Solutions Manual

Chapter 2

(1) The problem on the transmission and scattering matrix

(a) The wavefunction is written as
Aefix 4 Be~ikux (x <0)
W(X) - {Ceika + De—ikex (X - 0)’
where hk;, = +/2m(e — V) and hkg = /2m(e — Vg). From

the boundary condition at x = 0, we have

(1) (228 (5) ()
B 2k, \ k, — kg k. + kg D D)’

Here, M = M(L <« R) is the transfer matrix. A particular
solution is obtained by letting D = 0, which represents
a wave incident from the left and transmits through the

potential barrier to the right.

We calculate

B> (k,— kg)?

Rie) = |BI” _ (ki — k)

[A]2 (k + kg)?
kg |C|? 4k k
T(e) = kR ICE ke

ki 1A1Z (ky+ kg)?
where the relation R(€) + 7 (¢) = 1 should be noted. The
current density j is obtained from

hk
= ear-BR) <0
J =9 n R

—|C)? (x > 0).
m
The current conservation requires the relation
B ke CP
|A1Z - kA2

which corresponds to the relation of R(€) + 7 (¢) = 1.
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(b)

()

In the same way as (a), the wavefunction is written as
Ael** 4 Be~ikx (x < —a)
Y(x) =< Ce ** 4+ De*¥ (—a <x <a),
Eel* 4 Fe~ikx (x >a)

where ik = /2me and hx = /2m(V, — €).

From the boundary conditions at x = —a and x = gq,
we have the relation for the transfer matrix M = M(L <«
C)M(C < R)as

A\ _ [ (cosh2ka +i(&/2)sinh2ka) e’
B) o ( —(in/2)sinh2ka

(in/2)sinh2ka E
(cosh2ka — i(£/2)sinh2ka) e~%ka F)’

where we abbreviate the parameters with & = «/k — k/x
andn =«/k+k/«k.
A particular solution is obtained by letting F = 0 as

E e—Ziku

A~ cosh2ka + i(€/2)sinh2ka’
Then the transmission becomes

|E | i ke \?
T(€) = — ~ 16e " s
(€) A2 € K2+ 2

where we use cosh2xa & sinh2ka =~ e%?/2 for ka > 1.
The transfer matrix M and the S matrix are defined as

(5)=Cm) (5).
(5)= () (7).

where the coefficients B and E represent the outgoing
waves in terms of the coefficients A and F of the incoming
waves. The matrices S and M are related to each other with
the condition of the conservation of the current density
probability as

and

IBI> + |E* = A]> + |F %,
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which produces the unitarity condition of the S matrix as
S'S = I. Here, ST is the Hermitian conjugate matrix of S
and has the constraints as

[S11] = [S221,  [S12] = 1S21],
1S111? + S12* =1, 5117, + S2153, = 0.

When the Schrodinger equation has a solution with time-
reversal symmetry as in (b), there is a symmetric condition
expressed by §*S = [. When the S matrix is unitary and
symmetric, the transfer matrix M is expressed using the S
matrix as

M=< 1/512 5?1/5&)
S$11/S12 1/8%,

with
detM = (1 — |S1119)/IS12/* = 1.

The direct calculations of the transfer matrices M in (a)
and (b) show that M in (b) with time-reversal symmetry
satisfies these conditions, while that in (a) does not. The
transmission coefficient 7 (¢) is given by | E|?/| A|? with F =
0as

1
T(€) = —— = |S12]%
(<) | Miq]? !

(2) The problem on the thermoelectric transport relations

(a) In metallic systems, we neglect the lattice contribution
to thermal conductivity. The Boltzmann equation in the
relaxation time approximation becomes

dfo , eE dfo
foO_T(Vx"‘

0x m vy

and electric and thermal current densities are defined by

j= (2721)3 / / / evy fdkydk,dk,
Jg = (2711)3 / / / evy fdkedk,dk,.



4 | Solutions Manual

Using the following relations for the Fermi-Dirac distribu-
tion function fy = 1/(elé=#/ksT) 4 1)
o _ 0

= mvy
oVy o€

3f0 3f() € 0T d 122
20— 27 T— (= ,
ax Be{T axjL x (T)}

J and j, are calculated as

. ,0fo  €E _dfy
_——— dkydk,dk,
] = (2n)3 /// ( Vx ax m Bvx> Y
3 e dT
_ 2p — (= -
—’Co{BE eTaX(T)} KlTaX
. 2 zaf() eE 3f0
= — —Vi— — — dkydk,dk,
J1 = @2ny? /// T < "ax T m oy )

A 10T
=K E-T— = Ko —,
1{(3 ax (T)} °T ax

where the coefficients IC, (n =0, 1, 2) are given by

K (271)3 /// < > tvie"dk,dk,dk,

2\/ 2m ( af()) ”+3/2d6

= 3n23 de

a /1 a smuN 0T
o (r) =37 (1) &

(b) The electric conductivity o is obtained with the condition of
0T /0x = 0in j and the Seebeck coefficient S is obtained
with the condition of j = 0and d(n/T)/0x = 0 as

oot e, 522 gl LK
E oT aT ~ eT Ko’
while the thermal conductivity « is obtained with the

condition of j = 0 as

Note that

Jg_ KoKa— K%
—9T/ox  KoT
For the Fermi-Dirac distribution function in the metallic
systems, since —d fy/de ~ §(e¢ — €r), we have
ne’t 7% nt

= ) = k
7 m * 3 B

K =




(c)
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where the density nis n = (1/372)(2m/h2)3/2¢3/2.
We note that in the present free electron metallic systems,

2 /k 2
% = % (:) (= 2.45 x 107 8[W - Q/K?])

takes a constant value, which is called the Wiedemann-
Franz law.
Rewriting the equations for j and j, in (a) as

j T o T 1
E:1+iigg_i&3,i
o e dx \T e Kodx \ T

oT e

. of K.
Jq K8X+](T 1

and putting them into the formula for heat transfer density

y
Q=JE+55,
0x

we obtain

jz d oT _T 0 ’Cl—pLIC()
Q=" (o) oo (T )
o 0x 0x e dx KoT

The first term is the usual Joule heat density and the second
term is the heat density due to the thermal transport. The
third term Qr = —&j(0T/0x) expresses the heat density,
which appears when both the current density j and the
gradient of temperature 9T /dx are present. Here, the term
Qr is the Thomson heat density and & = (T /e)d((K1 —
uko)/KoT)/dT is the Thomson coefficient.
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(3) The problem on the derivation of Kubo formula

(a)

(b)

We evaluate P within the lowest order perturbation theory
P=Y (es—€u) (Pup — Ppa),
ap
where the probability is
Pap = fle2) (1= f(eg)) Wap
with the Fermi-Dirac distribution function f(€). Using

Fermi golden rule for the perturbation V = eEz the
transition rate W4 is obtained as

2w
Wap = =€ |E|(@|ZIB)I*8 (ho — (e — €0))-
Combining the result in (a) with the formula
P = (E-]) = lim Re [0 ()] EI%,

we obtain the conductivity

lim R — tim 27 ’
lim Re [0 ()] = lim == E‘;I(alzw)l (ep —€a)

x (flea) = flep)) 8 (how — (e — €a)) -
This expression is rewritten in terms of the momentum
operator by using the relation
i
(a|pzlB) = —5m (¢p — €a) (]2IB),
which is obtained from
= mdz = im[zH Hz]
Pe=Mae = ™h '
Therefore, in the limit @ — 0 the conductivity is written as

o=2xn(2)" [ S ltalpip)?
ap

X (—2{) 8 (e —€a) 8 (¢ —€p) de.

This is the Kubo formula for the conductivity. Note that in
the above derivation the linear response is included through
Fermi golden rule for the electronic transitions induced by
an applied field.
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(4) The problem on the friction coupled to heat bath
(a) From the equations of motion by x = dH/dp, p =

—dH /dq, we have

A dVv(x) Yi
X:a, p=— dx —|—Zi:yi Xi — IZX

m; w;

; : 2
Xi =—, Ppi=-—Mo;X;+ VX,

which are reduced to

dV(X) ZY’X’ Z 2X

m; w;

m,-x,' = —m,-wi Xi + YiX.

These equations express the time evolutions of a system
coupled to a heat bath.

(b) With initial conditions, we have the solution for the motion
of the heat bath oscillators x;(t) as

%(8) = x(0)cos(ant) + 210
m;w,

sin(w;t)
1 l

+ /sin [wi(t — )] x(¢)dt'.

m;w; Jo

(c) Integrating the third term by parts, we have

mwwﬂgm=Gmr-”ﬂm}mmo

2
iWj i Wj

pi(0) . Vi P(t/)
+ sin(w;t) — - /0 cos [w;(t — )] —=

Then substituting this into the equation of p, we have

V@ 4V +Z

2 ¢
L 2/ cos [w;(t — £)] v(t)dt
dt iw? Jo

m; w;
pi(0)

ii

—Z%N@)

Therefore, we have the generalized Langevin equation as

x(0)> cos(w;t) + -

sin(w;t)| -

d t
m Z(tt) =-m /_oo y(t— Y (E)dt +n(t) + F



(d)
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where F = —dV (x)/dx, y(t) and n(t) are expressed by
2

1
y(®) = @(t)a Z mya)z cos(w;t),

1

nm=Zmem—

x[O)) cos(w;t)

m;w i

P;( )sm(a),t]]

This shows that friction function y (t) has a memory effect.
When the spectrum of w; is continuous, we replace the
sum into the integral as fooo g(@)dw where g(w) is the
DOS for the harmonic oscillators. If the DOS is quadratic
as g(w;) o w?, then y(t) is proportional to §(t) and the
Langevin equation becomes Markovian.

Fluctuating force 5(t) is determined from the initial
positions and momenta of the oscillators. When the
initial distribution is in thermal equilibrium as foq =
exp(— H(O)/kBT),we have

2
(x0) = Lx(@) =0, (p(0)) =

1Wj
and the second moments become

2 2 M2
<<x,-(0)—m”"w_2x(0)> >=o, <p’$) ) = ksT.

1
These provide the fluctuation-dissipation relation

(n(®) =0, (On(t)) = mkpTy(t—t).
This is equivalent to the Caldeira-Leggett model describing
the irreversible process due to macroscopic friction by
introducing the Lagrangian as follows:

1
L=-mx*—V(x)+ Z ViXiX

2
+Z mx, - m,a)zx,2 - v x2.
2miw? !
We note that the bath term x;(w) in the Fourler space
i X
xi(w) = vix()

m; (0} — w?)’
cancels the second and third friction term of x(w) in mk =
—dV (x)/dx + > vixi — >; (v /miw?) x atw = 0.
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(5) The problem on the relaxation of distribution function
(a) Changing the continuous master equation as

OP(v, )

or - /W(v — v+r)P(v, t)dr

+ /W(v —r —>Vv)P(v—rt)dr
and using the general relation of

v —r 0= [0~ 0= e (0,

the continuous master equation is written as

P (v, t) / (1—e ™)y Wy — v+r)P(v, O)dr

at
i 2 < )n/W(V—>V+r)r"P[v,t)dr.

n=1

This shows that the coefficients C,(v) is expressed as
Ch>1(v) = / W(v — v+r)r'dr, Co(v)=0.

Since W(v — v + r)Atis the probability v — v +r in At,

(v(t+ At) —v(E)" >
At '

/W(v—>v+r)r"dr— lim <

At—0

For the Langevin equation without external force (F = 0),

Ci(v) = (AZEtD =-yv, C(p=3= % =0,
2 tHAL | /
Co(v) = (AVA(? ) _ Ait/ n(tr)nn(t) dedt — ZkErs’:V'
Then we obtain the Fokker-Planck equation as
an\;, 9_ <;VVV + kBr:y ;2) P(v, t).
For the steady state with aP(v, t)/ot = 0, we have

Peg(v) = exp(—mv?/2kgT), showing P (v, t) approaches
the Maxwell-Boltzmann distribution in the long time.
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(b) Inthe presence of external force, the Langevin equation is

dv oV ,
m-—- == —myv+n(t), n(On(t) = 2mksTyd(t—t).
When we consider the large friction for y, since dv/dt
becomes 0 for a shorttime, v = (—dV /dx +n(t))/my. Then

1 dv 2kg T
G =———, ) =""", Cu3(V) =0,
my dx my
and we have the Fokker-Planck equation as
aP(v, t 1 9 [aV d
P 1 9TV e b, e,
at my 0x | 0x ax
which is known as the Smoluchowski equation.
Since the diffusion constant is given by D = kzT/my,

the first term of this equation expresses the drift nature
by an external potential and the second term reveals the
diffusive nature. When the probability current J is defined
by dP /ot = —d] /dx, we have

1 aV a0
] = —— ( +kBT> P(v, t).
0x 0x

ke T (viker 9 [e"/%7 P(v, )] .

my ax

The steady-state P /9t = 0 is achieved for | = const.

Especially for /] = 0, we have the Boltzmann distribution
P, t) e V/keT,

Let us obtain the nonequilibrium probability current j.

Integrating from x = A to x = B (we assume P(B) = 0)

B
my ] / e"/ksTdx = —kgT [eV/kBTP]j,
A
we have the probability current as
kpT P(A)e" A/ ksT
J = .
my [} eV/kT dx
Evaluating the potential curve V at the saddle point C by
V =V(C) — Kc(x — x¢c)?/2 + - - - and using the relation

B 00 Y —x)2
/ elV =V e/ ksT gy :/ e_chkBTC) dx = anBT.
A —o0 K¢

we have the Arrhenius-type of the probability current

jod 1 KK g
P(a) my\ 2

where Q = V(C) — V (A) is the activation energy.
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Chapter 3

(1) The problem on the representations

(a) For H = Hy + V(t), the equations of motion become
(1) Schrodinger representation:

AUs(®) s
h = Hyrs(t
th—% Vs(t)
(2) Heisenberg representation:
dAy(t . R
ih ;t() = [4n(®), H]

with the Heisenberg operator as
AH ) = eiI:It/hAe—iI:It/h_
(3) Interaction representation:
Y8 oo
’hT = V(@ (1)
with the Interaction operators as
21,(t) _ eiﬁgt/h;lefif{ot/h
P (0) = e 1M 0) = 8(z, 0)9/(0).

A

(b) The expectation values of the operator (A) are
(1) Schodinger representation:

(A = (Is(IAlTs(E)
= (Y (0) """ A~ /P14 (0)).
(2) Heisenberg representation:
(A(6) = (P (0)I A (D)1 (0)
= (P (0)]e!*/" A IR 4 (0)).
(3) Interaction representation:
GENGINGIAG)
= (i@ A I (1)),
= (Y(0) ™" Ae~ M4 (0)).

Thus, (A(t)) does not depend on the representations.
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(2) The problem on the onset of magnetic moment

(@)

(b)

Let us consider the Anderson model within the Hartree-
Fock approximation as

1:1 = Z <€kgé}:aékg + ka\f}zaag + V;a;ékg) + Zedai&',,
ko o
+ U Y (hs)he — Ulfy)(Ay),

with g, = ajfia and U is the Coulomb interaction. This
Hamiltonian has the same form for the non-interacting case
by €4 — €4 + U (z). Therefore, we have Green’s function
6 (8) = — (/MO [d, (0), 4} (0)]) as
1
r —
) e U - Y@

with the self-energy of " (e) = >, |Vk|?/(e — €k + i0T).
The occupation (fi,) for each spin o is obtained from the
self-consistent calculation of

(Ay) = /Oo (—ilm[G;(e)]) de

(7 an-1€F = €= Ulhs)
2 r/2

where I' = 27 3", [Vi|?8(€ — €xo)-

For the symmetric case € = ¢4 + U /2, we have
1
yeot ( () = (<ﬁ5> - 2) x

with a spin-unpolarized solution with (f,) = () = 1/2.
Here, we put y = =x['/2U. To find the spin-polarized
solution with (f,) # (fs), we consider the energy when
the electronic state at €r is modified by n,s = 1/2 £ 4n.
Since the increase of total energy becomes énse — U (8n)?
with §n = v(eF)de, the condition for the appearance of the
spin-polarized state becomes Uv(er) > 1, which is called
the Stoner criterion. Then for the symmetric case, we have

1 2
y>y'+ ((fm - 2) 7%,
which is reduced to

. al
y<1, thatis U > -



