit under 
9.8 s). 
Compare the answer to this problem with the accelerations given in Problem 2.23 for Carl Lewis. 

P2.42. Prepare: A visual overview of a ball bearing’s motion that includes a pictorial representation, a motion 
diagram, and a list of values is shown below. We label the bearing’s motion along the y-axis. The bearing is under 
free fall, so kinematic equations hold.  
 

 
 

Solve: (a) The shot is in free fall, so we can use free fall kinematics with a = –g. The height must be such that the 
shot takes 4 s to fall, so we choose tf = 4 s. From the given information it is easy to see that we need to use 

y
f
= y

i
+ v

i
(t

f
− t

i
) −

1

2
g(t

f
− t

i
)2 ⇒ y

i
=

1

2
gt

f
2 =

1

2
(9.8  m/s2 )(4 s)2 = 78 m  

(b) The impact velocity is vf = vi − g(tf − ti) = –gt1 = −39 m/s. 
Assess: Note the minus sign. The question asked for velocity, not speed, and the y-component of 

G
v  is negative 

because the vector points downward. 

P2.43.  Prepare: The bill must drop its own length. Assume it is in free fall. 
Solve:   

Δy =
1
2

g(Δt)2 ⇒Δt =
2Δy

g
=

2(0.16 m)

9.8 m/s2
= 0.18 s 

Assess: This is less than the typical 0.25 s reaction time, so most people miss the bill. 
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P2.44. Prepare: We will assume that, as stated in the chapter, the bill is held at the top, and the other person’s 
fingers are bracketing the bill at the bottom. 
Call the initial position of the top of the bill the origin, 0 0.0 m,y =  and, for convenience, call the down direction 

positive. 

In free fall the acceleration a
y
 will be 9.8 m/s2. 

The length of the bill will be Δy,  the distance the top of the bill can fall from rest in 0.25 s. 

Solve:  

2 2 2
f

1 1
( ) (9.8 m/s )(0.25 s) 0.31 m

2 2yy a t= Δ = =  

Assess: This is about twice as long as real bills are (they are really 15.5 cm long), so if a typical reaction time is  
0.25 s, then almost no one would catch one in this manner. To catch a bill as small as real bills, one would need a 
reaction time of 0.13 s. 

P2.45.  Prepare: Use kinematic equations for constant acceleration. Assume the gannet is in free fall during the 
dive. 
Solve:  

2 2
f2 2

f i 2

( ) (32 m/s)
( ) = ( ) 2 52 m

2 2(9.8 m/s )
y

y y

v
v v g y y

g
+ Δ ⇒ Δ = = =  

Assess: 52 meters seems a reasonable height from which to begin the dive. 

P2.46. Prepare: If we ignore air resistance then the only force acting on both balls after they leave the hand 
(before they land) is gravity; they are therefore in free fall. 
Think about ball A’s velocity. It decreases until it reaches the top of its trajectory and then increases in the downward 
direction as it descends. When it gets back to the level of the student’s hand it will have the same speed downward 
that it had initially going upward; it is therefore now just like ball B (only later). 
Solve: (a) Because both balls are in free fall they must have the same acceleration, both magnitude and direction, 
9.8 m/s2, down. 
(b) Because ball B has the same downward speed when it gets back to the level of the student that ball A had, they 
will have the same speed when they hit the ground.  
Assess: Draw a picture of ball B’s trajectory and draw velocity vector arrows at various points of its path. 
Air resistance would complicate this problem significantly. 

P2.47.  Prepare: Assume the jumper is in free fall after leaving the ground, so use the kinematic equation 
2 2
f i( ) = ( ) 2y y yv v a y+ Δ  where (v

y
)

f
2 = 0 at the top of the leap. 

We assume a
y

= −9.8 m/s2 and we are given Δy = 1.1 m. 

Solve:  
2 2
i i( ) = 2 ( ) = 2 = 2( 9.8 m/s )(1.1 m) = 4.6 m/sy y y yv a y v a y− Δ ⇒ − Δ − −  

Assess: This is an achievable take-off speed for good jumpers. The units also work out correctly and the two minus 
signs under the square root make the radicand positive. 

P2.48.  Prepare: Assume the trajectory is symmetric (i.e., the ball leaves the ground) so half of the total time is the 
upward portion and half downward. Put the origin at the ground. Assume no air resistance. 
Solve:  
(a) On the way down (v

y
)

i
= 0 m/s,  y

f
= 0 m,  and Δt = 2.6 s. Solve for y

i
.   

2 2 2 2
i i

1 1 1
0 = ( ) = ( ) = ( 9.8 m/s )(2.6 s) = 33.1 m

2 2 2y yy a t y a t+ Δ ⇒ − Δ − −  

or 33 m to two significant figures. 
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(b) On the way up (v
y
)

f
= 0 m/s. 

2 2
i i( ) = 2 ( ) = 2 = 2( 9.8 m/s )(33.1 m) = 25 m/sy y y yv a y v a y− Δ ⇒ − Δ − −  

Assess: When thinking about real football games, this speed seems reasonable. 

P2.49. Prepare: Since the villain is hanging on to the ladder as the helicopter is ascending, he and the briefcase are 
moving with the same upward velocity as the helicopter. We can calculate the initial velocity of the briefcase, which 
is equal to the upward velocity of the helicopter. See the following figure. 
 

 
 

Solve: We can use Equation 2.12 here. We know the time it takes the briefcase to fall, its acceleration, and the 

distance it falls. Solving for (v
y
)

i
Δt,  

(v
y
)

i
Δt = ( y

f
− y

i
) −

1

2
(a

y
)Δt2 = −130 m −

1

2
(−9.80 m/s2 )(6.0 s)2⎡

⎣
⎢

⎤

⎦
⎥ = 46 m 

Dividing by Δt  to solve for (v
y
)

i
,  

(v
x
)

i
=

46 m

6.0 s
= 7.7 m/s  

Assess: Note the placement of negative signs in the calculation. The initial velocity is positive, as expected for a 
helicopter ascending. 

P2.50.  Prepare: Assume the jumper is in free fall after leaving the ground, so use the kinematic equations. 

We assume a
y

= −9.8 m/s2 and we are given f i( ) = 1.1 m.y y−  

Solve: Since the trajectory is symmetric we’ll compute the time it takes to come down from 1.1 m to the floor and 
then double it. 

2 f i
f i 2

1 2( ) 2( 1.1 m)
( ) ( ) 0.47 s

2 9.8 m/sy
y

y y
y y a t t

a

− −
− = Δ ⇒ Δ = = =

−
 

The whole “hang time” will be double this, or 0.95 s. 
Assess: This is about the time for a big leap. The units also work out correctly and the two minus signs under the 
square root make the radicand positive. 

P2.51. Prepare: There are several steps in this problem, so first draw a picture and, like the examples in the book, 
list the known quantities and what we need to find. 
Call the pool of water the origin and call t = 0 s when the first stone is released. We will assume both stones are  
in free fall after they leave the climber’s hand, so ay = –g. Let a subscript 1 refer to the first stone and a 2 refer to the 
second. 
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Solve: (a) Using (t
1
)

i
= 0   

  

( y
1
)

f
= ( y

1
)

i
+ (v

1
)

i
Δt +

1

2
a

y
Δt 2

0.0 m = 50 m + (−2 m/s)t
f
+

1
2

(−g)t
f
2

0.0 m = 50 m − (2 m/s)t
f
− (4.9 m/s2 )t

f
2

 

Solving this quadratic equation gives two values for  f :t  3.0 s and −3.4 s,  the second of which (being negative) is 

outside the scope of this problem. 
Both stones hit the water at the same time, and it is at t = 3.0 s,  or 3.0 s after the first stone is released. 

(b) For the second stone Δt
2
= t

f
− (t

2
)

i
= 3.0 s −1.0 s = 2.0 s.  We solve now for (v

2
)

i
.  

( y
2
)

f
= ( y

2
)

i
+ (v

2
)

i
Δt +

1
2

a
y
Δt2

0.0 m = 50 m + (v
2
)

i
Δt

2
+

1

2
(−g)Δt

2
2

0.0 m = 50 m + (v
2
)

i
(2.0 s) − (4.9 m/s2 )(2.0 s)2

(v
2
)

i
=
−50 m + (4.9 m/s2 )(2.0 s)2

2.0 s
= −15.2 m/s

 

Thus, the second stone is thrown down at a speed of 15 m/s. 
(c) Equation 2.11 allows us to compute the final speeds for each stone. 

(v
y
)

f
= (v

y
)

i
+ a

y
Δt  

For the first stone (which was in the air for 3.0 s): 
2

1 f( ) 2.0 m/s ( 9.8 m/s )(3.0 s) 31 m/sv = − + − = −  

The speed is the magnitude of this velocity, or 31 m/s.  
For the second stone (which was in the air for 2.0 s): 

2
2 f( ) 15.2 m/s ( 9.8 m/s )(2.0 s) 35 m/sv = − + − = −  

The speed is the magnitude of this velocity, or 35 m/s. 
Assess: The units check out in each of the previous equations. The answers seem reasonable. A stone dropped from 
rest takes 3.2 s to fall 50 m; this is comparable to the first stone, which was able to fall the 50 m in only 3.0 s because 
it started with an initial velocity of −2.0 m/s. So we are in the right ballpark. And the second stone would have to be 
thrown much faster to catch up (because the first stone is accelerating). 

P2.52.  Prepare: Given the velocity vs. time graph we need to compute slopes to determine accelerations and then 
estimate the area under the curve to determine distance traveled. 
Solve:   
(a) At the origin a tangent line looks like it goes through (0 s,  0 m/s)  and (2 s,  10 m/s),  so the slope is  

a(0 s) =
10 m/s

2.0 s
= 5 m/s2 

(b) Compute slopes similarly for t = 2.0 s  and t = 4.0 s. 

a(2.0 s) =
8.0 m/s

4.0 s
= 2 m/s2 a(4.0 s) =

5.0 m/s

6.0 s
= 0.8 m/s2  



Motion in One Dimension   2-27 

 

© Copyright 2015 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

(c) We estimate the area under the curve. It looks like the area under the curve but above 10 m/s is a bit larger than 
the area above the curve but below 10 m/s. If they were equal the area would be (8 s)(10 m/s) = 80 m,  so we 
estimate a little more than 80 m.  
Assess: It is very difficult to get a good estimate of slopes and areas from such small graphs, but the answers are 
reasonable. We do see the acceleration decreasing as we expected. 

P2.53. Prepare: Assume the truck driver is traveling with constant velocity during each segment of his trip.  
Solve: Since the driver usually takes 8 hours to travel 440 miles, his usual velocity is 

usual 
usual

440 mi
55 mph

8 hx

x
v

t

Δ
= = =
Δ

 

However, during this trip he was driving slower for the first 120 miles. Usually he would be at the 120 mile  
point in 

Δt
usual at 120 mi

=
Δx

v
usual at 120 mi x

=
120 mi

55 mph
= 2.18 h 

He is 15 minutes, or 0.25 hr late. So the time he’s taken to get 120 mi is 2.18 hr + 0.25 hr = 2.43 hr. He wants to 
complete the entire trip in the usual 8 hours, so he only has 8 hr – 2.43 hr = 5.57 hr left to complete 440 mi – 120 mi = 
320 mi. So he needs to increase his velocity to  

to catch up 
to catch up

320 mi
57 mph

5.57 hx

x
v

t

Δ
= = =
Δ

 

where additional significant figures were kept in the intermediate calculations. 
Assess: This result makes sense. He is only 15 minutes late. 

P2.54. Prepare: This is a unit conversion problem. Use Equation 2.8 to find the acceleration in km/h/s and then 
convert units. 

a
x

=
Δv

x

Δt
 

Solve: (a) 

2150 km/h 1000 m 1 h 1 min
83 m/s

0.50 s 1 km 60 min 60 s
x

x

v
a

t

⎛ ⎞⎛ ⎞⎛ ⎞Δ
= = =⎜ ⎟⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎝ ⎠⎝ ⎠

 

(b) Use Equation 2.16 
2 2

2 2

acceleration (in units of m/s ) 83 m/s
acceleration (in units of ) 8.5

9.80 m/s 9.80 m/s
g g= = =  

Assess: This is quite remarkable; g  is not an insignificant acceleration, but this is 8.5 times as much. Also 
remarkable is the exit velocity; 150 km/h is faster than you drive on the highway. 

P2.55. Prepare: We assume that the track, except for the sticky section, is frictionless and aligned along the  
x-axis. Because the motion diagram of Figure P2.51 is made at two frames of film per second, the time interval 
between consecutive ball positions is 0.5 s. 
Solve: (a)   

 Times (s) Position 
 0 –4.0 
 0.5 –2.0 
 1.0   0 
 1.5   1.8 
 2.0   3.0 
 2.5   4.0 
 3.0   5.0 
 3.5   6.0 
 4.0   7.0 
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(b) 

 

 

(c) Δx = x (at t = 1 s) – x (at t = 0 s) = 0 m – (–4 m) = 4 m. 
(d) Δx = x (at t = 4 s) – x (at t = 2 s) = 7 m – 3 m = 4 m. 
(e) From t = 0 s to t = 1 s, v

s
= Δx /Δt = 4 m/s. 

(f) From t = 2 s to t = 4 s, x / 2 m/s.v x t= Δ Δ =  

(g) The average acceleration is 

a =
Δv

Δt
=

2 m/s − 4 m/s
2 s −1 s

= −2 m/s2  

Assess: The sticky section has decreased the ball’s speed from 4 m/s, to 2 m/s, which is a reasonable magnitude. 

P2.56.  Prepare: We must carefully apply the equations of constant velocity to see why the answers to parts a 
and b are different. 
Solve:   
(a) This will be in two parts with each half having Δx = 50 mi.  

1 2

1 2

50 mi 50 mi
= = = 2.1 h

( ) ( ) 40 mi/h 60 mi/hx x

x x
t

v v

Δ Δ
Δ + +  

(b) Let’s see how far she goes in each half of the time.  

  
Δt

1
=

Δx
1

40 mi/h
Δt

2
=

Δx
2

60 mi/h
 

But we know Δt
1

= Δt
2
 so  

7
Δx

1

40 mi/h
=

Δx
2

60 mi/h
 

We also know Δx
1
+Δx

2
= 100 mi. 

  

Δx
1

40 mi/h
=

100 mi − Δx
1

60 mi/h
⇒ Δx

1
= 40 mi 

This means Δx
2

= 100 mi − 40 mi = 60 mi. Now for the total.  

Δt
tot

= Δt
1
+ Δt

2
=

40 mi

40 mi/h
+

60 mi

60 mi/h
= 2.0 h  

Assess: The answers are not greatly different because 40 mph and 60 mph aren’t greatly different. 

P2.57. Prepare: We will represent the jetliner’s motion to be along the x-axis. 
Solve:  
(a)  Using a

x
= Δv/Δt,  we have, 

a
x
(t = 0 to t = 10 s) =

23 m/s − 0 m/s

10 s − 0 s
= 2.3 m/s2 a

x
(t = 20 s to t = 30 s) =

69 m/s − 46 m/s

30 s − 20s
= 2.3 m/s2  



Motion in One Dimension   2-29 

 

© Copyright 2015 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

For all time intervals ax is 2.3 m/s2. In gs this is (2.3 m/s2)/(9.8 m/s2) = 0.23g 
(b)  Because the jetliner’s acceleration is constant, we can use kinematics as follows: 

2
f i f i f f( ) ( ) ( ) 80 m/s 0 m/s (2.3 m/s )( 0 s) 34.8 sx x xv v a t t t t= + − ⇒ = + − ⇒ =  

or 35 s to two significant figures. 
(c) Using the above values, we calculate the takeoff distance as follows:  

x
f
= x

i
+ (v

x
)

i
(t

f
− t

i
) +

1

2
a

x
(t

f
− t

i
)2 = 0 m + (0 m/s)(34.8 s) +

1

2
(2.3 m/s2 )(34.8 s)2 = 1390 m 

For safety, the runway should be 3 × 1390 m = 4.2 km.  

P2.58. Prepare: We will represent the automobile’s motion along the x-axis. Also, as the hint says, acceleration is 
the slope of the velocity graph. 
Solve: (a) First convert mph to m/s. 
 

t (s) vx (mph) vx (m/s) 
0 0 0 
2 28 12.5 
4 46 20.6 
6 60 26.8 
8 70 31.3 
10 78 34.9 

 

 

  

The acceleration is not constant because the velocity-versus-time graph is not a straight line. 
(b) Acceleration is the slope of the velocity graph. You can use a straightedge to estimate the slope of the graph at  
t = 2 s and at t = 8 s. Alternatively, you can estimate the slope using the two data points on either side of 2 s and 8 s.  

a
x
(at 2 s) ≈

vx (at 4 s)− vx (at 0 s)

4 s − 0 s
=

20.6 m/s− 0.0 m/s

4 s
= 5.1 m/s2

a
x
(at 8 s) ≈

v
x
(at 10 s)− v

x
(at 6 s)

10 s − 6 s
=

34.9 m/s − 26.8 m/s
4 s

= 2.0 m/s2

 

Assess: The graph in (a) shows that the Porsche 944 Turbo’s acceleration is not a constant, but decreases with 
increasing time. 

P2.59. Prepare: After appropriate unit conversions, we’ll see how far the spacecraft goes during the acceleration 
phase and what speed it achieves and then how long it would take to go the remaining distance at that speed. 

0.50 y = 1.578×107 s  

Solve: Because (v
x
)

i
= 0 m/s  and i 0 mx =   

2 2 7 2 15
f

1 1
= ( ) = (9.8 m/s )(1.578 10 s) = 1.220 10 m

2 2xx a tΔ × ×  
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which is not a very large fraction of the whole distance. The spacecraft must still go 16 154.1 10 m 1.220 10 m× − ×  
16= 3.98 10 m×  at the achieved speed. 

The speed is  

Δv
x

= a
x
Δt = (9.8 m/s2 )(1.578×107 s) = 1.55×108 m/s 

which is half the speed of light. The time taken to go the remaining distance at that speed is  
16

8
8

3.98 10 m
= = = 2.57 10 s = 8.15 y

1.55 10 m/sx

x
t

v

Δ ×
Δ ×

×
 

Now the total time needed is the sum of the time for the acceleration phase and the time for the constant velocity phase.  
= 0.50 y 8.15 y 8.7 ytΔ + =  

Assess: It is now easy to see why travel to other stars will be so difficult. We even made some overly generous 
assumptions and ignored relativistic effects. 

P2.60. Prepare: Shown below is a visual overview of your car’s motion that includes a pictorial representation, a 
motion diagram, and a list of values. We label the car’s motion along the x-axis. For constant deceleration of your 
car, kinematic equations hold. This is a two-part problem. First, we will find the car’s displacement during your 
reaction time when the car’s deceleration is zero. This will give us the distance over which you must brake to bring 
the car to rest. Kinematic equations can then be used to find the required deceleration. 
 

 
 

Solve: (a) During the reaction time,  
x1 = x0 + v0(t1 – t0) + 1/2 a0(t1 – t0)

2 
                       = 0 m + (20 m/s)(0.70 s – 0 s) + 0 m = 14 m 

After reacting, x2 – x1 = 110 m – 14 m = 96 m, that is, you are 96 m away from the intersection. 
(b) To stop successfully,  

v
2
2 = v

1
2 + 2a

1
(x

2
− x

1
) ⇒ (0 m/s)2 = (20 m/s)2 + 2a

1
(96 m) ⇒ a

1
= −2.1 m/s2  

(c) The time it takes to stop can be obtained as follows:  

v
2
= v

1
+ a

1
(t

2
− t

1
) ⇒ 0 m/s = 20 m/s + (−2.1 m/s2 )(t

2
− 0.70 s) ⇒ t

2
= 10 s  

P2.61. Prepare: Remember that in estimation problems different people may make slightly different estimates. 
That is OK as long as they end up with reasonable answers that are the same order-of-magnitude. 
By assuming the acceleration to be constant we can use 

2
f

1
= ( )

2 xx a tΔ  

Solve: (a) I guessed about 1.0 cm; this was verified with a ruler and mirror.  
(b) We are given a closing time of 0.024 s, so we can compute the acceleration from rearranging the kinematic 
equations. 

2f
2 2

2 2(1.0 cm) 1 m
35 m/s

( ) (0.024 s) 100 cmx

x
a

t

⎛ ⎞
= = =⎜ ⎟Δ ⎝ ⎠

 

(c) Since we know the Δt  and the a  and v
i
= 0.0 m/s,  we can compute the final speed from Equation 2.11: 

v
f
= aΔt = (35 m/s2 )(0.024 s) = 0.84 m/s  
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Assess: The uncertainty in our estimates might or might not barely justify two significant figures. 
The final speed is reasonable; if we had arrived at an answer 10 times bigger or 10 times smaller we would probably 
go back and check our work. The lower lid gets smacked at this speed up to 15 times per minute! 

P2.62. Prepare: Since the acceleration during the jump is approximately constant, we can use the kinematic equations. 
There are two separate segments of this motion, the jump and the free fall after the jump.  
Solve: See the following figure. Before the jump, the velocity of the bush baby is 0 m/s. 
 

 

 

We could solve for the acceleration of the bush baby during the jump using Equation 2.13 if we knew the final 

velocity the bush baby reached at the end of the jump, (v
y
)

2
. 

We can find this final velocity from the second part of the motion. During this part of the motion the bush baby 

travels with the acceleration of gravity. The initial velocity it has obtained from the jump is (v
y
)

2
. When it reaches 

its maximum height its velocity is (v
y
)

3
= 0 m/s. It travels 2.3 m during the upward free-fall portion of its motion. 

The initial velocity it had at the beginning of the free-fall motion can be calculated from  

(v
y
)

2
= −2(a

y
)

2
Δy

2
= −2(−9.80 m/s2 )(2.3 m) = 6.714 m/s  

This is the bush baby’s final velocity at the end of the jump, just as it leaves the ground, legs straightened. Using this 
velocity and Equation 2.13 we can calculate the acceleration of the bush baby during the jump. 

(a
y
)1 =

(v
y
)

2
2 − (v

y
)

1
2

2Δy
1

=
(6.714 m/s)2 − (0 m/s)

1
2

2(0.16m)
= 140 m/s2  

In g’s, the acceleration is 
2

2

140 m/s
14 ’s.

9.80 m/s
g=  

Assess: This is a very large acceleration, which is not unexpected considering the height of the jump. Note the 
acceleration during the jump is positive, as expected. 

P2.63. Prepare: Fleas are amazing jumpers; they can jump several times their body height—something we 
cannot do. 
We assume constant acceleration so we can use the kinematic equations. The last of the three relates the three 
variables we are concerned with in part (a): speed, distance (which we know), and acceleration (which we want). 

(v
y
)

f
2 = (v

y
)

i
2 + 2a

y
Δy  

In part (b) we use Equation 2.12 because it relates the initial and final velocities and the acceleration (which we 
know) with the time interval (which we want). 

(v
y
)

f
= (v

y
)

i
+ a

y
Δt  

Part (c) is about the phase of the jump after the flea reaches takeoff speed and leaves the ground. So now it is (v
y
)

i
,  

that is 1.0 m/s instead of (v
y
)

f
. And the acceleration is not the same as in part (a)—it is now −g  (with the positive 

direction up) since we are ignoring air resistance. We do not know the time it takes the flea to reach maximum 
height, so we employ Equation 2.13 again because we know everything in that equation except Δy. 
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Solve: (a) Use i( ) = 0.0 m/syv  and rearrange Equation 2.13. 
2 2
f 2( ) (1.0 m/s) 1000 mm

1000 m/s
2 2(0.50 mm) 1 m

y
y

v
a

y

⎛ ⎞
= = =⎜ ⎟Δ ⎝ ⎠

 

(b) Having learned the acceleration from part (a) we can now rearrange Equation 2.11 to find the time it takes to 
reach takeoff speed. Again use i( ) = 0.0 m/s.yv   

  

Δt =
(v

y
)f

a
y

=
1.0 m/s

1000 m/s2
= .0010 s 

(c) This time f( ) = 0.0 m/syv  as the flea reaches the top of its trajectory. Rearrange Equation 2.13 to get 
2 2
i

2

( ) (1.0 m/s)
0.051 m 5.1cm

2 2( 9.8 m/s )
y

y

v
y

a

− −
Δ = = = =

−
 

Assess: Just over 5 cm is pretty good considering the size of a flea. It is about 10–20 times the size of a typical flea. 
Check carefully to see that each answer ends up in the appropriate units. 
The height of the flea at the top will round to 5.2 cm above the ground if you include the 0.050 cm during the initial 
acceleration phase before the feet actually leave the ground. 

P2.64. Prepare: Use the kinematic equations with (v
y
)

i
= 0 m/s in the acceleration phase. 

Solve:   
(a) It leaves the ground with the final speed of the jumping phase.  

2 2
f f( ) = 2 = 2(400)(9.8 m/s )(0.0060 m) ( ) = 6.86 m/sy y yv a y vΔ ⇒  

or 6.9 m/s to two significant figures. 
(b)   

2

6.86 m/s
= = = 1.7496 ms 1.7 ms

(400)(9.8 m/s )
y

y

v
t

a

Δ
Δ ≈  

(c) Now the initial speed for the free-fall phase is the final speed of the jumping phase and (v
y
)

f
= 0.  

2 2
i2

i 2

( ) (6.86 m/s)
( ) = 2 = = = 2.4 m

2 2( 9.8 m/s )
y

y y
y

v
v a y y

a
− Δ ⇒ Δ

− − −
 

Assess: This is an amazing height for a beetle to jump, but given the large acceleration, this sounds right. 

P2.65. Prepare: A visual overview of the ball’s motion that includes a pictorial representation, a motion diagram, 
and a list of values is shown below. We label the ball’s motion along the y-axis. As soon as the ball leaves the 
student’s hand, it is falling freely and thus kinematic equations hold. The ball’s acceleration is equal to the 
acceleration due to gravity that always acts vertically downward toward the center of the earth. The initial position of 
the ball is at the origin where yi = 0, but the final position is below the origin at yf = –2.0 m. Recall sign conventions, 
which tell us that vi is positive and a is negative. 
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Solve: With all the known information, it is clear that we must use 

 y
f
= y

i
+ v

i
Δt +

1

2
aΔt2  

Substituting the known values 

−2 m = 0 m + (15 m/s)t
f
+ (1/2)(−9.8 m/s2 )t

f
2 

The solution of this quadratic equation gives tf = 3.2 s. The other root of this equation yields a negative value for tf, 
which is not physical for this problem. 
Assess: A time of 3.2 s is reasonable. 

P2.66. Prepare: A visual overview of the rock’s motion that includes a pictorial representation, a motion diagram, 
and a list of values is shown below. We represent the rock’s motion along the y-axis. As soon as the rock is tossed 
up, it falls freely and thus kinematic equations hold. The rock’s acceleration is equal to the acceleration due to gravity 
that always acts vertically downward toward the center of the earth. The initial position of the rock is at the origin 
where yi = 0, but the final position is below the origin at yf = –10 m. Recall sign conventions which tell us that vi is 
positive and a is negative. 
 

 

Solve: (a) Substituting the known values into y
f
= y

i
+ v

i
Δt + 1

2 aΔt2,  we get 

−10 m = 0 m + 20 (m/s)t
f
+

1

2
(−9.8 m/s2 )t

f
2  

One of the roots of this equation is negative and is not physically relevant. The other root is tf = 4.53 s which is the 
answer to part (b). Using v

f
= v

i
+ aΔt, we obtain 

v
f
= 20(m/s) + (−9.8 m/s2 )(4.53 s) = −24 m/s  

(b) The time is 4.5 s. 
Assess: A time of 4.5 s is a reasonable value. The rock’s velocity as it hits the bottom of the hole has a negative sign 
because of its downward direction. The magnitude of 24 m/s compared to 20 m/s when the rock was tossed up is 
consistent with the fact that the rock travels an additional distance of 10 m into the hole. 

P2.67. Prepare: A visual overview of the rocket’s motion that includes a pictorial representation, a motion 
diagram, and a list of values is shown below. We represent the rocket’s motion along the y-axis. The rocket 
accelerates upward for 30 s, but as soon as the rocket runs out of fuel, it falls freely. The kinematic equations hold 
separately before as well as after the rocket runs out of fuel because accelerations for both situations are constant, 
30.0 m/s2 for the former and 9.8 m/s2 for the latter. Also, note that a0 = +30.0 m/s2 is vertically upward, but a1 =  
a2 = –9.8 m/s2 acts vertically downward. This is a three-part problem. For the first accelerating phase, the initial 
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position of the rocket is at the origin where y0 = 0, but the position when fuel runs out is at y1. Recall sign 
conventions, which tell us that v0 is positive. From the given information, we can find v1. For the second part of the 
problem, v1 is positive as the rocket is moving upward, v2 is zero as it reaches the maximum altitude, and a1 is 
negative. This helps us find y2. The third part involves finding t2 and t3, which can be obtained using kinematics. 

 

 

Solve: (a) There are three parts to the motion. Both the second and third parts of the motion are free fall, with 
a = −g. The maximum altitude is y2. In the acceleration phase 

y
1
= y

0
+ v

0
(t

1
− t

0
) +

1

2
a(t

1
− t

0
)2 =

1

2
at

1
2 =

1

2
(30 m/s2 )(30 s)2 = 13,500 m

v
1
= v

0
+ a(t

1
− t

0
) = at

1
= (30 m/s2 )(30 s) = 900 m/s

 

In the coasting phase,  

v
2
2 = 0 = v

1
2 − 2g( y

2
− y

1
) ⇒ y

2
= y

1
+

v
1
2

2g
= 13,500 m +

(900 m/s)2

2(9.8 m/s2 )
= 54,800 m = 54.8 km  

The maximum altitude is 54.8 km (≈33 miles). 
(b) The rocket is in the air until time t3. We already know t1 = 30 s. We can find t2 as follows: 

v
2
= 0 m/s = v

1
− g(t

2
− t

1
) ⇒ t

2
= t

1
+

v
1

g
= 122 s  

Then t3 is found by considering the time needed to fall 54,800 m: 

2 2 2
3 2 2 3 2 3 2 2 3 2 3 2

1 1 2
0 m ( ) ( ) ( ) 230 s

2 2

y
y y v t t g t t y g t t t t

g
= = + − − − = − − ⇒ = + =  

(c) The velocity increases linearly, with a slope of 30 (m/s)/s, for 30 s to a maximum speed of 900 m/s. It then  
begins to decrease linearly with a slope of −9.8 (m/s)/s. The velocity passes through zero (the turning point at y2) at  
t2 = 122 s. The impact velocity at t3 = 230 s is calculated to be v3 = v2 − g(t3 − t2) = −1000 m/s.  
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Assess: In reality, friction due to air resistance would prevent the rocket from reaching such high speeds as it falls, 
and the acceleration upward would not be constant because the mass changes as the fuel is burned, but that is a more 
complicated problem. 

P2.68. Prepare: A visual overview of the elevator’s motion that includes a pictorial representation, a motion 
diagram, and a list of values is shown below. We represent the elevator’s motion along the y-axis. The elevator’s net 
displacement is y3 – y0 = 200 m. However, the displacement y1 – y0 occurs during the accelerating period, y3 – y2 
occurs during the decelerating period, and y2 – y1 occurs at a speed of 5.0 m/s with no acceleration. It is clear that we 
must apply kinematics equations separately to each of these three periods. For the accelerating period, y0 = 0, v0 = 0, 
v1 = 5.0 m/s, and a0 = 1.0 m/s2, so y1 and t1 can be easily determined. For the decelerating period, v3 = 0, v2 = 5.0 m/s, 
and a2 = –1.0 m/s2, so y3 – y2 and t3 – t2 can also be determined. From the thus obtained information, we can obtain  
y2 – y1 and use kinematics once again to find t2 – t1 and hence the total time to make the complete trip.  

 

Solve: (a) To calculate the distance to accelerate up: 
2 2 2 2 2

1 0 0 0 0 1 12 ( ) (5 m/s) (0 m/s) 2(1 m/s )( 0 m) 12.5 m =13 mv v a y y y y= + − ⇒ = + − ⇒ =  

(b) To calculate the time to accelerate up: 

v
1
= v

0
+ a

0
(t

1
− t

0
) ⇒ 5 m/s = 0 m/s + (1 m/s2 )(t

1
− 0 s) ⇒ t

1
= 5 s  

To calculate the distance to decelerate at the top: 

v
3
2 = v

2
2 + 2a

2
( y

3
− y

2
) ⇒ (0 m/s)2 = (5 m/s)2 + 2(−1 m/s2 )( y

3
− y

2
) ⇒ y

3
− y

2
= 12.5 m  

To calculate the time to decelerate at the top: 

v
3
= v

2
+ a

2
(t

3
− t

2
) ⇒ 0 m/s = 5 m/s + (−1 m/s2 )(t

3
− t

2
) ⇒ t

3
− t

2
= 5 s  

The distance moved up at 5 m/s is 
y

2
− y

1
= ( y

3
− y

0
) − ( y

3
− y

2
) − ( y

1
− y

0
) = 200 m −12.5 m −12.5 m = 175 m  

The time to move up 175 m is given by 

y
2
− y

1
= v

1
(t

2
− t

1
) +

1

2
a

1
(t

2
− t

1
)2 ⇒175 m = (5 m/s)(t

2
− t

1
) ⇒ (t

2
− t

1
) = 35 s 
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To total time to move to the top is 
(t

1
− t

0
) + (t

2
− t

1
) + (t

3
− t

2
) = 5 s + 35 s + 5 s = 45 s  

Assess: To cover a distance of 200 m at 5 m/s (ignoring acceleration and deceleration times) will require a time of 
40 s. This is comparable to the time of 45 s for the entire trip as obtained above. 

P2.69. Prepare: A visual overview of car’s motion that includes a pictorial representation, a motion diagram, and a 
list of values is shown below. We label the car’s motion along the x-axis. This is a three-part problem. First the car 
accelerates, then it moves with a constant speed, and then it decelerates. The total displacement between the stop signs is 
equal to the sum of the three displacements, that is, x

3
− x

0
= (x

3
− x

2
) + (x

2
− x

1
) + (x

1
− x

0
). 

 

Solve: First, the car accelerates: 

v
1
= v

0
+ a

0
(t

1
− t

0
) = 0 m/s + (2.0 m/s2 )(6 s − 0 s) = 12 m/s

x
1
= x

0
+ v

0
(t

1
− t

0
) +

1
2

a
0
(t

1
− t

0
)2 = 0 m +

1
2

(2.0 m/s2 )(6 s − 0 s)2 = 36 m
 

Second, the car moves at v1: 

x
2
− x

1
= v

1
(t

2
− t

1
) +

1

2
a

1
(t

2
− t

1
)2 = (12 m/s)(8 s − 6 s) + 0 m = 24 m 

Third, the car decelerates: 

v
3
= v

2
+ a

2
(t

3
− t

2
) ⇒ 0 m/s = 12 m/s + (−1.5 m/s2 )(t

3
− t

2
) ⇒ (t

3
− t

2
) = 8 s

x
3
= x

2
+ v

2
(t

3
− t

2
) +

1
2

a
2
(t

3
− t

2
)2 ⇒ x

3
− x

2
= (12 m/s)(8 s) +

1
2

(−1.5 m/s2 )(8 s)2 = 48 m
 

Thus, the total distance between stop signs is 

3 0 3 2 2 1 1 0( ) ( ) ( ) 48 m 24 m 36 m 108 mx x x x x x x x− = − + − + − = + + =  

or 110 m to two significant figures. 
Assess: A distance of approximately 360 ft in a time of around 16 s with an acceleration/deceleration is reasonable. 

P2.70. Prepare: A visual overview of the toy train’s motion that includes a pictorial representation, a motion 
diagram, and a list of values is shown below. We label the train’s motion along the x-axis. We first focus our 
attention on the decelerating period and determine from the given information that a1 can be determined provided we 
know x2 – x1. While x2 is given as 6.0 m + 2.0 m = 8.0 m, kinematics in the coasting period helps us find x1. 
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Solve: Using kinematics, 

x
1
= x

0
+ v

0
(t

1
− t

0
) +

1

2
a

0
(t

1
− t

0
)2 = 2 m + (2.0 m/s)(2.0 s − 0 s) + 0 m = 6.0 m 

The acceleration can now be obtained as follows: 

v
2
2 = v

1
2 + 2a

1
(x

2
− x

1
) ⇒ 0 m2/s2 = (2.0 m/s)2 + 2a

1
(8.0 m − 6.0 m) ⇒ a

1
= −1.0 m/s2  

Assess: A deceleration of 1 m/s2 in bringing the toy car to a halt, which was moving at a speed of only 2.0 m/s, over 
a distance of 2.0 m is reasonable. 

P2.71. Prepare: A visual overview of the motion of the two rocks, one thrown down by Heather and the other 
thrown up at the same time by Jerry, that includes a pictorial representation, a motion diagram, and a list of values is 
shown below. We represent the motion of the rocks along the y-axis with origin at the surface of the water. As soon 
as the rocks are thrown, they fall freely and thus kinematics equations are applicable. The initial position for both 
cases is yi = 50 m and similarly the final position for both cases is at yf = 0. Recall sign conventions, which tell us that 
(vi)J is positive and (vi)H is negative.  
 

 

 

Solve: (a) For Heather, 

  

( y
f
)

H
= ( y

i
)

H
+ (v

i
)

H
[(t

f
)

H
− (t

i
)

H
]+

1

2
a

0
[(t

f
)

H
− (t

i
)

H
)]2

⇒ 0 m = (50 m) + (−20 m/s)[(t
f
)

H
− 0 s]+

1
2

(−9.8 m/s2 )[(t
f
)

H
− 0 s]2

⇒ 4.9 m/s2  (t
f
)

H
2 + 20 m/s (t

f
)

H
− 50 m = 0

 

The two mathematical solutions of this equation are −5.83 s and +1.75 s. The first value is not physically acceptable 
since it represents a rock hitting the water before it was thrown, therefore, (tf)H = 1.75 s.  
For Jerry,  

( y
f
)

J
= ( y

i
)

J
+ (v

i
)

J
[(t

f
)

J
− (t

i
)

J
]+

1

2
a

0
[(t

f
)

J
− (t

i
)

J
)]2

⇒ 0 m = (50 m) + (+20 m/s)[(t
f
)

J
− 0 s]+

1
2

(−9.8 m/s2 )[(t
f
)

J
− 0 s]2

 

Solving this quadratic equation will yield (tf)J = −1.75 s and +5.83 s. Again only the positive root is physically 
meaningful. The elapsed time between the two splashes is (tf)J – (tf)H = 5.83 s – 1.75 s = 4.1 s. 
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(b) Knowing the times, it is easy to find the impact velocities: 

  

(v
f
)

H
= (v

i
)

H
+ a

0
[(t

f
)

H
− (t

i
)

H
] = (−20 m/s) + (−9.8 m/s)(1.75 s − 0 s) = −37 m/s

(v
f
)

J
= (v

i
)

J
+ a

0
[(t

f
)

J
− (t

i
)

J
] = (+20 m/s) + (−9.8 m/s2 )(5.83 s − 0 s) = −37 m/s

 

The two rocks hit the water with equal speeds. 
Assess: The two rocks hit the water with equal speeds because Jerry’s rock has the same downward speed as 
Heather’s rock when it reaches Heather’s starting position during its downward motion. 

P2.72. Prepare: Use the kinematic equations with (v
x
)

i
= 0 m/s  in the acceleration phase. 

Solve:   
(a) The gazelle gains speed at a steady rate for the first 6.5 s.  

(v
x
)

f
= (v

x
)

f
+ a

x
Δt = 0 m/s + (4.2 m/s2 )(6.5 s) = 27.3 m/s ≈ 27 m/s 

(b) Use a different kinematic equation to find the time during the acceleration phase. 

Δt =
2Δx

a
x

=
2(30 m)

4.2 m/s2
= 3.8 s  

So, indeed, the fast human wins by 0.2 s. 
(c) We’ll do this in two parts. First we’ll find out how far the gazelle goes during the 6.5 s acceleration phase.  

Δx =
1
2

ax Δt( )2
=

1
2

4.2 m/s2( ) 6.5 s( )2
= 88.725 m  

We subtract this distance from the 200 m total to find out how long it takes the gazelle to do the constant speed phase 
at 27.3 m/s. 200 m – 88.725 m = 111.275 m. 

Δt =
Δx

v
x

=
111.275 m
27.3 m/s

= 4.1 s 

The total time for the gazelle is then 6.5 s + 4.1 s = 10.6 s, which is much less than the human. 
Assess: We might be surprised that humans can beat gazelles in short races, but we are not surprised that the gazelle 
wins the 200 m race. The numbers are in the right ballpark. 

P2.73. Prepare: Use the kinematic equations with i( ) = 0 m/sxv  in the acceleration phase. 

Solve:  The man gains speed at a steady rate for the first 1.8 s to reach a top speed of  

(v
x
)

f
= (v

x
)

i
+ a

x
Δt = 0 m/s + (6.0 m/s2 )(1.8 s) =10.8 m/s  

During this time he will go a distance of 

2 2 21 1
( ) (6.0 m/s )(1.8 s) 9.72 m

2 2xx a tΔ = Δ = =  

The man then covers the remaining 100 m – 9.72 m = 90.28 m at constant velocity in a time of 

Δt =
Δx

v
x

=
90.28 m
10.8 m/s

= 8.4 s  

The total time for the man is then 1.8 s + 8.4 s = 10.2 s for the 100 m. 
We now re-do all the calculations for the horse going 200 m. The horse gains speed at a steady rate for the first 4.8 s 
to reach a top speed of  

(v
x
)

f
= (v

x
)

i
+ a

x
Δt = 0 m/s + (5.0 m/s2 )(4.8 s) = 24 m/s  

During this time the horse will go a distance of 

2 2 21 1
( ) (5.0 m/s )(4.8 s) 57.6 m

2 2xx a tΔ = Δ = =  

The horse then covers the remaining 200 m – 57.6 m = 142.4 m at constant velocity in a time of 

Δt =
Δx

v
x

=
142.2 m
24 m/s

= 5.9 s  

The total time for the horse is then 4.8 s + 5.9 s = 10.7 s for the 200 m. 
The man wins the race (10.2 s < 10.7 s), but he only went half the distance the horse did. 
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Assess: We know that 10.2 s is about right for a human sprinter going 100 m. The numbers for the horse also seem 
reasonable. 

P2.74. Prepare: Assume the vaulter is in free fall before he hits the pad. He falls a distance of 4.2 m – 0.8 m = 3.4 m 
before hitting the pad. 
Solve:  We will find the impact speed assuming (v

x
)

i
= 0 m/s  

(v
y
)f

2 = (v
y
)i

2 + 2a
y
Δy ⇒ (v

y
)f = 2(9.8 m/s2 )(3.4 m) = 8.16 m/s  

We use the same equation for the pad-compression phase but now the 8.16 m/s is the initial speed and the final speed 
is zero. Solve for ax. 

(v
y
)

f
2 = (v

y
)

i
2 + 2a

y
Δy ⇒ a

y
=
−(v

y
)

i
2

2Δy
=
−(8.16 m/s)2

2(−0.50 m)
= 67 m/s2  

Assess: This is a large acceleration, but it is not dangerous for such short periods of time. It took a lot longer for the 
vaulter to gain 8.16 m/s of speed at an acceleration of g than it did to lose 8.16 m/s of speed at a much larger 
acceleration. 

P2.75. Prepare: A visual overview of the two cars that includes a pictorial representation, a motion diagram, and a 
list of values is shown below. We label the motion of the two cars along the x-axis. Constant acceleration kinematic 
equations are applicable because both cars have constant accelerations. We can easily calculate the times (tf)H and 
(tf)P from the given information.  

 

Solve: The Porsche’s time to finish the race is determined from the position equation 

(x
f
)

P
= (x

i
)

P
+ (v

i
)

P
((t

f
)

P
− (t

i
)

P
) +

1
2

a
P
((t

f
)

P
− (t

i
)

P
)2

⇒ 400 m = 0 m + 0 m +
1
2

(3.5 m/s2 )((t
f
)

P
− 0 s)2 ⇒ (t

f
)

P
= 15 s

 

The Honda’s time to finish the race is obtained from Honda’s position equation as 

(x
f
)

H
= (x

i
)

H
+ (v

i
)

H
((t

f
)

H
− (t

i
)

H
) +

1

2
a

H
((t

f
)

H
− (t

i
)

H
)2

400 m =100 m + 0 m +
1
2

(3.0 m/s2 )((t
f
)

H
− 0 s)2 ⇒ (t

f
)

H
= 14 s

 

The Honda wins by 1.0 s. 
Assess: It seems reasonable that the Honda would win given that it only had to go 300 m. If the Honda’s head start 
had only been 50 m rather than 100 m the race would have been a tie. 
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P2.76. Prepare: A visual overview of the car’s motion that includes a pictorial representation, a motion diagram, 
and a list of values is shown below. We label the car’s motion along the x-axis. This is a two-part problem. First, we 
need to use the information given to determine the acceleration during braking. We will then use this acceleration to 
find the stopping distance for a different initial velocity.  
Solve:  (a) First, the car at 30 m/s coasts at constant speed before braking: 

x
1
= x

0
+ v

0
(t

1
− t

0
) = v

0
t
1
= (30 m/s)(0.5 s) = 15 m 

Then, the car brakes to a halt. Because we don’t know the time interval during braking, we will use 

v
2
2 = 0 = v

1
2 + 2a

1
(x

2
− x

1
)  

⇒ a
1
= −

v
1
2

2(x
2
− x

1
)
= −

(30 m/s)2

2(60 m −15 m)
= −10 m/s2  

We use v1 = v0 = 30 m/s. Note the minus sign, because 
G
a

1
 points to the left. 

The car coasts at a constant speed for 0.5 s, traveling 15 m. The graph will be a straight line with a slope of 30 m/s. 
For t ≥ 0.5 the graph will be a parabola until the car stops at t2. We can find t2 from 

v2 = 0 = v1 + a1(t2 − t1) ⇒ t2 = t1 −
v

1

a
1

= 3.5 s  

The parabola will reach zero slope (v = 0 m/s) at t = 3.5 s. This is enough information to draw the graph shown in the 
figure. 
 

 
 

 

(b) We can repeat these steps now with v0 = 40 m/s. The coasting distance before braking is 
x

1
= v

0
t
1
= (40 m/s)(0.5 s) = 20 m  

 

 
 

So the stopping distance is 

v
2
2 = 0 = v

1
2 + 2a

1
(x

2
− x

1
)  

⇒ x
2
= x

1
−

v
1
2

2a
1

= 20 m −
(40 m/s)2

2(−10 m/s2 )
= 100 m  
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P2.77. Prepare: A visual overview of the motion of the rocket and the bolt that includes a pictorial representation, 
a motion diagram, and a list of values is shown below. We represent the rocket’s motion along the y-axis. The initial 
velocity of the bolt as it falls off the side of the rocket is the same as that of the rocket, that is, (vi)B = (vf)R and  
it is positive since the rocket is moving upward. The bolt continues to move upward with a deceleration equal to  
g = 9.8 m/s2 before it comes to rest and begins its downward journey. 
 

 
 

Solve: To find aR we look first at the motion of the rocket: 

( y
f
)

R
= ( y

i
)

R
+ (v

i
)

R
((t

f
)

R
− (t

i
)

R
) +

1
2

a
R

((t
f
)

R
− (t

i
)

R
)2

= 0 m + 0 m/s +
1
2

a
R

(4.0 s − 0 s)2 = 8a
R

 

So we must determine the magnitude of yR1 or yB0. Let us now look at the bolt’s motion: 

( y
f
)

B
= ( y

i
)

B
+ (v

i
)

B
((t

f
)

B
− (t

i
)

B
) +

1
2

a
B
((t

f
)

B
− (t

i
)

B
)2

0 = ( y
f
)

R
+ (v

f
)

R
(6.0 s − 0 s) +

1
2

(−9.8 m/s2 )(6.0 s − 0 s)2

 

⇒ ( y
f
)

R
= 176.4 m − (6.0 s) (v

f
)

R
 

Since f R i R R f R i R R R( ) ( ) (( ) ( ) ) 0 m/s 4 4v v a t t a a= + − = + =  the above equation for (yf)R yields (yf)R = 176.4 – 6.0 

(4aR). We know from the first part of the solution that (yf)R = 8aR. Therefore, 8aR = 176.4 – 24.0aR and hence aR = 5.5 
m/s2. 
Assess: This seems like a reasonable acceleration for a rocket. 

P2.78. Prepare: We can calculate the initial velocity obtained by the astronaut on the earth and then use that to 
calculate the maximum height the astronaut can jump on the moon. 
Solve: The astronaut can jump a maximum 0.50 m on the earth. The maximum initial velocity his leg muscles can 
give him can be calculated with Equation 2.13. His velocity at the peak of his jump is zero. 

(v
y
)

i
= −2(a

y
)Δy = −2(−9.80 m/s2 )(0.50 m) = 3.1 m/s  

We can also use Equation 2.13 to find the maximum height the astronaut can jump on the moon. The acceleration due to 

the moon’s gravity is 9.80 m/s2

6
= 1.63 m/s2. On the moon, given the initial velocity above, the astronaut can jump 

  

Δy
moon

=
−(v

y
)

i
2

2(a
y
)

moon

=
−(3.1 m/s)2

2(−1.63 m/s2 )
= 3.0 m  

Assess: The answer, choice B, makes sense. The astronaut can jump much higher on the moon. 
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P2.79. Prepare: In free fall we use equations for constant acceleration. We assume that the astronaut’s safe 
landing speed on the moon should be the same as the safe landing speed on the earth. 
Solve: The brute force method is to compute the landing speed on the earth with Equation 2.13, and plug that back 
into the Equation 2.13 for the moon and see what the Δy  could be there. This works, but is unnecessarily 
complicated and gives information (the landing speed) we don’t really need to know. 
To be more elegant, set up Equation 2.13 for the earth and moon, with both initial velocities zero, but then set the 
final velocities (squared) equal to each other. 

(v
earth

)
f
2 = 2(a

earth
)Δy

earth
(v

moon
)

f
2 = 2(a

moon
)Δy

moon
 

2(a
earth

)Δy
earth

= 2(a
moon

)Δy
moon

 

Dividing both sides by 2(a
moon

)Δy
earth

 gives 

a
earth

a
moon

=
Δy

moon

Δy
earth

 

This result could also be accomplished by dividing the first two equations; the left side of the resulting equation 
would be 1, and then one arrives at our same result. 
Since the acceleration on the earth is six times greater than on the moon, then one can safely jump from a height six 
times greater on the moon and still have the same landing speed. 
So the answer is B. 
Assess: Notice that in the elegant method we employed we did not need to find the landing speed (but for curiosity’s 
sake it is 4.4 m/s, which seems reasonable). 

P2.80. Prepare: We can calculate the initial velocity with which the astronaut throws the ball on the earth and then 
use that to calculate the time the ball is in motion after it is thrown and comes back down on the moon. 
Solve: The initial velocity with which the ball is thrown on the earth can be calculated from Equation 2.12. Since the 
ball starts near the ground and lands near the ground, x

f
= x

i
. Solving the equation for i( ) ,yv  

(v
y
)

i
= −

1

2
a

y
Δt = −

1

2
(−9.80 m/s2 )(3.0 s) = 15 m/s  

The acceleration due to the moon’s gravity is 
2

29.80 m/s
1.63 m/s .

6
=  We can find the time it takes to return to the 

lunar surface using the same equation as above, this time solving for Δt.  If thrown upward with this initial velocity 
on the moon, 

  

Δt =
−2(v

y
)

i

a
y

=
−2(15 m/s)

−1.63 m/s2
= 18 s  

The correct choice is B.  
Assess:  This makes sense. The ball is in motion for a much longer time on the moon. 
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CHAPTER 

2 
Motion in One Dimension 

Recommended class days: 3 

Of all the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen 
hundred years, the one which seems to me to have been the most amazing in character and the most 
stupendous in the scope of its consequences is the one relating to the problem of motion. 

 Herbert Butterfield—The Origins of Modern Science 

Background Information 
For students, Chapter 2 is a large and difficult chapter. Although to physicists the chapter says little 
more than /v x t= Δ Δ  and / ,a v t= Δ Δ  these are symbolic expressions for difficult, abstract concepts. 
Student ideas about force and motion are largely non-Newtonian, and they cannot begin to grasp 
Newton’s laws without first coming to a better conceptual understanding of motion. 

As Butterfield notes in the above quote, the “problem of motion” was an immense 
intellectual hurdle. Galileo was perhaps the first to understand what it means to quantify observations 
about nature and to apply mathematical analysis to those observations. He was also the first to 
recognize the need to separate the how of motion—kinematics—from the why of motion—dynamics. 
These are very difficult ideas, and we should not be surprised that kinematics is also an immense 
intellectual hurdle for students.  

Student difficulties with kinematics have been well researched (Trowbridge and McDermott, 
1980 and 1981; Rosenquist and McDermott, 1987; McDermott et al., 1987; Thornton and Sokoloff, 
1990). Arons (1990) gives an excellent summary and makes many useful suggestions for teaching 
kinematics. Student difficulties can be placed in a few general categories, presented in the following 
paragraphs, along with suggestions for dealing with such difficulties. 

Difficulties with concepts: Students have a rather undifferentiated view of motion, without clear 
distinctions between position, velocity, and acceleration. Chapter 1 gives them a start at making 
these distinctions, but they’ll need additional practice. 
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Here’s an example of the type of difficulty students experience. In one study, illustrated in 
the previous figure, students were shown a diagram illustrating the motion of two balls on two 
separate tracks. Ball A is released from rest and rolls down an incline while ball B rolls horizontally 
at constant speed. Ball B overtakes ball A near the beginning, as the motion diagram shows, but later 
ball A overtakes ball B. Students were asked to identify the time or times (if any) at which the two 
balls have the same speed. Prior to instruction, roughly half the students in a calculus-based physics 
class identified frames 2 and 4, when the balls have equal positions, as being times when they have 
equal speeds. 

Similarly, students often identify situations in which two objects have the same speed as 
indicating that the objects have the same acceleration. Confusion of velocity and acceleration is 
particularly pronounced at a turning point, where a majority of students think that the acceleration is 
zero. McDermott and her co-workers found that roughly 80% of students beginning calculus-based 
physics make errors when asked to identify or compare accelerations, and that the error rate was still 
roughly 60% after conventional instruction. Thornton and Sokoloff (1990) report very similar pre-
instruction and post-instruction error rates for students’ abilities to interpret acceleration graphically. 

In addition 

• Students have a very difficult time with the idea of instantaneous quantities. 
• Students are often confused by the significance of positive and negative signs, especially 

for velocity and acceleration. Many students interpret positive and negative 
accelerations as always meaning that the object is speeding up or slowing down. This 
seems to be an especially difficult idea to change. 

Difficulties with graphs: Nearly all students can graph a set of data or can read a value from a 
graph. Their difficulties are with interpreting information presented graphically. In particular 

• Many students don’t know the meaning of “Graph a-versus-b.” They graph the first 
quantity on the horizontal axis, ending up with the two axes reversed. 

• Many students think that the slope of a straight-line graph is found from y/x (using any 
point on the graph) rather than / .y xΔ Δ  

• Students don’t recognize that a slope has units or how to determine those units. 
• Many students don’t understand the idea of the “slope at a point” on a curvilinear graph. 

They cannot readily compare the slopes at different points.  
• Very few students are familiar with the idea of “area under a curve.” Even students who 

have already studied calculus, and who “know” that an integral can be understood as an 
area, have little or no idea how to use this information if presented with an actual curve. 

• Many students interpret “slope of a curve” or “area under a curve” literally, as the graph 
is drawn, rather than with reference to the scales and units along the axes. To them, a 
line drawn at 45° always has a slope of 1 (no units), and they may answer an area-under-
the-curve question with “about three square inches.”  

• Students don’t recognize that an “area under the curve” has units or how the units of an 
“area” can be something other than area units. We tell them, “Distance traveled is the area 
under the v-versus-t curve.” But distance is a length? How can a length equal an area? 
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It is worthwhile to give students practice drawing and interpreting graphs. These are skills that are 
best learned by practice followed by feedback. The Student Workbook has many exercises you can 
use for such practice. For large lecture courses, this type of exercise is a natural fit for a recitation 
section, but it could be done during lecture, for instance as “clicker questions,” either those 
suggested below or based on exercises in the Workbook. 

Difficulties relating graphs to motion: Nearly all students have a very difficult time relating 
the physical ideas of motion to a graphical representation of motion. If students observe a motion—
a ball rolling down an incline, for example—and are then asked to draw an x-versus-t graph, many 
will draw a picture of the motion as they saw it. Confusion between graphs and pictures underlies 
many of the difficulties of relating graphs to motion. Experience has shown that learning how to 
graph motion is a good way for students to develop conceptual understanding of motion. For this 
reason, Chapter 2 places special stress on the graphical interpretation of motion, and the second 
edition has added problems that require students to draw and interpret graphs. 

Part of the difficulty with student comprehension is that we often measure position along a 
horizontal axis but graph the position on a vertical axis. This choice is never explained because it 
seems obvious to physicists, but it’s a confusing issue for students who aren’t sure what a function is 
or how graphs are interpreted. 

 

Confusion between position and velocity, and difficulty interpreting slopes, can be 
illustrated with a simple example. The previous graph shows the motion of two objects A and B. 
Students are asked: Do A and B ever have the same speed? If so, at what time? A significant fraction 
will answer that A and B have the same speed at 2t =  s, confusing a common height with common 
slope. 

 

Clearing up this confusion takes practice. One of the “clicker” questions presented in the 
lecture plans uses the previous position-versus-time graph. If students are asked at which lettered 
point or points the object is moving fastest, at rest, slowing down, etc., they initially have difficulty. 
But you’ll find that most students can master questions similar to these with a small amount of 
instruction and practice. 

A much more difficult problem for most students, and one that takes more practice, is 
changing representations from one type of graph to another. For example, students might be given 
the following x-versus-t graph shown on the left and asked to draw the corresponding -versus-xv t  
graph. When first presented with such a problem, almost no students can generate the correct 
velocity graph shown on the right. Many feel that a “conservation of shape” law applies and redraw 
the position graph—perhaps translated up or down—as a velocity graph. They need a careful 
explanation, through several examples, of how the slope of the position graph becomes the value of 
the velocity graph at the same t. Changing from a velocity graph back to a position graph is even 
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more difficult—which is why Chapter 2 spends a good deal of time explaining how to perform such 
translations.  

 

To tie all aspects of a student’s understanding of kinematics together, McDermott and her 
group presented students with situations of a ball rolling along a series of level and inclined tracks, 
for instance the following graph: 

 

The students were then asked to draw x-versus-t, -versus- ,xv t and -versus-xa t  graphs of the motion, 
with the graphs stacked vertically so that a vertical line connected equal values of t on each of the 
three graphs. Students in a conventional physics class were presented—after kinematics 
instruction—with the simple track shown in the figure. Only 1 student of 118 gave a completely 
correct response. Many students draw wildly incorrect graphs for questions like these, indicating an 
inability to translate from a visualization of the motion to a graphical description of the motion. 

Difficulties with terminology: Arons (1990) has written about student difficulties with the term 
per. Many students have difficulty giving a verbal explanation of what “20 meters per second” 
means—especially for an instantaneous velocity that is only “20 meters per second” for “an instant.” 
Students will often say things such as “acceleration is delta v over delta t,” but they frequently don’t 
use the word “over” in the sense of a ratio but rather to mean “during the interval.” This term is dealt 
with explicitly in the text, part of our general approach to make the implicit assumptions made by 
physicists explicit for students studying this material for the first time. 

Another difficult terminology issue for students is our use of the words initial and final. 
Sometimes we use initial to mean the initial conditions with which a problem starts, and final refers 
to the end of the problem. But then we use final initialx x xΔ = −  and final initialv v vΔ = −  when we’re 
looking at how position and velocity change over small intervals .tΔ  Students often don’t recognize 
the distinction between these uses. 

Finally, students often don’t make the same assumptions we do about the beginning and 
ending points of a problem. We interpret “Bob throws a ball at 20 m/s …” as a problem that starts 
with Bob releasing the ball. Students often want to include his throw as part of the problem. 
Similarly, a question to “find the final speed of a ball dropped from a height of 10 m” will get many 
answers of “zero,” because that really is the final speed. These are not insurmountable issues, but 
you need to be aware that students don’t always interpret a problem statement as a physicist would, 
and address these assumptions in lecture. 

Difficulties with mathematics: Many students are not sure what a function is. They don’t really 
understand the notation x(t) or our discussion of “position as a function of time.” A significant 
fraction of students interpret x(t) as meaning x times t, as it would in an expression such as ( ).a b c+  
Instructors need to give explicit attention to this issue. 

Students are easily confused with changes in notation. Math courses tend to work with 
functions y(x), with x the independent variable. In physics, we use functions x(t), with x the 
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dependent variable. Despite how trivial this seems, instructors should be aware that many students 
are confused by the different notation and need assistance with this. 

Student Learning Objectives 
In covering the material of this chapter, students will learn to 

• Describe problems in different representations, including graphical, pictorial and 
mathematical. 

• Develop their understanding of the kinematic variables position, velocity, and 
acceleration 

• Use these kinematic variables to describe horizontal and vertical motion. 
• Learn basic problem solving skills, including a basic problem solving strategy that will 

be used throughout the book. 
• Solve problems for two different types of motion in one dimension, uniform motion and 

motion with constant acceleration, including free fall. 

Pedagogical Approach 
This chapter treats one-dimensional motion only. Although the basic kinematic quantities x, ,xv and 

xa  (or y, ,yv and )ya  are components of vectors, a full discussion of vectors is not needed for one-
dimensional motion, and we do not discuss these quantities using the term “component.” The major 
issue is whether each of these quantities is positive or negative, and that only depends on the 
direction along the axis. This is easily determined with a motion diagram. Students will need practice 
associating a verbal description of the motion with the proper signs, especially for acceleration. 

Note: In this textbook, v v= is the magnitude of the velocity vector, or speed, and a a=  is 
the magnitude of the acceleration. Components of vectors, such as xv  or ,ya  always use explicit x- 
and y-subscripts. It can seem cumbersome, but it is important to use this full notation, including 
subscripts, otherwise students will be confused by the (admittedly rather common) practice in one-
dimensional motion of using v both for velocity (a signed quantity) and for speed. 

This chapter aims to provide the conceptual foundations of kinematics, but also to help 
students develop a systematic approach to analyzing problems. As we experienced problem solvers 
know, you don’t start solving a problem by putting numbers in an equation; more often than not you 
start by drawing a picture. To this end, the text emphasizes multiple representations of knowledge. In 
particular, motion has the following descriptions: 

• Verbal, as presented in typical end-of-chapter problems 
• Diagrammatic, with position, velocity, and acceleration shown in a motion diagram 
• Pictorial, showing beginning and ending points as well as coordinates and symbols 
• Graphical, as shown in position-, velocity-, and acceleration-versus-time graphs 
• Mathematical, through the relevant equations of kinematics 

To acquire an accurate, intuitive sense of motion, students must learn to move back and forth 
between these different representations. Diagrams, pictures, and graphs are especially stressed. The 
number and variety of representations that are used in the textbook examples are certainly more than 
students will use in doing their homework assignments, but if we can get them to slow down and 
draw some sort of representation—a graph, a pictorial representation, a diagram—before simply 
plugging numbers into an equation, even for the somewhat simple problems of this chapter, this 
discipline will serve them well in the chapters to come. 
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Much of this chapter is focused on learning the different representations of kinematic 
knowledge. The connection between motion diagrams and graphs is strongly emphasized. Students 
learned a bit about motion diagrams in Chapter 1, and they should now be able to draw a correct 
motion diagram for nearly any one-dimensional motion. This is a good intermediate stage in the 
process of interpreting a verbal description of motion. Students can see where velocities are big or 
small and where the motion speeds up or slows down. As they proceed into the less familiar territory 
of drawing graphs, you can keep calling their attention to whether or not the graph is consistent with 
the motion diagram. This approach is particularly useful for establishing correct signs. 

The ultimate goal, of course, is for students to be able to work kinematics problems. But, 
more than this, paying so much attention to techniques of representing and solving problems in the 
rather straightforward area of kinematics will help students develop good habits that will help them 
as the material of the course becomes more complex. There is good evidence that initial attention to 
these issues leads students to become better problem solvers—not just for kinematics, but generally. 

Suggested Lecture Outlines 
Chapters 1, 2 and 3 make a continuous sequence that introduces not only basic physics concepts but 
also techniques and tools that the students will use for the rest of the course. Chapters 1 and 2 are 
very closely linked; some instructors may choose to treat the two as a unit, beginning by talking 
about motion in some detail, while introducing the less interesting (but no less important!) concepts 
of units and significant figures along the way. 

Chapter 2 introduces the first Problem-Solving Strategy in the book. This book has a strong 
emphasis on teaching problem-solving skills, and Chapter 2 is the right place to introduce the first 
such strategy. Chapter 2 moves more slowly through basic one-dimensional kinematics than some 
books because we make a significant effort to stress the different ways that we expect students to 
represent and solve problems. We include extensive instruction in problem-solving strategies in this 
relatively straightforward section so that students will have some well-developed skills when they 
begin to hit material that is more conceptually challenging. We suggest a similar approach in your 
lectures. 

If you take the time to introduce techniques of problem solving and kinematics in sufficient 
detail, you will likely find that you need the full three days we suggest for this chapter. If this is too 
much for your schedule, you might try combining Chapters 1 and 2 (as previously suggested), which 
could provide some efficiencies. 

In teaching from this book, we will often suggest using the third of three days on a topic for 
applications and extensions. In this chapter, we suggest Day 3 as the day to discuss free fall—a great 
topic for applying the general material of the first part of the chapter to a specific, new type of 
problem. It’s a chance to teach about free fall, but also a chance to review all of the concepts the 
students will have learned to this point. 

DAY 1: Basic concepts of one-dimensional motion. The best and the worst thing about 
teaching kinematics is that students already “know” a good deal about the subject. You can draw on 
their prior knowledge and experience, for it is extensive. But they will have many misconceptions. 
These misconceptions are based on years of experience, so they can be quite hard to change. 
Throughout your treatment of this material, but especially on the first day or two, it’s worthwhile to 
ask many questions of the class to draw on and assess their prior knowledge. One possibility is to 
begin with a question that leads to a class discussion. 

Class Question: Which is faster, a man or a horse? 
This is a question that is raised at the start of the chapter, and it’s a good one for spurring a 
discussion that gives you insight into what your students know. It’s also a good way to show that we 
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have to be careful about the words we use and how we define them. What do we mean by “faster”? 
Higher average speed? Higher maximum speed? Quicker response time? Greater acceleration? 
Depending on which measure you choose, either the man or the horse might be faster. 

This is a good time to review the definitions of basic kinematic variables. A good way to 
start is with a demonstration, a classic activity in which a student is asked to move in a manner that 
matches a certain graph. This also works very well as a lab activity. The easiest way to do this is to 
use a computer, interface, and motion detector—all of which are becoming ubiquitous in physics 
instructional labs these days. 

Demonstration: Distance Matching. A student walks back and forth in front of a motion 
detector, attempting to match a particular graph, like the following one. This is a nice graph because 
it has regions of constant—but very different—velocity. 

 

Have a student try this once, then have him or her discuss how he or she could do better. Then, have 
him or her try the motion one more time, or perhaps a third time—until a good match is obtained. 
After the student has made a reasonable attempt, have the student describe the motion in words—a 
different representation. 

Most students can do pretty well matching a graph on the second try, and this is a good way 
to bring out the notions about kinematics that students already have. Most students have an intuitive 
sense that the speed is the slope of the distance-versus-time graph. After a trial run, they will move 
faster when the slope is greater. They also have a sense for the difference between positive and 
negative slopes; they will generally move in the correct direction. They almost always understand 
that zero slope corresponds to zero velocity, and will stand still. This will likely come out in 
discussion following this demonstration, and it is a good way to introduce these notions in a very 
natural way. 

After this introductory exercise, it’s useful to give the students a chance to practice—and 
you a chance to assess their understanding. You could start with one of the graphs noted in the 
background information section. 

QuickCheck Clicker Question 2.13: A car moves along a straight stretch of road. The following 
graph shows the car’s position as a function of time: 

 

At what point (or points) do the following conditions apply? 

• The displacement is zero. 
• The speed is zero. 
• The speed is increasing. 
• The speed is decreasing. 

After this, it’s worthwhile to continue with questions involving connections between 
different representations. As with all of the clicker questions presented in this guide, however you 
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present them—using a response system or not—it is important that students are active, that they 
work the problems themselves. Don’t simply discuss the solution. 

QuickCheck Clicker Question 2.2: Here is a motion diagram of a car moving along a straight 
stretch of road: 

 

 
Which of the following velocity-versus-time graphs matches the motion diagram? 

 

Another element stressed in the chapter is the connection between position graphs and 
velocity graphs. How to convert between the two is a topic worthy of some class discussion. Here 
are some clicker questions that you can use to assess student understanding before or after you 
discuss this topic: 

QuickCheck Clicker Question 2.4: A graph of position versus time for a basketball player 
moving down the court appears as follows: 

 

Which of the following velocity graphs matches the position graph? 

 

QuickCheck Clicker Question 2.6: A graph of velocity versus time for a hockey puck shot into 
a goal appears as follows: 

 

Which of the following position graphs matches the velocity graph? 
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Questions like those just asked might well reveal some of the finer points of kinematics that your 
students don’t understand, like those mentioned previously. It is worthwhile to ask further questions 
and perform demonstrations, basing your choices on the understanding that your students have, and 
what points are still troubling for them. 

After this, it’s time for some straight lecture—presenting definitions and equations to 
solidify the lessons of the active learning that just took place. Once you have these details in place, 
you can begin to solve problems. 

Students like to think that solving a physics problem means picking the right equation and 
plugging in numbers. Much of what we need to do in the introductory course is to convince students 
that they need to take a more thoughtful approach to problem solving. At this point, it’s time to 
introduce an equation and use it to solve a problem. But the problem should be solved carefully and 
fully, drawing a graph, reasoning from the graph, using the equation, and then assessing the final 
result. It’s time to start using the Prepare-Solve-Assess sequence for solving problems in earnest. 

Go over the full problem-solving strategy, the different steps, and why they are important, 
then use it to solve a problem. (Note that this is a bit earlier than the problem-solving strategy is 
introduced in the book, but this is a natural time for it in your classroom presentation.) 

Introduce the basic equation for one-dimensional motion at constant velocity: 

constant, x x
xv x v t
t

Δ= = Δ = Δ
Δ

 

then use this equation to solve a problem fully, without diving right into the “solve” step. Here is an 
example that has a good level of detail. It’s simple, but including visual elements—such as a 
pictorial representation and a graph—make the solution much more straightforward. 

Example: A soccer player is 15 m from her opponent’s goal. She kicks the ball hard; after 0.50 s, it 
flies past a defender who stands 5 m away, and continues toward the goal. How much time does the 
goalie have to move into position to block the kick from the moment the ball leaves the kicker’s 
foot? 

If there is time, you may wish to do another example or two illustrating the problem-solving 
strategy, but you might well find that this day, spent in discussion and development of basic 
concepts, is already quite full. 

DAY 2: Motion with Changing Velocity. Once we introduce changing velocity, we have the 
possibility to solve much more interesting problems, but be aware that the concept of acceleration 
causes students a good deal of confusion. Another key concept for Day 2 is the difference between 
average velocity and instantaneous velocity—another potentially confusing topic. 

Start with a discussion of the difference between average and instantaneous speed, 
something of which the students will already have a good conceptual grasp. One possibility is to 
start with a class discussion. 

Discussion Question: A man drives the 60 miles from Omaha to Lincoln, Nebraska, in exactly  
1 hour. Later, he gets a ticket in the mail from a speed camera that shows his car clocked at 75 mph, 
over the limit. He protests, arguing that because it took him one hour to cover the 60 miles, his speed 
was exactly 60 mph, no more. Does he have a case? 
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This quickly brings up the distinction between average and instantaneous speed. Your 
students already have some understanding of the difference. They know that their speedometer (and 
speed cameras!) measure instantaneous speed, and they also have some sense of average speed. But 
their notions are a bit hazy, and require some clarification. 

Next, you can discuss how you measure an “instantaneous” speed. Students likely know that 
the speed is computed as a displacement divided by a time interval, and that, if the time interval is 
short, the speed is “instantaneous.” You can also bring up how we get instantaneous velocity from a 
graph. Students know that the slope of a distance-versus-time graph is a velocity, so a graph with a 
changing slope means motion with changing velocity. Show a graph of such a motion (the chapter 
uses data for a drag racer) and discuss the details. 

Next, bring up the concept of acceleration, and what it means. You should stress the 
meaning of the units; we are fond of writing 2m/s ,  but you should remind students that this is 
shorthand for “meters per second per second”—and remind them of the meaning of “per” in this 
context. A practical example of this helps as well. The car data presented in the chapter works well 
for this. The Porsche, which accelerates at 27.5 m/s ,  moves at 0 m/s  at 0 s,t =  7.5 m/s  at 1 s,t =  
and so on. 

It is worth spending some time clarifying the different signs of acceleration and velocity. As 
noted above, students generally think of acceleration as “speeding up”; the idea that, for an object 
moving with a negative velocity, a reduction in speed could correspond to a positive acceleration is 
very confusing, and worth some elaboration. Here are some clicker questions that can help spur such 
discussion. 

Clicker Question: These four motion diagrams show the motion of a particle along the x-axis. Rank 
these motion diagrams by the magnitude of the acceleration. There may be ties. 

 
 

QuickCheck Clicker Question 2.17: These four motion diagrams show the motion of a particle 
along the x-axis. 

A. Which motion diagrams correspond to a positive acceleration? 
B. Which motion diagrams correspond to a negative acceleration? 

 

Clicker Question: These six motion diagrams show the motion of a particle along the x-axis. Rank 
the accelerations corresponding to these motion diagrams from most positive to most negative. There 
may be ties. 
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Next, it’s time to return to the idea of graphs, with graphs involving changing velocities. 
Acceleration is the slope of the velocity-versus-time graph, a direct analogy to velocity being the 
slope of the position-versus-time graph. The “ball on a ramp” example from the background 
information section makes a good way to introduce these ideas. 

Example: A ball moving to the right traverses the ramp shown below. Sketch a graph of the 
velocity versus time, and, directly below it, using the same scale for the time axis, sketch a graph of 
the acceleration versus time. 

 

After a thorough discussion of these concepts and representations, you can introduce the 
equations for motion in one dimension. After introducing these equations, you can do some real, 
significant problems. 

Before you dig into more quantitative problems, remind the students of the most crucial step 
of the problem-solving strategy: drawing a picture. Not just any picture, of course; Tactics Box 2.2 
describes how to draw a pictorial representation. After this, the book then goes on to discuss the full 
visual overview that should accompany any problem. 

We picked the name “visual overview” to stress that students should be drawing pictures: 
motion diagrams, pictorial representations, graphs.... The act of setting up the visual overview is the 
most important part of solving a problem, as we repeatedly stress. In future chapters, the visual 
overview will grow more complex with the addition of force-identification diagrams and free-body 
diagrams. But even for such simple problems as we consider in Chapter 2, the visual overview is a 
very key element. 

Start with a relatively straightforward example for which you can illustrate the process of 
translating from words to pictures (explicitly noting the assumptions that you make) and then from 
pictures to equations that can then be solved. In the following example you’ll want to pay particular 
attention to what is the start and the end of the problem. 

Example: Tennis balls are tested by measuring their bounce when dropped from a height of 
approximately 2.5 m. What is the final speed of a ball dropped from this height? 

After this, we suggest that you do some more complex examples for which the different 
pieces of the visual overview give crucial information that help to solve the problem so that creating 
the visual overview doesn’t seem like an empty exercise. Here are two context-rich examples related 
to text material that are much more easily solved if the elements of the visual overview are present. 

Example: A train is approaching a town at a constant speed of 12 m/s. The town is 1.0 km distant. 
After 30 seconds, the conductor applies the brakes. What acceleration is necessary to bring the train 
to rest exactly at the edge of town? 
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A pictorial representation and a velocity graph are a great help in working out the solution to 
this example. For even more complex examples, the graphs are even more important. 

Example: The chapter begins and ends with a discussion of the possible outcome of a race between 
a human and a horse. In fact, there have been some well publicized sprints between football players 
and horses carrying jockeys. In order to render the contest more sporting, the human is given a head 
start. We can make a rough model of a short sprint as a period of constant acceleration followed by a 
period of constant speed. In this model, a very good human sprinter can accelerate at 12 m/s2 for  
1.0 s; a horse can accelerate at 6.0 m/s2 for 4.0 s. Suppose a man and a horse of these abilities are 
competing in a race of 400 m; how much of a head start would the man need in order to just tie the 
horse? 

DAY 3: Free Fall. The new problem-solving concepts and techniques introduced are worthy of more 
discussion. Visualizing problems with motion diagrams, pictorial representations, and graphs is 
something new, even for students who have taken physics courses before. As you know, and as we 
discussed previously, students will want to glean numbers from the statement of a problem, find an 
equation, and start plugging and chugging. We are trying to teach them new habits that will serve them 
well in future chapters, and doing some examples in great detail is a good way to accomplish this. 

For this reason, we suggest spending Day 3 on the topic of free fall. Free fall is a short 
section in the book, about six pages. But it’s a great topic to use as a springboard for solving 
problems, and that’s what most of Day 3 should be spent doing: solving problems with full visual 
overviews, following the problem-solving strategies of the chapter. 

First, start with an overview of the concept of free fall. This is easy to state: All objects 
moving under the influence of gravity and no other forces accelerate at 

2
free fall (9.8 m/s ,  downward).a =  But students have some difficulties applying this concept in 

practice, and their difficulties are a result of their underlying confusion about motion, their tendency 
to confuse velocity and acceleration. 

With this in mind, it’s worthwhile to have some clicker questions that test their 
understanding of free fall. After each question, take some time for discussion of the answers; the 
“wrong” answers that students choose provide excellent insight as to the misconceptions that 
students harbor. 

QuickCheck Clicker Question 2.27: An arrow is launched vertically upward. It moves straight 
up to a maximum height, then falls to the ground. The trajectory of the arrow is noted. At which 
point of the trajectory is the arrow’s acceleration the greatest? The least? Ignore air resistance; the 
only force acting is gravity. 
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QuickCheck Clicker Question 2.28: An arrow is launched vertically upward. It moves straight 
up to a maximum height, then falls to the ground. The trajectory of the arrow is noted. Which graph 
best represents the vertical velocity of the arrow as a function of time? Ignore air resistance; the only 
force acting is gravity. 

 

Clicker Question: The following figure shows five arrows with differing masses that were 
launched straight up with the noted speeds. Rank the arrows, from greatest to least, on the basis of 
the maximum height the arrows reach. Ignore air resistance; the only force acting is gravity. 

 

After clarifying the important elements of the basic physics, the rest of the day should be 
spent on free-fall examples that give you an opportunity to illustrate problem-solving strategies and 
the creation of a full visual overview. Here are some examples using realistic numbers and real 
situations that you can adapt for your class. 

Example: Spud Webb, height 5'7", was one of the shortest basketball players in the NBA. But he 
had an impressive vertical leap: He was reputedly able to jump 110 cm off the ground. To jump this 
high, with what speed would he leave the ground? 

Example: A football is punted straight up into the air; it hits the ground 5.2 s later. What was the 
greatest height reached by the ball? With what speed did it leave the kicker’s foot? 

Example: Passengers on the Giant Drop, a free-fall ride at Six Flags Great America, sit in cars that 
are raised to the top of a tower. The cars are then released for 2.6 s of free fall. How fast are the 
passengers moving at the end of this speeding up phase of the ride? If the cars in which they ride 
then come to rest in a time of 1.0 s, what is the acceleration (magnitude and direction) of this 
slowing down phase of the ride? Given these numbers, what is the minimum possible height of the 
tower? 

Example: A pole vaulter is nearly motionless as he clears the bar set 5.2 m above the ground. He 
then falls onto a thick pad. The top of the pad is 75 cm above the ground; it compresses by 50 cm as 
the pole vaulter comes to rest. What is his acceleration as he comes to rest on the pad? 
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Other Resources 
In addition to the specific suggestions made above in the daily lecture outlines, here are some other 
suggestions for demonstrations, examples, questions, and additional topics that you could weave into 
your class time. 

Suggested Demonstrations 
In addition to the motion exercises noted above, there are some other good demonstrations that can 
be done for this material, though not as many as in other chapters. Here are some of our favorites: 

Free fall, Part I. Aristotle’s concept of natural motion was that all objects would return to their 
natural positions on the earth. Heavier objects would have a greater impetus to do this, and so would 
fall faster: If you drop two objects, one with twice the mass of the other, the object that is twice as 
heavy should reach the ground in half the time. Jump off a chair, dropping a nickel at the same time. 
You will take about 0.3 s to reach the ground. To Aristotle’s way of thinking, the 5 g nickel, with 
about 1/10,000 of your mass, should take 10,000 times longer to hit the ground—3000 s, or the 
length of a 50-minute lecture. The nickel hits the ground a bit sooner than this, making a nice 
jumping-off point for discussing how free fall really works. 

Free fall, Part II. If you take a long string and tie nuts or bolts to it with the right increasing 
separation, when the string is dropped the collisions of the metal pieces with the floor will make a 
series of sounds that are evenly spaced. Humans are good at detecting such equal spacing, so this can 
be a dramatic way to show the acceleration of gravity. 

Catch me if you can. There are many movies that involve free fall, usually in a way that isn’t 
physically correct. A clip from such a movie can be a good way to set up a problem. For instance, in 
Superman II, a boy falls over the edge of Niagara Falls, height 51 m. Clark Kent notes the boy’s plight, 
looks for a place to change, changes clothes, and flies to save him. This all takes about 30 s. You can 
show this clip and then ask your students to calculate either 1) how far the boy would fall during this 
time, ignoring air resistance, or 2) how long Superman would actually have to come to his aid. 

Sample Reading Questions 
1. The slope at a point on a position-versus-time graph of an object is the 

A. Object’s speed at that point. 
B. Object’s average velocity at that point. 
C. Object’s instantaneous velocity at that point. 
D. Object’s acceleration at that point. 
E. Distance traveled by the object to that point. 

2. Which of the following is an example of uniform motion? 
A. A car going around a circular track at a constant speed 
B. A person at rest starts running in a straight line in a fixed direction 
C. A ball dropped from the top of a building 
D. A hockey puck sliding in a straight line at a constant speed 

3. The area under a velocity-versus-time graph of an object is 
A. The object’s speed at that point. 
B. The object’s acceleration at that point. 
C. The distance traveled by the object. 
D. The displacement of the object. 
E. This topic was not covered in this chapter. 



 

 CHAPTER 2: MOTION IN ONE DIMENSION 2-15 

C
op

yr
ig

ht
 ©

 2
01

5 
Pe

ar
so

n 
Ed

uc
at

io
n,

 In
c.

 

4. If an object is speeding up,  
A. Its acceleration is positive. 
B. Its acceleration is negative. 
C. Its acceleration can be positive or negative depending on the direction of motion. 

5. A 1-pound ball and a 100-pound ball are dropped from a height of 10 feet at the same time. In 
the absence of air resistance 
A. The 1-pound ball wins the race. 
B. The 100-pound ball wins the race. 
C. The two balls end in a tie. 
D. There’s not enough information to determine which ball wins the race. 

Additional Examples 
1. When you stop a car on very slick icy pavement, the acceleration of your car is approximately 

21.0 m/s .−  If you are driving on icy pavement at 30 m/s (about 65 mph) and you hit the brakes, 
how much distance will your car travel before coming to rest? 

2. As we will see in a future chapter, the time for a car to come to rest in a collision is always about 
0.1 s. Ideally, the front of the car will crumple as this happens, with the passenger compartment 
staying intact. If a car is moving at 15 m/s and hits a fixed obstacle, coming to rest in 0.10 s, 
what is the acceleration? How much does the front of the car crumple during the collision? 

One Step Beyond: Animal Leaps 
Steven Vogel has done a number of interesting analyses in which he applies physics concepts to 
living systems. In one paper, he notes that investigators as early as Galileo hypothesized that all 
animals should be capable of jumping to about the same height, meaning they must have similar 
launch speeds. [Vogel, S. (2005). “Living in a physical world III. Getting up to speed.” J. Biosci. 
30(3), 303–312]. An analysis of the kinematics of animal jumps is a nice application of the 
principles of this chapter. 

The equal leap hypothesis isn’t quite true; mice can jump quite high, while elephants can’t 
jump at all. But it does turn out that animals over a very wide range of sizes that are good jumpers 
can perform approximately the same vertical leap. In principle, the reasons for this are 
straightforward. Suppose we use L to denote the linear size of an animal. The animal’s mass is just 
proportional to 3.L  The force its muscles can supply is proportional to the cross-sectional area of the 
muscles, and so will be proportional to 2.L  The acceleration possible during a jump, / ,=a F m is thus 
proportional to 1/ .L  But the distance over which the force can be applied as the legs are extended 
during a jump will be proportional to L. Larger animals are capable of lesser accelerations, but can 
apply these over a greater distance. To a first approximation, the final speed in a jump should be 
about the same, regardless of size. 

Vogel gives numbers for a few excellent jumpers to make this case. An antelope can extend 
its long legs by 1.5 m during a jump, accelerating at 16 m/s2 during this extension. A much smaller 
animal, a bushbaby (a very small primate), can extend its legs by much less—only about 16 cm—but 
it undergoes a much larger acceleration of 2140 m/s .  The net result is that the two animals have 
about the same vertical leap. A quick calculation, which you can do with your students, shows that 
the bushbaby has a vertical leap of 2.3 m, and the much-larger antelope has a very similar vertical 
leap of 2.4 m. (Humans are nearly as proficient; a world-class standing high jump will be just shy of 
2.0 m, but the jumper’s center of gravity rises by much less than this.) 
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At some point, the muscle scaling argument breaks down. A click beetle could, in the 
absence of air resistance, leap to a height similar to that of the antelope or the bushbaby. The 
extension distance of less than 1 cm requires an acceleration of 23800 m/s  to achieve this jump 
height. Muscle power alone is simply not capable of providing this acceleration. Other mechanisms 
apply that allow for the truly amazing leap of this small creature. 

Of course, beetles and other animals don’t usually jump straight up. In the next chapter, we 
will look at broad jumps, in which animals jump for maximum horizontal distance. 


