
January 30, 2014 10:19 PSP Book - 9in x 6in Hirose-Kenji-rev2

Solutions Manual

Chapter 2

(1) The problem on the transmission and scattering matrix

(a) The wavefunction is written as

ψ(x) =
{

AeikLx + Be−ikLx (x < 0)

C eikR x + De−ikR x (x > 0),

where �kL = √
2m(ε − VL) and �kR = √

2m(ε − VR ). From

the boundary condition at x = 0, we have(
A
B

)
= 1

2kL

(
kL + kR kL − kR

kL − kR kL + kR

)(
C
D

)
= M

(
C
D

)
.

Here, M = M(L ← R) is the transfer matrix. A particular

solution is obtained by letting D = 0, which represents

a wave incident from the left and transmits through the

potential barrier to the right.

We calculate

R(ε) = |B|2

|A|2
= (kL − kR )2

(kL + kR )2

T (ε) = kR

kL

|C |2

|A|2
= 4kLkR

(kL + kR )2
,

where the relation R(ε) + T (ε) = 1 should be noted. The

current density j is obtained from

j =

⎧⎪⎨
⎪⎩

�kL

m

(|A|2 − |B|2
)

(x < 0)

�kR

m
|C |2 (x > 0).

The current conservation requires the relation

|B|2

|A|2
+ kR

kL

|C |2

|A|2
= 1,

which corresponds to the relation of R(ε) + T (ε) = 1.
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(b) In the same way as (a), the wavefunction is written as

ψ(x) =
⎧⎨
⎩

Aeikx + Be−ikx (x < −a)

C e−κx + Deκx (−a < x < a),

E eikx + F e−ikx (x > a)

where �k = √
2mε and �κ = √

2m(V0 − ε).

From the boundary conditions at x = −a and x = a,

we have the relation for the transfer matrix M = M(L ←
C )M(C ← R) as(

A
B

)
=
(

(cosh2κa + i(ξ/2)sinh2κa) e2ika

−(iη/2)sinh2κa

(iη/2)sinh2κa
(cosh2κa − i(ξ/2)sinh2κa) e−2ika

)(
E
F

)
,

where we abbreviate the parameters with ξ = κ/k − k/κ
and η = κ/k + k/κ .

A particular solution is obtained by letting F = 0 as

E
A

= e−2ika

cosh2κa + i(ξ/2)sinh2κa
.

Then the transmission becomes

T (ε) = |E |2

|A|2
≈ 16e−4κa

(
kκ

k2 + κ2

)2

,

where we use cosh2κa ≈ sinh2κa ≈ e2κa/2 for κa � 1.

(c) The transfer matrix M and the S matrix are defined as(
A
B

)
=
(

M11 M12

M21 M22

)(
E
F

)
,

and (
B
E

)
=
(

S11 S12

S21 S22

)(
A
F

)
,

where the coefficients B and E represent the outgoing
waves in terms of the coefficients A and F of the incoming
waves. The matrices S and M are related to each other with

the condition of the conservation of the current density

probability as

|B|2 + |E |2 = |A|2 + |F |2,
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which produces the unitarity condition of the S matrix as

S†S = I . Here, S† is the Hermitian conjugate matrix of S
and has the constraints as

|S11| = |S22|, |S12| = |S21|,
|S11|2 + |S12|2 = 1, S11 S∗

12 + S21 S∗
22 = 0.

When the Schrödinger equation has a solution with time-

reversal symmetry as in (b), there is a symmetric condition

expressed by S∗S = I . When the S matrix is unitary and

symmetric, the transfer matrix M is expressed using the S
matrix as

M =
(

1/S12 S∗
11/S∗

12

S11/S12 1/S∗
12

)

with

detM = (1 − |S11|2)/|S12|2 = 1.

The direct calculations of the transfer matrices M in (a)

and (b) show that M in (b) with time-reversal symmetry

satisfies these conditions, while that in (a) does not. The

transmission coefficient T (ε) is given by |E |2/|A|2 with F =
0 as

T (ε) = 1

|M11|2
= |S12|2.

(2) The problem on the thermoelectric transport relations

(a) In metallic systems, we neglect the lattice contribution

to thermal conductivity. The Boltzmann equation in the

relaxation time approximation becomes

f = f0 − τ
(

vx
∂ f0

∂x
+ eE

m
∂ f0

∂vx

)

and electric and thermal current densities are defined by

j = 2

(2π)3

∫∫∫
evx f dkx dkydkz

jq = 1

(2π)3

∫∫∫
εvx f dkx dkydkz.
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Using the following relations for the Fermi–Dirac distribu-

tion function f0 = 1/(e(ε−μ)/kB T ) + 1)

∂ f0

∂vx
= mvx

∂ f0

∂ε

∂ f0

∂x
= −∂ f0

∂ε

{
ε

T
∂T
∂x

+ T
∂

∂x

(μ
T

)}
,

j and jq are calculated as

j = 2

(2π)3

∫∫∫
τ

(
−ev2

x
∂ f0

∂x
− e2 E

m
vx
∂ f0

∂vx

)
dkx dkydkz

= K0

{
e2 E − eT

∂

∂x

(μ
T

)}
− K1

e
T
∂T
∂x

jq = 2

(2π)3

∫∫∫
τε

(
−v2

x
∂ f0

∂x
− eE

m
vx
∂ f0

∂vx

)
dkx dkydkz

= K1

{
eE − T

∂

∂x

(μ
T

)}
− K2

1

T
∂T
∂x

,

where the coefficients Kn (n = 0, 1, 2) are given by

Kn = 2

(2π)3

∫∫∫ (
−∂ f0

∂ε

)
τv2

x ε
ndkx dkydkz

= 2
√

2m
3π2�3

∫ ∞

0

(
−∂ f0

∂ε

)
τεn+3/2dε

Note that
∂

∂x

(μ
T

)
= ∂

∂T

(μ
T

) ∂T
∂x

.

(b) The electric conductivity σ is obtained with the condition of

∂T /∂x = 0 in j and the Seebeck coefficient S is obtained

with the condition of j = 0 and ∂(μ/T )/∂x = 0 as

σ = j
E

= e2K0, S = ∂V
∂T

= E
∂x
∂T

= 1

eT
K1

K0

,

while the thermal conductivity κ is obtained with the

condition of j = 0 as

κ = jq

−∂T /∂x
= K0K2 − K2

1

K0T
.

For the Fermi–Dirac distribution function in the metallic

systems, since −∂ f0/∂ε ≈ δ(ε − εF ), we have

σ = ne2τ

m
, κ = π2

3

nτ
m

k2
B T ,
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where the density n is n = (1/3π2)(2m/�2)3/2ε
3/2
F .

We note that in the present free electron metallic systems,

κ

σT
= π2

3

(
kB

e

)2

(= 2.45 × 10−8[W ·�/K 2])

takes a constant value, which is called the Wiedemann–

Franz law.

(c) Rewriting the equations for j and jq in (a) as

E = j
σ

+ T
e
∂

∂x

(μ
T

)
− T

e
K1

K0

∂

∂x

(
1

T

)

jq = −κ ∂T
∂x

+ j
e
σ

K1,

and putting them into the formula for heat transfer density

Q = j E + ∂ jq

∂x
,

we obtain

Q = j 2

σ
− ∂

∂x

(
κ
∂T
∂x

)
− j

T
e
∂

∂x

(K1 − μK0

K0T

)
.

The first term is the usual Joule heat density and the second

term is the heat density due to the thermal transport. The

third term QT = −ξ j(∂T /∂x) expresses the heat density,

which appears when both the current density j and the

gradient of temperature ∂T /∂x are present. Here, the term

QT is the Thomson heat density and ξ = (T /e)d((K1 −
μK0)/K0T )/dT is the Thomson coefficient.
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(3) The problem on the derivation of Kubo formula

(a) We evaluate P within the lowest order perturbation theory

P =
∑
αβ

(
εβ − εα

) (
Pαβ − Pβα

)
,

where the probability is

Pαβ = f (εα)
(

1 − f (εβ)
)

Wαβ

with the Fermi–Dirac distribution function f (ε). Using

Fermi golden rule for the perturbation V = eE z, the

transition rate Wαβ is obtained as

Wαβ = 2π

�
e2|E |2|〈α|z|β〉|2δ

(
�ω − (εβ − εα)

)
.

(b) Combining the result in (a) with the formula

P = 〈E · J〉 = lim
ω→0

Re [σ (ω)] |E |2,

we obtain the conductivity

lim
ω→0

Re [σ (ω)] = lim
ω→0

2πe2

�

∑
αβ

|〈α|z|β〉|2
(
εβ − εα

)
× ( f (εα) − f (εβ)

)
δ
(
�ω − (εβ − εα)

)
.

This expression is rewritten in terms of the momentum

operator by using the relation

〈α|pz|β〉 = − i
�

m
(
εβ − εα

) 〈α|z|β〉,

which is obtained from

pz = m
dz
dt

= − i
�

m [zH − H z] .

Therefore, in the limit ω → 0 the conductivity is written as

σ = 2π�

( e
m

)2
∫ ∑

αβ

|〈α|pz|β〉|2

×
(

−∂ f
∂ε

)
δ (ε − εα) δ

(
ε − εβ

)
dε.

This is the Kubo formula for the conductivity. Note that in

the above derivation the linear response is included through

Fermi golden rule for the electronic transitions induced by

an applied field.
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(4) The problem on the friction coupled to heat bath

(a) From the equations of motion by ẋ = d H/dp, ṗ =
−d H/dq, we have

ẋ = p
m

, ṗ = −dV (x)

dx
+
∑

i

γi

(
xi − γi

miω
2
i

x
)

ẋi = pi

mi
, ṗi = −miω

2
i xi + γi x ,

which are reduced to

mẍ = −dV (x)

dx
+
∑

i

γi xi −
∑

i

γ 2
i

miω
2
i

x

mi ẍi = −miω
2
i xi + γi x .

These equations express the time evolutions of a system

coupled to a heat bath.

(b) With initial conditions, we have the solution for the motion

of the heat bath oscillators xi (t) as

xi (t) = xi (0)cos(ωi t) + pi (0)

miωi
sin(ωi t)

+ γi

miωi

∫ t

0

sin
[
ωi (t − t′)

]
x(t′)dt′.

(c) Integrating the third term by parts, we have

xi (t) − γi

miω
2
i

x(t) =
(

xi (0) − γi

miω
2
i

x(0)

)
cos(ωi t)

+ pi (0)

miωi
sin(ωi t) − γi

miω
2
i

∫ t

0

cos
[
ωi (t − t′)

] p(t′)
m

dt′.

Then substituting this into the equation of ṗ, we have

m
dv(t)

dt
+ dV (x)

dx
+
∑

i

γ 2
i

miω
2
i

∫ t

0

cos
[
ωi (t − t′)

]
v(t′)dt′

=
∑

i

γi

[(
xi (0) − γi

miω
2
i

x(0)

)
cos(ωi t) + pi (0)

miωi
sin(ωi t)

]
.

Therefore, we have the generalized Langevin equation as

m
dv(t)

dt
= −m

∫ t

−∞
γ (t − t′)v(t′)dt′ + η(t) + F
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where F = −dV (x)/dx , γ (t) and η(t) are expressed by

γ (t) = �(t)
1

m

∑
i

γ 2
i

miω
2
i

cos(ωi t),

η(t) =
∑

i

γi

[(
xi (0) − γi

miω
2
i

x(0)

)
cos(ωi t)

+ pi (0)

mωi
sin(ωi t)

]
.

This shows that friction function γ (t) has a memory effect.

When the spectrum of ωi is continuous, we replace the

sum into the integral as
∫∞

0
g(ω)dω where g(ω) is the

DOS for the harmonic oscillators. If the DOS is quadratic

as g(ωi ) ∝ ω2
i , then γ (t) is proportional to δ(t) and the

Langevin equation becomes Markovian.

(d) Fluctuating force η(t) is determined from the initial

positions and momenta of the oscillators. When the

initial distribution is in thermal equilibrium as feq =
exp(−H (0)

B /kB T ), we have〈
xi (0) − γ 2

i

miω
2
i

x(0)
〉

= 0, 〈pi (0)〉 = 0

and the second moments become〈(
xi (0) − γ 2

i

miω
2
i

x(0)

)2 〉
= 0,

〈 pi (0)2

mi

〉 = kB T .

These provide the fluctuation–dissipation relation

〈η(t)〉 = 0, 〈η(t)η(t′)〉 = mkB T γ (t − t′).

This is equivalent to the Caldeira–Leggett model describing

the irreversible process due to macroscopic friction by

introducing the Lagrangian as follows:

L = 1

2
mẋ2 − V (x) +

∑
i

γi xi x

+
∑

i

[
1

2
mi ẋi

2 − 1

2
miω

2
i ẋi

2

]
−
∑

i

γ 2
i

2miω
2
i

x2
i .

We note that the bath term xi (ω) in the Fourier space

xi (ω) = γi x(ω)

mi (ω
2
i − ω2)

,

cancels the second and third friction term of x(ω) in mẍ =
−dV (x)/dx +∑i γi xi −∑i

(
γ 2

i /miω
2
i

)
x at ω = 0.
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(5) The problem on the relaxation of distribution function

(a) Changing the continuous master equation as

∂ P (v , t)

∂t
= −

∫
W(v → v + r)P (v , t)dr

+
∫

W(v − r → v)P (v − r, t)dr

and using the general relation of

f (v − r, t) = f (v , t) − r
∂

∂x
f (v , t) + · · · = e−r∂/∂v f (v , t),

the continuous master equation is written as

∂ P (v , t)

∂t
= −

∫ (
1 − e−r∂/∂v)W(v → v + r)P (v , t)dr

=
∞∑

n=1

(−1)n

n!

(
∂

∂v

)n ∫
W(v → v + r)rn P (v , t)dr.

This shows that the coefficients Cn(v) is expressed as

Cn≥1(v) =
∫

W(v → v + r)rndr, C0(v) = 0.

Since W(v → v + r)�t is the probability v → v + r in�t,∫
W(v → v + r)rndr = lim

�t→0

〈
(v(t +�t) − v(t))n

�t

〉
.

For the Langevin equation without external force (F = 0),

C1(v) = 〈�v(t)〉
�t

= −γ v , Cn≥3 = 〈�v(t)n〉
�t

= 0,

C2(v) = 〈�v(t)2〉
�t

= 1

�t

∫ t+�t

t

〈η(t)η(t′)〉
m2

dtdt′ = 2kB T γ
m

.

Then we obtain the Fokker–Planck equation as

∂ P (v , t)

∂t
=
(
∂

∂v
γ v + kB T γ

m
∂2

∂v2

)
P (v , t).

For the steady state with ∂ P (v , t)/∂t = 0, we have

Peq(v) = exp(−mv2/2kB T ), showing P (v , t) approaches

the Maxwell–Boltzmann distribution in the long time.
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(b) In the presence of external force, the Langevin equation is

m
dv
dt

= −∂V
∂x

−mγ v+η(t), 〈η(t)η(t′)〉 = 2mkB T γ δ(t−t′).

When we consider the large friction for γ , since dv/dt
becomes 0 for a short time, v = (−dV /dx +η(t))/mγ . Then

C1(v) = − 1

mγ
dV
dx

, C2(v) = 2kB T
mγ

, Cn≥3(v) = 0,

and we have the Fokker–Planck equation as

∂ P (v , t)

∂t
= 1

mγ
∂

∂x

[
∂V
∂x

+ kB T
∂

∂x

]
P (v , t),

which is known as the Smoluchowski equation.

Since the diffusion constant is given by D = kB T /mγ ,

the first term of this equation expresses the drift nature

by an external potential and the second term reveals the

diffusive nature. When the probability current J is defined

by ∂ P/∂t = −∂ J /∂x , we have

J = − 1

mγ

(
∂V
∂x

+ kB T
∂

∂x

)
P (v , t).

= −kB T
mγ

e−V /kB T ∂

∂x

[
eV /kB T P (v , t)

]
.

The steady-state ∂ P/∂t = 0 is achieved for J = const.

Especially for J = 0, we have the Boltzmann distribution

P (v , t) ∝ e−V /kB T .

Let us obtain the nonequilibrium probability current J .

Integrating from x = A to x = B (we assume P (B) = 0)

mγ J
∫ B

A
eV /kB T dx = −kB T

[
eV /kB T P

]B
A ,

we have the probability current as

J = kB T P (A)eV (A)/kB T

mγ
∫ B

A eV /kB T dx
.

Evaluating the potential curve V at the saddle point C by

V = V (C ) − KC (x − xC )2/2 + · · · and using the relation∫ B

A
e(V −V (C ))/kB T dx �

∫ ∞

−∞
e− KC (x−xC )2

2kB T dx =
√

2πkB T
KC

,

we have the Arrhenius-type of the probability current

J̃ = J
P (A)

= 1

mγ

√
KC kB T

2π
e−Q/kB T

where Q = V (C ) − V (A) is the activation energy.
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Chapter 3

(1) The problem on the representations

(a) For Ĥ = Ĥ0 + V̂ (t), the equations of motion become

(1) Schrödinger representation:

i�
∂ψ̂S (t)

∂t
= Ĥ ψ̂S (t)

(2) Heisenberg representation:

i�
∂ Â H (t)

∂t
= [ Â H (t), Ĥ

]
with the Heisenberg operator as

Â H (t) = ei Ĥ t/� Âe−i Ĥ t/�.

(3) Interaction representation:

i�
∂ψ̂I (t)

∂t
= V̂ (t)ψ̂I (t)

with the Interaction operators as

Â I (t) = ei Ĥ0t/� Âe−i Ĥ0t/�

ψ̂I (t) = ei Ĥ0t/�e−i Ĥ t/�ψ̂(0) = Ŝ(t, 0)ψ̂(0).

(b) The expectation values of the operator 〈 Â〉 are

(1) Schödinger representation:

〈 Â(t)〉 = 〈ψ̂S (t)| Â|ψ̂S (t)〉
= 〈ψ̂(0)|ei Ĥ t/� Âe−i Ĥ t/�|ψ̂(0)〉.

(2) Heisenberg representation:

〈 Â(t)〉 = 〈ψ̂(0)| Â H (t)|ψ̂(0)〉
= 〈ψ̂(0)|ei Ĥ t/� Âe−i Ĥ t/�|ψ̂(0)〉.

(3) Interaction representation:

〈 Â(t)〉 = 〈ψ̂I (t)| Â I (t)|ψ̂I (t)〉
= 〈ψ̂I (t)|ei Ĥ0t/� Âe−i Ĥ0t/�|ψ̂I (t)〉.

= 〈ψ̂(0)|ei Ĥ t/� Âe−i Ĥ t/�|ψ̂(0)〉.

Thus, 〈 Â(t)〉 does not depend on the representations.
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(2) The problem on the onset of magnetic moment

(a) Let us consider the Anderson model within the Hartree–

Fock approximation as

Ĥ =
∑

kσ

(
εkσ ĉ†kσ ĉkσ + Vkĉ†kσ d̂σ + V ∗

k d̂†
σ ĉkσ

)
+
∑
σ

εdd̂†
σ d̂σ

+ U
∑
σ

〈n̂σ̄ 〉n̂σ − U 〈n̂↑〉〈n̂↓〉,

with n̂dσ = d̂†
σ d̂σ and U is the Coulomb interaction. This

Hamiltonian has the same form for the non-interacting case

by εd → εd + U 〈n̂σ̄ 〉. Therefore, we have Green’s function

Gr
σ (t) = −(i/�)θ(t)〈[d̂σ (t), d̂†

σ (0)
]〉 as

Gr
σ (ε) = 1

ε − εd − U 〈n̂σ̄ 〉 −�r (ε)
,

with the self-energy of �r (ε) = ∑kσ |Vk|2/(ε − εkσ + i0+).

The occupation 〈n̂σ 〉 for each spin σ is obtained from the

self-consistent calculation of

〈n̂σ 〉 =
∫ εF

−∞

(
− 1

π
Im[Gr

σ (ε)]

)
dε

= 1

π

(
π

2
+ tan−1 εF − εd − U 〈n̂σ̄ 〉

�/2

)
where � = 2π

∑
kσ |Vk|2δ(ε − εkσ ).

(b) For the symmetric case εF = εd + U /2, we have

ycot (π〈n̂σ 〉) =
(

〈n̂σ̄ 〉 − 1

2

)
π

with a spin-unpolarized solution with 〈n̂σ 〉 = 〈n̂σ̄ 〉 = 1/2.

Here, we put y = π�/2U . To find the spin-polarized

solution with 〈n̂σ 〉 
= 〈n̂σ̄ 〉, we consider the energy when

the electronic state at εF is modified by nσ, σ̂ = 1/2 ± δn.

Since the increase of total energy becomes δnδε − U (δn)2

with δn = ν(εF )δε, the condition for the appearance of the

spin-polarized state becomes U ν(εF ) > 1, which is called

the Stoner criterion. Then for the symmetric case, we have

y > y2 +
(

〈n̂σ 〉 − 1

2

)2

π2,

which is reduced to

y < 1, that is U >
π�

2
.


