Chapter 2

Fundamentals of Fluid
Mechanics

2.1 Given, U = 25 m/s, n = 6.

The turbulence number is given by

VuZ + 072 + w2

n = 100 —
3U

But for isotropic turbulence,

w2 =2 = w'?
Therefore,

V3u2

n = 100 ——
3U

V3u”?

3 X 25

6 x3x25
100

6 = 100

u? =

2.2 Fluid acceleration is given by Equation (2.21), as
v _ov _ ov
Dt ot Tox
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But 0V/ot = 0 for steady flow. Therefore, we have
DV ov

Dt~ Tox
Thus, there is fluid acceleration.

The volumetric flow rate is given by

Q = AV,=¢ "V,

)

e
ove -,
BmiQe

since, Q is a constant. Therefore,
e

ov _|(«q

Dt |\e*

2.3 Given, 2L =0.15°C/s and 9L =0.9°C/m, V, =0.72m/s

Using Euler’s acceleration relation, Equation (2.20), we have

or _ DT oT
ot Dt ox

= 0.15 - (0.72)(0.9)

= [-0.498°C/s

Since 0T /0t is independent of x, at 3 m or any other location

oT .
o =~ 0498°C/s

2.4 Given that, (2L

2 ) max = 0-006 K/s = 21.6 K/hr
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Att=2hr, 2z =0;

or —0.02
T 288 (—e~ ") (—0.02)
= 5.534K/hr

or

— = -6. k

5 6.755 K /km

E = 8£+Va£

Dt 9t oz

The limiting condition on the ascent stipulates that
5.534 —6.755V, | < 21.6

Solving for V,max, we get

6.755 Vimax = 21.6 4+ 5.534

‘/zrnax = 4.017 km/hr

4.017
3.6

2.5 Let S to be the cross-sectional area of the tube and x coordinate is
along the tube axis. Thus, the unit vector in the direction normal to the
cross-section is m = 4. The normal component of velocity V' is V - n = .
Since u varies only with r, the elemental area dA can be taken to be the
annular strip dA = 2nrdr.
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(a) The volume flow rate becomes

/ udA
S
R 7“2
/0 Umax (1 — R2> 2mrdr

Q

2
= “Umax TI
2

The average velocity is

=[O

Uay =

1 2
5 Umax TR
TR?

1

5 Umax
2

(b) For R =25 mm and umax = 10 m/s, the volume flow rate is

Q = %(unw(ao25ﬁ

= 10.00982m?/s

(¢) For p1000 kg/m?, the mass flow rate through the tube is

pQ

(1000)(0.00982)
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2.6 The acceleration components are given by

ou ou
a; = U— +v

ox Ay

(z—9%) + (zy +2y) (— 2y)

= 2-1)+(2+2)(-2)

= | — T7units

(z —9%) () + (zy + 2) (x + 2)

2-1)+(2+2)(4)

= [17units]

a = agitayj

- [T

The unit vector along 30° direction is

At (z,y) = (2,1),

3 1
n=c0s30°% +sin30° j = %1_1_5]
Therefore, the component of velocity along 6 = 30° is

Vage = V- ngoe

- (9)6)

- [25Tus]
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The maximum velocity is

V = /12 + 42 = [4.123 units at 75.96° from z-axis

Maximum acceleration is

a =724 172 = [18.385 units at 292.38° from z-axis

The directions of the maximum velocity and accelerations are as shown in
Figure S2.6.

Figure S2.6

2.7 Let the control volume (CV) be as shown in Figure S2.7. The relative
velocity of water at CV is (V] + at).

Figure S2.7

By continuity equation, we have
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0
a (pAgh) = p (Vl + at) A1
dh Ay
E = (V1 + at) A72
H t
/ dh = i—; (Vi + at) dt
0 0
A1 at2
H = A—2 (Vlt + 2)
2 2A
pp it 2y
a Aia

2.8 Considering the inflow and outflow along r, # and z-directions, we have

For r-direction:

op\ dr oV, \ dr dr
fov-ann = ~lo= (3) 5] [5- () 5] (%)
= fp‘/}rd9d2+p‘/}ﬁd0dz+p Ve L4 o
2 or 2

ap dr

fitn = oo ()4 (5 2] +) e

= pVrdfdz + er%dez +p <8VT) r %d@dz

or
ap dr




12 IMEF 2nd ed. Solutions Manual

For 0—direction:

foran = o (35) 2] - ()2
- —pvgdrdz+p<%‘29> Sdrd: +V9<gg> Srd:
for s = o () 2] o (3) 2o
= p%drdz—f—p%ﬁd dz (Zg) ?d rdz
For z-direction:
i = () 4] () 2]

—pV?“der—l—p(a )d rdfdr + 'V, <gz) %rder

oo (3) 5 e (50) 2 e

oVardodr + p (22 Eragar 1 v, —rd&dz
0z 2 0z

[ -aa,,

Therefore,

/CSPV-dAZ/(pV.dA)r+/(pV.dA)g+/(pV.dA)Z
e 2] 2] G122

tr (p [%V} TV, [gﬂ)}drdﬁdz

A(pVy) | 9(pVe) | 9(pV2)
o a0 ' oz

or

/pV~dA = |:pV;~+T }drd@dz
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i.e. the net rate of mass flux exiting the control surface is given by

A(pVr)  0(pVe) | O(pVz)
pVi+r 5 + 90 +r ER dr df dz

The mass inside the control volume at any instant of time is the product
of the mass per unit volume, p and the volume rdrdfdz. Thus, the rate of
change of mass inside the control volume is given by

%rd@drdz

Thus, the differential form of mass conservation becomes

ApVr)  0(pVe) | O(pVz) dp _
pVie+r 5 + o0 +r ER drd@dz—kardﬁdrdz'—()

or

Op  10(prVy)  10(pVp)  9(pVz) _
o Ty ar Ty o0 T ar O

Note: The elemental control surface areas are:

(rdfdz) — normal to r-direction
(drdz) — normal to O-direction
(dfdr) — normal to z-direction

For mass conservation,

dp
Ed(volume) + Z (net outflow of mass) =0

Considering the density at the centre of the CV as p and the velocity there
as
V=144V + ie‘/@ +i. V.

where i,, ig, i, are unit vectors in the r, # and z directions, respectively,
and V., Vy, V. are the velocity components in the r, 8 and z directions,
respectively. To evaluate fcs pV - dA, we should account for the mass flux
through each of the six faces of the control surface. The properties at each
of the six faces of the control surface can be obtained from a Taylor’s series
expansion about the centre of the CV.

2.9 (a) Velocity at (10,6) and t = 3 s is
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|V =(30i+24j — 15k) m/s|

(b) At t = 0, the slope of the streamlines is

dy 4y

dx 3z

(¢) The equation of the streamlines at ¢ = 0 and passing through the point
(10, 6), becomes

dy 4y
de 3z
24
- 30
dr  dy
5 0 4
Integrating this we get
1 f— 4 s + >
y=gate

where c is an arbitrary constant.

(d) At t = 0, the streamlines are straight lines, at an angle of 38.66° to the
x-axis.

2.10 By continuity equation, we have

oV, N vy . oV,
oz y 0z

=0

Since the plates are infinitely long in z-direction, we have z — oo and hence

ov.
9z

0
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Also, for fully developed flow

oVy

or =0

Thus, the continuity equation reduces to

This implies that,

o,
oy

Vyy = constant

Also, at the impervious plate surface, V,, = 0, therefore, everywhere.

2.11 Assuming the fluid to
comes

uy =

Uy =

Thus,

be water, at the exit, the weight flow rate be-

pgAsuz = pgAiuy

200 1
9.81 x 103 (/4) (0.1)*

2.6m/s

200
9.81 x 103 (7r/4) (0.06)>

—_

7.21m/s

2.6
U = —
ml 0.5
-
7.21
Um2 =

I
e
o0
R

8.79m/s
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2.12 From momentum theorem, the force F' must be equal to the rate of
change of momentum normal to the plate surface.

That is,

w

where Qg = Vi Ag and A is the cross—sectional area of the jet.

By momentum theorem, the force balance parallel to the plate can be written
as

(leVl—szVz)—pVbroosa=0 (2)
But V4 = V4 = V), therefore, Eq. (2) becomes
Qocosa = Q1 — Qs (3)
Also, by continuity,
Qo=Q1+ Q2 (4)
From Egs. (3) and (4), we get
Q1 = % (1+cosa)
Qy = % (1 —cosa)

2.13 Consider the control volume shown in Figure 2.39. At any radial
position, the equilibrium condition can be expressed by

Trz (2m1) L = (p1 — p2) wr?

_|(PL—P2\T
Trz = ] 5

Given that,
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Therefore,

_ 1 72
V,=— <p1 ; pz) E% + constant

At r =R, V, =0, by no slip condition, thus we have,

| [ P1—D2 i 2 2
V. = < ; )4/1 (R r)

2.14 (a) The z-component of the Navier-Stokes equation for this case is
zero, since V, = 0.

The y-component of the Navier-Stokes equation becomes

2

a2V,
0=pg+p—y

Integrating, we get

uiy—kpgx:constant =c
dx

But, at x = h,
dvy
2y,
. dx
Thus, the constant becomes
c=pgh—r
Hence,
av,
2y h—x)—
pg=pg(h—z) =1
Integrating this, we get
2
wVy = pg (h:z: — 2) — 72 + constant (1)

But at x = 0, V}, = 0, therefore, constant = 0. Thus,

2
g <1L:L' — 2) —TI
‘/y p—

L
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(b) Integrating the Eq. (1) once more, we get

p?v,? B ha? 23 T2
2r

The constant c3 = 0 with the condition that at x = 0, V,, = 0.

Also, the volume flow rate hV, = 0, since V,, = 0. Therefore,

WoR\  Th?
lg )5 =0

2 6 2
h_ pght
2 3
2
= |Zpgh
T 5 P9

2.15 The volume flow rate through the pipe is

R
V = /V~dA:/ u 2mrdr
A 0
B\ o
= — | = — R?) 27rd
/0 4M(ax>(r ) 2rdr
since for pipe flow the local velocity w is given by
R? (0p 7 2
—_ ()1 (=
Y i <8x> { (R) }

where R is the pipe radius, z is the axial coordinate and r is the radial

coordinate. Thus,
vy TR (op
8u \ Or

In fully developed flow, the pressure gradient, dp/dx, is constant.

Therefore,

9 _p2—p1 __Ap

oz L L
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Therefore,
v - TR Ap
8u L
TApR* B 7ApD*
 8uL  128ulL

for laminar flow in a horizontal pipe. This gives,

128uLV
Ap = ———
P m D4
17 [ #D? _
surV ()
m D4 "D D
The head loss h; is
_ p1— P2
Py

+ (21 — 22)

hy

For horizontal pipe z; = z9, thus,

h’l = = —

Re D 2¢g

where V = V.

2.16 The pressure drop through the pipe is given by
L

o/

pP1—Dp2= p;ve V2

But by state equation, p1/p1 = p2/p2. Therefore, py = (p2/p1) p1. Thus,

P2 Pave 1,2 L
_ 7= — PHavey2 =
p1 o P1 9 D f
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or
p1 Pave ¢ ,2 L
— — = Ve — 1
S (pr—=p2) ==~V 5 f (1)
The mass flow rate is given by
. p1+ p2 mD?
= Pave AV = —_—
T Pave 2 4
Therefore,
_ 8m 1
D2 p1 + p2

Substituting this V into Eq. (1), we get

£ (p1—p2) = pevef L 02 n !

p1 2 D7D (p 4 py)?
PL, o oy 16 f L1i?

o (hi—p2) = 2 D5

2.17 The flow outside the boundary layer can be assumed to be isentropic.
By energy equation, we have

% V2
h A _p _B
A+2 B+ 5

where h4 and hp are the static enthalpy at A and B, respectively, V4 and
Vp are the corresponding velocities. Treating air to be a perfect gas, we
have h = ¢,T. Thus, the energy equation becomes

V2 V2
CpTA + A = CpTB + -B
2 2
V2 V2
Tp = Ta+ 2714 -£
cp  2¢
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since ¢, = 1004.5 m?/(s? K), for air. The Mach number at B is

Mp = 2

VYRIB

470/3.6
V1.4 x 287 x 281.9

= [0.388]

2.18 The velocity at any point on the cylinder surface can be expressed, by

Equation (2.51), as
V=- <2usin0 + F)
2ma

where T' is the circulation and 6 varies from 0 to 27w. Let the top of the
cylinder is at § = 7/2. Therefore, the bottom is at §# = 37/2. Thus, the
velocities at the top and bottom of the cylinder are

T
Vtop = —<2u—|—27m)

r
Vbottom = - (_2+27ﬂ1)

By Bernoulli equation, we have

1 1
Prop + ith%p = DPbottom + §pVb20ttom

Therefore,
_ — } (V2 — V2 )
Ptop — Pbottom = 2/) bottom top
1 T T
= —pl|l—4u— —4u—
2p Y 2ma Y 2ra

2
= ——pul
Ta
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The circulation if given by
'=(xA

where ( is the vorticity and also, ¢ = 2w.

Thus,
I' = 2wra?®
Therefore,
Ptop — Pbottom 2 (2wma?)
Tz T maM T
3pPU mTa 50U
Saw

2.19 The relation between the local and material rates of change is given by

D 0

Z 24y,
Di oY
Therefore,
DT oT oT oT oT
Dt oot Ve T gy TVar

= 5+ (2)[1] + (3y + 3t%y) [2yz] + 12 [°]
At (3,5,2) and t = 2,

DT
Dt

54+3x14+B3x5+3x4x5](2x5x2)+12x5x%x5

= [1808]

2.20 Given, d = 10 m, V = 5.5 m/s, p = 10° Pa, T = 18 + 273.15 = 291.15
K, Cp = 1.4.
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The air density is

_ P
p RT

10°

= 1.197kg/m?

The drag experienced by the parachute is

1
D = 5pVZSCD
1 2
= 3 x 1.197 x 5.5 x

1
= 5 1.197 x 5.5 x

= 1990.7N

At steady descend, D = W, thus

W =[1991 kN]

287 x 291.15

4

7w D?
_ 1.4
1 ) *

102
il ) x 1.4

23



