2-1

CHAPTER 2
SOFTWARE LIFE-CYCLE MODELS

The central idea of this chapter is the interplay between tieadréfe-cycle models like the
waterfall model and the rapid prototyping model and real-worlechfde models like the itera-
tive-and-incremental model. My objective in writing this chaptes wo enable the student to
select an appropriate life-cycle model for a given project.

The concepts of iteration and incrementation are so central thjghet-oriented paradigm that it
is absolutely essential for every student to understand both concepts pefceeding. If this
means devoting an extra lecture to Chapter 2, so be it — thecegoint in proceeding until the
two concepts are thoroughly understood by the whole class.

| realize that Agile Processes (Section 2.9.5) are extyeowitroversial at present. | have
included this section so that students will be introduced to the topic.

| have included the material on Microsoft's synchronize-and-stabiiiodel (Section 2.9.6)
because Microsoft is currently the world’s largest softwagameation, and virtually every stu-
dent has had experience with a variety of Microsoft products. Alany mf my students have
either done internships at Microsoft and/or want to work for MictosAf a result, the class is
always extremely interested in this section.

The spiral model (Section 2.9.7) is still somewhat fashionable. r&sudt, it is being used in
domains for which it is inapplicable. It is important for the stusléatknow both when and
when not to use each life-cycle model.

PROBLEM SOLUTIONS

2.1:

2.2:

Requirements
{ l
1
[}
\
\
AY
Analysis
A
i
\ Y
\|
Design
N
]
[}
\ \4
Implementation

—> Development
—————— » Maintenance

Figure 2.1. Waterfall model representation of the Winburg mini case study.

Figure 2.1 shows the waterfall model representation of the Winbimigcase study.
(This figure is identical to Figure 2.3 @bject-Oriented and Classical Software Engi-
neering, Seventh Edition.) The problem is that the figure does not showdbersse of
events, that is, which artifact follows which. It is thereftaeless effective than the
evolution-tree model.

Episode 2 falls away, and Figure 2.2 shows the resulting evolution tree.

2-3

-
~——
~—
-
-
-
—
-
-
——
-
-
-
-
——
——
-

- >
Requirements, Requirements,,
Y Y
Analysis, o Analysis ,

\\
~N
~
N
~
y ~a \4
Design, Design, Design,,
Y Y Y
Implementation, Implementation, Implementation,
Episode 1 Episode 3 Episode 4

—> Development
———->» Maintenance

Figure 2.2. The evolution tree for the Winburg mini case study with single-precision numbers used from
the beginning.

2.3:

2.4:

2.5:

2.6:

2.7:

2.8:

Because of Miller's Law we cannot develop a software produet single step, and
therefore we need to use stepwise refinement.

Incrementation.

Aworkflow is a set of activities.

An artifact is a constituent component of a software product.
A workflow creates or modifies one or more artifacts.

A basdineis a set of artifacts.

The iterative-and-incremental life-cycle model is equivalers sequence of waterfall
life-cycle models.

Code-and-fix. There is nothing to be gained by using a more sophisticated model.

Experience and skills of the development team; computer litefaby client; extent to
which the client seems to appreciate his or her real needs.

2.9:

2.10:

2.11:

2.12:

2.13:

2.14:

2.15:

2.16:

2-4

The product may not be what the client really needs, so constapmtigrototype. The

design may not permit future development as the corporation grovasuoges the way it
does business, so ensure that the design is as open-ended amabteasThere may be
cost and or time overruns, so estimate carefully (see Chaptérhi@) users may not be
comfortable with the product, so a rapid prototype of the useracteit needed; also,
involve the purchasing clerks, factory supervisors, sales clerks,0aod, sn the devel-

opment loop. A competitor may produce off-the-shelf software bef@eroduct has

been delivered — there is no ethical way to resolve this riskritidat member of the

development team may leave, so keep management of the developmertatigyani
abreast of major decisions being made, thereby making grdasintegrate a replace-
ment into the team. The development team may not be properly eshrsagensure that
managers are competent and well-trained.

The key requirements here are achieve portability, maintainability, aehliggn Excel-
lent documentation is essential for this, so the waterfall mqujetaas to be a strong
candidate. However, the waterfall model is a theoretical modethes iterative-and-
incremental life-cycle model is probably the life-cycle model of chogre.h

Infrastructure software that is likely to be extrgneidely used by a broad variety of
users. For example, an operating system or web browser.

Software to be used in only one organization. For example, asofivoduct to control
a machine of a unique type.

A small product, particularly one in which the requirements are vague.
A medium- or large-scale product.

A large-scale, in-house project. For example, a flight-control systens developed in-
house.

A small product, or any form of contract software. For ex@ngptlatabase conversion
program developed under contract.

TERM PROJECT

2.17:

The iterative-and-incremental life-cycle model should be uf@dt, it offers multiple

opportunities for checking that the software product is cori®@etond, the robustness of
the underlying architecture can be determined relatively earthe life cycle. Third,

risks can be mitigated early. Fourth, there is always a working version of tivarsof

