
Chapter 2

Fundamentals of Fluid
Mechanics

2.1 Given, U = 25 m/s, n = 6.

The turbulence number is given by

n = 100

√
u′2 + v′2 + w′2

3U
But for isotropic turbulence,

u′2 = v′2 = w′2

Therefore,

n = 100

√
3u′2

3U

6 = 100

√
3u′2

3× 25

√
3u′2 =

6× 3× 25

100

u′2 = 6.75m2/s2

2.2 Fluid acceleration is given by Equation (2.21), as

DV

Dt
=

∂V

∂t
+ Vx

∂V

∂x

5
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But ∂V/∂t = 0 for steady flow. Therefore, we have

DV

Dt
= Vx

∂V

∂x

Thus, there is fluid acceleration.

The volumetric flow rate is given by

Q̇ = AVx = e−x Vx

Vx =
Q̇

e−x

∂Vx

∂x
= Q̇ ex

since, Q̇ is a constant. Therefore,

DV

Dt
=

(
Q̇

e−x

)2

2.3 Given, DT
Dt = 0.15◦C/s and ∂T

∂x = 0.9◦C/m, Vx = 0.72m/s

Using Euler’s acceleration relation, Equation (2.20), we have

∂T

∂t
=

DT

Dt
− Vx

∂T

∂x

= 0.15− (0.72)(0.9)

= − 0.498 ◦C/s

Since ∂T/∂t is independent of x, at 3 m or any other location

∂T

∂t
= − 0.498◦C/s

2.4 Given that,
(
DT
Dt

)
max = 0.006K/s = 21.6K/hr
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At t = 2 hr, z = 0;

∂T

∂t
= 288

(
−e−0.02t

)
(−0.02)

= 5.534K/hr

∂T

∂z
= −6.755K/km

DT

Dt
=

∂T

∂t
+ Vz

∂T

∂z

The limiting condition on the ascent stipulates that

∣∣∣∣ 5.534− 6.755Vz

∣∣∣∣ ≤ 21.6

Solving for Vzmax, we get

6.755Vzmax = 21.6 + 5.534

Vzmax = 4.017 km/hr

=
4.017

3.6

= 1.12m/s

2.5 Let S to be the cross-sectional area of the tube and x coordinate is
along the tube axis. Thus, the unit vector in the direction normal to the
cross-section is n = i. The normal component of velocity V is V · n = u.
Since u varies only with r, the elemental area dA can be taken to be the
annular strip dA = 2πrdr.
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(a) The volume flow rate becomes

Q̇ =

∫

S
u dA

=

∫ R

0
umax

(
1− r2

R2

)
2πrdr

=
1

2
umax πR

2

The average velocity is

uav =
Q̇

A

=
1
2umax πR2

πR2

=
1

2
umax

(b) For R = 25 mm and umax = 10 m/s, the volume flow rate is

Q̇ =
1

2
(10)π(0.025)2

= 0.00982m3/s

(c) For ρ1000 kg/m3, the mass flow rate through the tube is

ṁ = ρ Q̇

= (1000)(0.00982)

= 9.82 kg/s
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2.6 The acceleration components are given by

ax = u
∂u

∂x
+ v

∂u

∂y

=
(
x− y2

)
+ (xy + 2y) (− 2y)

= (2− 1) + (2 + 2)(−2)

= − 7 units

ay = u
∂v

∂x
+ v

∂v

∂y

=
(
x− y2

)
(y) + (xy + 2y) (x+ 2)

= (2− 1) + (2 + 2)(4)

= 17 units

At (x, y) = (2, 1),

V = 1 i+ 4 j

a = ax i+ ay j

= − 7 i+ 17 j

The unit vector along 30◦ direction is

n = cos 30◦ i+ sin 30◦ j =

√
3

2
i+

1

2
j

Therefore, the component of velocity along θ = 30◦ is

V30◦ = V · n30◦

= 1

(√
3

2

)
+ 4

(
1

2

)

= 2.87 units
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The maximum velocity is

V =
√
12 + 42 = 4.123 units at 75.96◦ from x-axis

Maximum acceleration is

a =
√

72 + 172 = 18.385 units at 292.38◦ from x-axis

The directions of the maximum velocity and accelerations are as shown in
Figure S2.6.

x292.38◦

75.96◦

a

V

Figure S2.6

2.7 Let the control volume (CV) be as shown in Figure S2.7. The relative
velocity of water at CV is (V1 + at).

CV

(V1 + at)

Figure S2.7

By continuity equation, we have
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∂

∂t
(ρA2h) = ρ (V1 + at)A1

dh

dt
= (V1 + at)

A1

A2

∫ H

0
dh =

A1

A2

∫ t

0
(V1 + at) dt

H =
A1

A2

(
V1t+

at2

2

)

t2 +
2V1t

a
− 2A2

A1a
H = 0

t =
−V1 ±

√
V 2
1 + 2

A2

A1
aH

a

2.8 Considering the inflow and outflow along r, θ and z-directions, we have

For r-direction:

∫
(ρV · dA)in = −

[
ρ−

(
∂ρ

∂r

)
dr

2

] [
Vr −

(
∂Vr

∂r

)
dr

2

](
r − dr

2

)
dθdz

= − ρVrrdθdz + ρVr
dr

2
dθdz + ρ

(
∂Vr

∂r

)
r
dr

2
dθdz

+Vr

(
∂ρ

∂r

)
r
dr

2
dθdz

∫
(ρV · dA)out =

[
ρ+

(
∂ρ

∂r

)
dr

2

] [
Vr +

(
∂Vr

∂r

)
dr

2

](
r +

dr

2

)
dθdz

= ρVrrdθdz + ρVr
dr

2
dθdz + ρ

(
∂Vr

∂r

)
r
dr

2
dθdz

+Vr

(
∂ρ

∂r

)
r
dr

2
dθdz
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For θ–direction:
∫

(ρV · dA)in = −
[
ρ−

(
∂ρ

∂θ

)
dθ

2

] [
Vθ −

(
∂Vθ

∂θ

)
dθ

2

]
drdz

= − ρVθdrdz + ρ

(
∂Vθ

∂θ

)
dθ

2
drdz + Vθ

(
∂ρ

∂θ

)
dθ

2
drdz

∫
(ρV · dA)out =

[
ρ+

(
∂ρ

∂θ

)
dθ

2

] [
Vθ +

(
∂Vθ

∂θ

)
dθ

2

]
drdz

= ρVθdrdz + ρ
∂Vθ

∂θ

dθ

2
drdz + Vθ

(
∂ρ

∂θ

)
dθ

2
drdz

For z-direction:
∫

(ρV · dA)in = −
[
ρ−

(
∂ρ

∂z

)
dz

2

] [
Vz −

(
∂Vz

∂z

)
dz

2

]
rdθdr

= − ρVzrdθdr + ρ

(
∂Vz

∂z

)
dz

2
rdθdr + Vz

(
∂ρ

∂z

)
dz

2
rdθdr

∫
(ρV · dA)out =

[
ρ+

(
∂ρ

∂z

)
dz

2

] [
Vz +

(
∂Vz

∂z

)
dz

2

]
r dθdr

= ρVzrdθdr + ρ

(
∂Vz

∂z

)
dz

2
rdθdr + Vz

(
∂ρ

∂z

)
dz

2
rdθdz

Therefore,
∫

cs
ρV · dA =

∫
(ρV.dA)r +

∫
(ρV.dA)θ +

∫
(ρV · dA)z

= [ρVr + r

(
ρ

[
∂Vr

∂r

]
+ Vr

[
∂ρ

∂r

])
+

(
ρ

[
∂Vθ

∂θ

]
+ Vθ

[
∂ρ

∂θ

])

+ r

(
ρ

[
∂Vz

∂z

]
+ Vz

[
∂ρ

∂z

])
] dr dθ dz

or
∫

cs
ρV · dA =

[
ρVr + r

∂(ρVr)

∂r
+

∂(ρVθ)

∂θ
+ r

∂(ρVz)

∂z

]
dr dθ dz
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i.e. the net rate of mass flux exiting the control surface is given by
[
ρVr + r

∂(ρVr)

∂r
+

∂(ρVθ)

∂θ
+ r

∂(ρVz)

∂z

]
dr dθ dz

The mass inside the control volume at any instant of time is the product
of the mass per unit volume, ρ and the volume rdrdθdz. Thus, the rate of
change of mass inside the control volume is given by

∂ρ

∂t
r dθ dr dz

Thus, the differential form of mass conservation becomes
[
ρVr + r

∂(ρVr)

∂r
+

∂(ρVθ)

∂θ
+ r

∂(ρVz)

∂z

]
dr dθ dz +

∂ρ

∂t
r dθ dr dz = 0

or
∂ρ

∂t
+

1

r

∂(ρrVr)

∂r
+

1

r

∂(ρVθ)

∂θ
+

∂(ρVz)

∂z
= 0

Note: The elemental control surface areas are:

(rdθdz) — normal to r-direction

(drdz) — normal to θ-direction

(dθdr) — normal to z-direction

For mass conservation,

∂ρ

∂t
d(volume) +

∑
(net outflow of mass) = 0

Considering the density at the centre of the CV as ρ and the velocity there
as

V = irVr + iθVθ + izVz

where ir, iθ, iz are unit vectors in the r, θ and z directions, respectively,
and Vr, Vθ, Vz are the velocity components in the r, θ and z directions,
respectively. To evaluate

∫
cs ρV · dA, we should account for the mass flux

through each of the six faces of the control surface. The properties at each
of the six faces of the control surface can be obtained from a Taylor’s series
expansion about the centre of the CV.

2.9 (a) Velocity at (10, 6) and t = 3 s is
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V = (30 i+ 24 j − 15 k)m/s

(b) At t = 0, the slope of the streamlines is

dy

dx
=

4y

3x

(c) The equation of the streamlines at t = 0 and passing through the point
(10, 6), becomes

dy

dx
=

4y

3x

=
24

30

dx

5
=

dy

4

Integrating this we get

y =
4

5
x+ c

where c is an arbitrary constant.

(d) At t = 0, the streamlines are straight lines, at an angle of 38.66◦ to the
x-axis.

2.10 By continuity equation, we have

∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
= 0

Since the plates are infinitely long in z-direction, we have z → ∞ and hence

∂Vz

∂z
= 0
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Also, for fully developed flow

∂Vx

∂x
= 0

Thus, the continuity equation reduces to

∂Vy

∂y
= 0

This implies that,
Vy = constant

Also, at the impervious plate surface, Vy = 0, therefore, Vy = 0 everywhere.

2.11 Assuming the fluid to be water, at the exit, the weight flow rate be-
comes

Ẇ = ρgA2u2 = ρgA1u1

u1 =
200

9.81× 103
1

(π/4) (0.1)2

= 2.6m/s

u2 =
200

9.81× 103
1

(π/4) (0.06)2

= 7.21m/s

Thus,

um1 =
2.6

0.5

= 5.2m/s

um2 =
7.21

0.82

= 8.79m/s
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2.12 From momentum theorem, the force F must be equal to the rate of
change of momentum normal to the plate surface.

That is,

F = ρV0 Q̇0 sinα (1)

where Q̇0 = V0A0 and A0 is the cross–sectional area of the jet.

By momentum theorem, the force balance parallel to the plate can be written
as

(
ρ Q̇1 V1 − ρ Q̇2 V2

)
− ρV0 Q̇0 cosα = 0 (2)

But V1 = V2 = V0, therefore, Eq. (2) becomes

Q̇0 cosα = Q̇1 − Q̇2 (3)

Also, by continuity,

Q̇0 = Q̇1 + Q̇2 (4)

From Eqs. (3) and (4), we get

Q̇1 =
Q̇0

2
(1 + cosα)

Q̇2 =
Q̇0

2
(1− cosα)

2.13 Consider the control volume shown in Figure 2.39. At any radial
position, the equilibrium condition can be expressed by

τrz (2πr) l = (p1 − p2) π r2

τrz =

(
p1 − p2

l

)
r

2

Given that,

τrz = −µ

(
dVz

dr

)
=

(
p1 − p2

l

)
r

2
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Therefore,

Vz = −
(
p1 − p2

l

)
1

2µ

r2

2
+ constant

At r = R, Vz = 0, by no slip condition, thus we have,

Vz =

(
p1 − p2

l

)
1

4µ

(
R2 − r2

)

2.14 (a) The x-component of the Navier-Stokes equation for this case is
zero, since Vx = 0.

The y-component of the Navier-Stokes equation becomes

0 = ρ g + µ
d2Vy

dx2

Integrating, we get

µ
dVy

dx
+ ρ g x = constant = c

But, at x = h,

µ
dVy

dx
= τ

Thus, the constant becomes

c = ρ g h− τ

Hence,

µ
dVy

dx
= ρ g (h− x)− τ

Integrating this, we get

µVy = ρg

(
hx− x2

2

)
− τx+ constant (1)

But at x = 0, Vy = 0, therefore, constant = 0. Thus,

Vy =

ρg

(
hx− x2

2

)
− τx

µ
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(b) Integrating the Eq. (1) once more, we get

µ2Vy
2

2τ
= ρg

(
hx2

2
− x3

6

)
− τx2

2
+ c3

The constant c3 = 0 with the condition that at x = 0, Vy = 0.

Also, the volume flow rate hVy = 0, since Vy = 0. Therefore,

ρg

(
h3

2
− h3

6

)
− τh2

2
= 0

τh2

2
=

ρgh3

3

τ =
2

3
ρ g h

2.15 The volume flow rate through the pipe is

V =

∫

A
V · dA =

∫ R

0
u 2πrdr

=

∫ R

0

1

4µ

(
∂p

∂x

)(
r2 −R2

)
2πrdr

since for pipe flow the local velocity u is given by

u = − R2

4µ

(
∂p

∂x

)[
1−

( r

R

)2]

where R is the pipe radius, x is the axial coordinate and r is the radial
coordinate. Thus,

V = − πR4

8µ

(
∂p

∂x

)

In fully developed flow, the pressure gradient, ∂p/dx, is constant.

Therefore,
∂p

∂x
=

p2 − p1
L

= − ∆p

L
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Therefore,

V = −πR4

8µ

[
−∆p

L

]

=
π∆pR4

8µL
=

π∆pD4

128µL

for laminar flow in a horizontal pipe. This gives,

∆p =
128µLV
πD4

=
128µLV

(
πD2

4

)

πD4
= 32

L

D

µV

D

The head loss hl is

hl =
p1 − p2

ρg
+ (z1 − z2)

For horizontal pipe z1 = z2, thus,

hl =
p1 − p2

ρg
=

∆p

ρg

= 32
L

D

µ

ρg

V

D
=

L

D

V
2

2g

(
64

µ

ρV D

)

=
64

Re

L

D

V
2

2g

where V = Vav.

2.16 The pressure drop through the pipe is given by

p1 − p2 =
ρave
2

V 2 L

D
f

But by state equation, p1/ρ1 = p2/ρ2. Therefore, p2 = (ρ2/ρ1) p1. Thus,

p1 −
ρ2
ρ1

p1 =
ρave
2

V 2 L

D
f
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or
p1
ρ1

(ρ1 − ρ2) =
ρave
2

V 2 L

D
f (1)

The mass flow rate is given by

ṁ = ρaveAV =
ρ1 + ρ2

2

πD2

4
V

Therefore,

V =
8ṁ

πD2

1

ρ1 + ρ2

Substituting this V into Eq. (1), we get

p1
ρ1

(ρ1 − ρ2) =
ρavef

2

L

D

64 ṁ2

π2D4

1

(ρ1 + ρ2)
2

p1
ρ1

(
ρ21 − ρ22

)
=

16 f L ṁ2

π2D5

2.17 The flow outside the boundary layer can be assumed to be isentropic.
By energy equation, we have

hA +
V 2
A

2
= hB +

V 2
B

2

where hA and hB are the static enthalpy at A and B, respectively, VA and
VB are the corresponding velocities. Treating air to be a perfect gas, we
have h = cpT . Thus, the energy equation becomes

cpTA +
V 2
A

2
= cpTB +

V 2
B

2

TB = TA +
V 2
A

2cp
− V 2

B

2cp

= 288 +
1

2× 1004.5

[(
250

3.6

)2

−
(
470

3.6

)2
]

= 281.9K
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since cp = 1004.5 m2/(s2 K), for air. The Mach number at B is

MB =
VB

a

=
VB√
γRTB

=
470/3.6√

1.4× 287× 281.9

= 0.388

2.18 The velocity at any point on the cylinder surface can be expressed, by
Equation (2.51), as

V = −
(
2u sin θ +

Γ

2πa

)

where Γ is the circulation and θ varies from 0 to 2π. Let the top of the
cylinder is at θ = π/2. Therefore, the bottom is at θ = 3π/2. Thus, the
velocities at the top and bottom of the cylinder are

Vtop = −
(
2u+

Γ

2πa

)

Vbottom = −
(
− 2 +

Γ

2πa

)

By Bernoulli equation, we have

ptop +
1

2
ρV 2

top = pbottom +
1

2
ρV 2

bottom

Therefore,

ptop − pbottom =
1

2
ρ
(
V 2
bottom − V 2

top

)

=
1

2
ρ

[
− 4u

Γ

2πa
− 4u

Γ

2πa

]

= − 2

πa
ρuΓ
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The circulation if given by
Γ = ζ ×A

where ζ is the vorticity and also, ζ = 2ω.

Thus,

Γ = 2ωπa2

Therefore,

ptop − pbottom
1
2ρu

2
= − 2

πa
ρu

(2ωπa2)
1
2ρu

2

= −8aω

u

2.19 The relation between the local and material rates of change is given by

D

Dt
=

∂

∂t
+ V ·▽

Therefore,

DT

Dt
=

∂T

∂t
+ Vx

∂T

∂x
+ Vy

∂T

∂y
+ Vz

∂T

∂z

= 5 + (x)[1] +
(
3y + 3t2y

)
[2yz] + 12

[
y2
]

At (3,5,2) and t = 2,

DT

Dt
= 5 + 3× 1 + [3× 5 + 3× 4× 5](2× 5× 2) + 12× 5× 5

= 1808

2.20 Given, d = 10 m, V = 5.5 m/s, p = 105 Pa, T = 18 + 273.15 = 291.15
K, CD = 1.4.
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The air density is

ρ =
p

RT

=
105

287× 291.15

= 1.197 kg/m3

The drag experienced by the parachute is

D =
1

2
ρV 2SCD

=
1

2
× 1.197× 5.52 ×

(
πD2

4

)
× 1.4

=
1

2
× 1.197× 5.52 ×

(
π 102

4

)
× 1.4

= 1990.7N

At steady descend, D = W , thus

W = 1.991 kN


