
 

 

2 Computer Memory Systems 

1. Consider the various aspects of an ideal computer memory discussed in Section 2.1.1 and 

the characteristics of available memory devices discussed in Section 2.1.2. Fill in the 

columns of the table below with the following types of memory devices, in order from 

most desirable to least desirable: magnetic hard disk, semiconductor DRAM, CD-R, 

DVD-RW, semiconductor ROM, DVD-R, semiconductor flash memory, magnetic floppy 

disk, CD-RW, semiconductor static RAM, semiconductor EPROM. 

Cost/bit (will obviously fluctuate somewhat depending on market conditions): CD-

R, DVD-R, CD-RW, DVD-RW, magnetic hard disk, magnetic floppy disk, 

semiconductor DRAM, semiconductor flash memory, semiconductor ROM, 

semiconductor EPROM, semiconductor static RAM. 

Speed (will vary somewhat depending on specific models of devices): semiconductor 

static RAM, semiconductor DRAM, semiconductor ROM, semiconductor EPROM, 

semiconductor flash memory, magnetic hard disk, DVD-R, DVD-RW, CD-R, CD-

RW, magnetic floppy disk. 

Information Density (again, this may vary by specific types of devices): Magnetic 

hard disk, DVD-R and DVD-RW, CD-R and CD-RW, semiconductor flash memory, 

semiconductor DRAM, semiconductor ROM, semiconductor EPROM, 

semiconductor static RAM, magnetic floppy disk. 

Volatility: Optical media such as DVD-R, CD-R, DVD-RW, and CD-RW are all 

equally nonvolatile. The read-only variants cannot be erased and provide secure 

storage unless physically damaged. (The same is true of semiconductor ROM.) The 

read-write optical disks (and semiconductor EPROMs and flash memories) may be 

intentionally or accidentally erased, but otherwise retain their data indefinitely in 

the absence of physical damage. Magnetic hard and floppy disks are nonvolatile 

except in the presence of strong external magnetic fields. Semiconductor static RAM 

is volatile, requiring continuous application of electrical power to maintain stored 



 

 

data. Semiconductor DRAM is even more volatile since it requires not only 

electrical power, but also periodic data refresh in order to maintain its contents. 

Writability (all memory is readable): Magnetic hard and floppy disks and 

semiconductor static RAM and DRAM can be written essentially indefinitely, and as 

quickly and easily as they can be read. DVD-RW, CD-RW, and semiconductor flash 

memory can be written many times, but not indefinitely, and the write operation is 

usually slower than the read operation. Semiconductor EPROMs can be written 

multiple times, but only in a special programmer, and only after a relatively long 

erase cycle under ultraviolet light. DVD-R and CD-R media can be written once and 

only once by the user. Semiconductor ROM is pre-loaded with its binary 

information at the factory and can never be written by the user. 

Power Consumption: All types of optical and magnetic disks as well as 

semiconductor ROMs, EPROMs, and flash memories can store data without power 

being applied at all. Semiconductor RAMs require continuous application of power 

to retain data, with most types of SRAMS being more power-hungry than DRAMs. 

(Low-power CMOS static RAMs, however, are commonly used to maintain data for 

long periods of time with a battery backup.) While data are being read or written, 

all memories require power. Semiconductor DRAM requires relatively little power, 

while semiconductor ROMs, flash memories, and EPROMs tend to require more 

and SRAMs, more still. All rotating disk drives, magnetic and optical, require 

significant power in order to spin the media and move the read/write heads as well 

as to actually perform the read and write operations. The specifics vary 

considerably from device to device, but those that rotate the media at higher speeds 

tend to use slightly more power. 

Durability: In general, the various types of semiconductor memories are more 

durable than disk memories because they have no moving parts. Only severe 

physical shock or static discharges are likely to harm them. (CMOS devices are 



 

 

particularly susceptible to damage from static electricity.) Optical media are also 

very durable; they are nearly impervious to most dangers except that of surface 

scratches. Magnetic media such as floppy and hard disks tend to be the least 

durable as they are subject to erasure by strong magnetic fields and also are subject 

to “head crashes” when physical shock causes the read-write head to impact the 

media surface. 

Removability/Portability: Flash memory, floppy disks, and optical disks are 

eminently portable and can easily be carried from system to system to transfer data. 

A few magnetic hard drives are designed to be portable, but most are permanently 

installed in a given system and require some effort for removal. Semiconductor 

ROMs and EPROMs, if placed in sockets rather than being soldered directly to a 

circuit board, can be removed and transported along with their contents. Most 

semiconductor RAM devices lose their contents when system power is removed and, 

while they could be moved to another system, would not arrive containing any valid 

data. 

2. Describe in your own words what a hierarchical memory system is and why it is used in 

the vast majority of modern computer systems. 

A hierarchical memory system is one that is comprised of several types of 

memory devices with different characteristics, each occupying a “level” within the 

overall structure. The higher levels of the memory system (the ones closest to, or a 

part of, the CPU) offer faster access but, due to cost factors and limited physical 

space, have a smaller storage capacity. Thus, each level can typically hold only a 

portion of the data stored in the next lower level. As one moves down to the lower 

levels, speed and cost per bit generally decrease, but capacity increases. At the 

lowest levels, the devices offer a great deal of (usually nonvolatile) storage at 

relatively low cost, but are quite slow. For the overall system to perform well, the 

hierarchy must be managed by hardware and software such that the stored items 



 

 

that are used most frequently are located in the higher levels, while items that are 

used less frequently are relegated to the lower levels. 

3. What is the fundamental, underlying reason why low-order main memory interleaving 

and/or cache memories are needed and used in virtually all high-performance computer 

systems? 

The main underlying reason why speed-enhancing techniques such as low-

order interleaving and cache continue to be needed and used in computer systems is 

that main memory technology has never been able to keep up with the speed of 

processor implementation technologies. The CPUs of each generation have always 

been faster than any devices (from the days of delay lines, magnetic drums, and core 

memory all the way up to today’s high-capacity DRAM ICs) that were feasible, 

from a cost standpoint, to be used as main memory. If anything, the CPU-memory 

speed gap has widened rather than narrowed over the years. Thus, the speed and 

size of a system’s cache may be even more critical to system performance than 

almost any other factor. (If you don’t believe this, examine the performance 

difference between an Intel Core series processor and an otherwise similar Celeron 

processor.) 

4. A main memory system is designed using 15 ns RAM devices using a 4-way low-order 

interleave. 

(a) What would be the effective time per main memory access under ideal 

conditions? 

Under ideal conditions, four memory accesses would be in progress at any 

given time due to the low-order interleaving scheme. This means that the effective 

time per main memory access would be (15 / 4) = 3.75 ns. 

(b) What would constitute “ideal conditions”? (In other words, under what 

circumstances could the access time you just calculated be achieved?) 

The ideal condition for best performance of the memory system would be 



 

 

continuous access to sequentially numbered memory locations. Equivalently, any 

access pattern that consistently used all three of the other “leaves” before returning 

to the one just accessed would have the same benefit. Examples would include 

accessing every fifth numbered location, or every seventh, or any spacing that is 

relatively prime with 4 (the interleaving factor). 

(c) What would constitute “worst-case conditions”? (In other words, under what 

circumstances would memory accesses be the slowest?) What would the access 

time be in this worst-case scenario? If ideal conditions exist 80% of the time and 

worst-case conditions occur 20% of the time, what would be the average time 

required per memory access? 

The worst case would be a situation where every access went to the same 

device or group of devices. This would happen if the CPU needed to access every 

fourth numbered location (or every eighth, or any spacing that is an integer multiple 

of 4). In this case, access time would revert to that of an individual device (15 ns) 

and the interleaving would provide no performance benefit at all. 

In the hypothetical situation described, we could take a weighted average to 

determine the effective access time for the memory system: (0.80)(3.75 ns) + 

(0.20)(15 ns) = (3 + 3) = 6 ns. 

(d) When ideal conditions exist, we would like the processor to be able to access 

memory every clock cycle with no “wait states” (that is, without any cycles 

wasted waiting for memory to respond). Given this requirement, what is the 

highest processor bus clock frequency that can be used with this memory system? 

In part (a) above, we found the best-case memory access time to be 3.75 ns. 

Matching the CPU bus cycle time to this value and taking the reciprocal (since f = 

1/T) we obtain: 

f = 1/T = (1 cycle) / (3.75 * 10
-9

 seconds) ≈ 2.67 * 10
8
 cycles/second = 267 MHz. 

(e) Other than increased hardware cost and complexity, are there any potential 



 

 

disadvantages of using a low-order interleaved memory design? If so, discuss one 

such disadvantage and the circumstances under which it might be significant. 

The main disadvantage that could come into play is due to the fact that 

under ideal conditions, all memory modules are busy all the time. This is good if 

only one device (usually the CPU) needs to access memory, but not good if other 

devices need to access memory as well (for example, to perform I/O). Essentially all 

the memory bandwidth is used up by the first device, leaving little or none for 

others. 

Another possible disadvantage is lower memory system reliability due to 

decreased fault tolerance. In a high-order interleaved system, if one memory device 

were to fail, 3/4 of the memory space would still be usable. In the low-order 

interleaved case, if one of the four “leaves” fails, the entire main memory space is 

effectively lost. 

5. Is it correct to refer to a typical semiconductor integrated circuit ROM as a “random 

access memory”? Why or why not? Name and describe two other logical organizations of 

computer memory that are not “random access.” 

 It is correct to refer to a semiconductor ROM as a “random access memory” 

in the strict sense of the definition – a “random access” memory is any memory 

device that has an access time independent of the specific location being accessed. 

(In other words, any randomly chosen location can be read or written in the same 

amount of time as any other location.) This is equally true of most semiconductor 

read-only memories as it is of semiconductor read/write memories (which are 

commonly known as “RAMs”). Because of the commonly-used terminology, it is 

probably better not to confuse the issue by referring to a ROM IC as a “RAM”, 

even though that is technically a correct statement. 

Besides random access, the other two logical memory organizations that may 

be found in computer systems are sequential access (typical of tape and disk 



 

 

memories) and associative (or content-addressable). 

6. Assume that a given system’s main memory has an access time of 6.0 ns, while its cache 

has an access time of 1.2 ns (five times as fast). What would the hit ratio need to be in 

order for the effective memory access time to be 1.5 ns (four times as fast as main 

memory)? 

Since effective memory access time in such a system is based on a weighted 

average, we would need to solve the following equation: 

ta effective = ta cache * (ph) + ta main * (1 - ph) 

for the particular values given in the problem, as shown: 

1.5 ns = (1.2 ns)(ph) + (6.0 ns)(1 - ph) 

Using basic algebra we solve to obtain ph = 0.9375. 

7. A particular program runs on a system with cache memory. The program makes a total of 

250,000 memory references; 235,000 of these are to cached locations. 

(a) What is the hit ratio in this case? 

ph = number of hits / (number of hits + number of misses) = 235,000 / 250,000 = 0.94 

(b) If the cache can be accessed in 1.0 ns but the main memory requires 7.5 ns for an 

access to take place, what is the average time required by this program for a 

memory access assuming all accesses are reads? 

ta effective = ta cache * (ph) + ta main * (1 - ph) = (1.0 ns)(0.94) + (7.5 ns)(0.06) = (0.94 + 

0.45) ns = 1.39 ns 

(c) What would be the answer to part (b) if a write-through policy is used and 75% of 

memory accesses are reads? 

If a write-through policy is used, then all writes require a main memory 

access and write hits do nothing to improve memory system performance. The 

average write access time is equal to the main memory access time, which is 7.5 ns. 

The average read access time is equal to 1.39 ns as calculated in (b) above. The 

overall average time per memory access is thus given by: 



 

 

ta effective = (7.5 ns)(0.25) + (1.39 ns)(0.75) = (1.875 + 1.0425) ns = 2.9175 ns 

8. Is hit ratio a dynamic or static performance parameter in a typical computer memory 

system? Explain your answer. 

Hit ratio is a dynamic parameter in any practical computer system. Even 

though the cache and main memory sizes, mapping strategy, replacement policy, 

etc. (which can all affect the hit ratio) are constant within a given system, the 

proportion of cache hits to misses will still vary from one program to another. It will 

also vary widely within a given run, based on such factors as the length of time the 

program has been running, the code structure (procedure calls, loops, etc.) and the 

properties of the specific data set being operated on by the program. 

9. What are the advantages of a set-associative cache organization as opposed to a direct-

mapped or fully associative mapping strategy? 

A set-associative cache organization is a compromise between the direct-

mapped and fully associative organizations that attempts to maximize the 

advantages of each while minimizing their respective disadvantages. Fully 

associative caches are expensive to build but offer a higher hit ratio than direct-

mapped caches of the same size. Direct-mapped caches are cheaper and less 

complex to build but performance can suffer due to usage conflicts between lines 

with the same index. By limiting associativity to just a few parallel comparisons 

(two- and four-way set-associative caches are most common) the set-associative 

organization can achieve nearly the same hit ratio as a fully associative design at a 

cost not much greater than that of a direct-mapped cache. 

10. A computer has 64 MB of byte-addressable main memory. It is proposed to design a 1 

MB cache memory with a refill line (block) size of 64 bytes. 

(a) Show how the memory address bits would be allocated for a direct-mapped cache 

organization. 

 Since 64M = 2
26

, the total number of bits required to address the main 



 

 

memory space is 26. And since 64 = 2
6
, it takes 6 bits to identify a particular byte 

within a line. The number of refill lines in the cache is 1M / 64 = 2
20

 / 2
6
 = 2

14
 = 16K. 

Since there are 2
14

 lines in the cache, 14 index bits are required. 26 total address bits 

– 6 “byte” bits – 14 “index” bits leaves 6 bits to be used for the tag. So the address 

bits would be partitioned as follows: Tag (6 bits) | Index (14 bits) | Byte (6 bits) 

(b) Repeat part (a) for a four-way set-associative cache organization. 

 For the purposes of this problem, a four-way set-associative cache can be 

treated as four direct-mapped caches operating in parallel, each one-fourth the size 

of the cache described above. Each of these four smaller units would thus be 256 KB 

in size, containing 4K = 2
12

 refill lines. Thus, 12 bits would need to be used for the 

index, and 26 – 6 – 12 = 8 bits would be used for the tag. The address bits would be 

partitioned as follows: Tag (8 bits) | Index (12 bits) | Byte (6 bits) 

(c) Repeat part (a) for a fully associative cache organization. 

 In a fully associative cache organization, no index bits are required. 

Therefore the tags would be 26 – 6 = 20 bits long. Addresses would be partitioned as 

follows: Tag (20 bits) | Byte (6 bits) 

(d) Given the direct-mapped organization, and ignoring any extra bits that might be 

needed (valid bit, dirty bit, etc.), what would be the overall size (“depth” by 

“width”) of the memory used to implement the cache? What type of memory 

devices would be used to implement the cache (be as specific as possible)? 

 The overall size of the direct-mapped cache would be: 

(16K lines) * (64 data bytes + 6 bit tag) = (16,384) * ((64 * 8) + 6) = (16,384 * 518) = 

8,486,912 bits. This would be in the form of a fast 16K by 518 static RAM. 

(e) Which line(s) of the direct-mapped cache could main memory location 

1E0027A16 map into? (Give the line number(s), which will be in the range of 0 to 

(n-1) if there are n lines in the cache.) Give the memory address (in hexadecimal) 

of another location that could not reside in cache at the same time as this one (if 



 

 

such a location exists). 

 To answer this question, we need to write the memory address in binary. 

1E0027A hexadecimal equals 01111000000000001001111010 binary. We can break 

this down into a tag of 011110, an index of 00000000001001 and a byte offset within 

the line of 111010. In a direct-mapped cache, the binary index tells us the number of 

the only line that can contain the given memory location. So, this location can only 

reside in line 10012 = 9 decimal. 

 Any other memory location with the same index but a different tag could not 

reside in cache at the same time as this one. One example of such a location would 

be the one at address 2F0027A16. 

11. Define and describe virtual memory. What are its purposes, and what are the advantages 

and disadvantages of virtual memory systems? 

 Virtual memory is a technique that separates the (virtual) addresses used by 

the software from the (physical) addresses used by the memory system hardware. 

Each virtual address referenced by a program goes through a process of translation 

(or mapping) that resolves it into the correct physical address in main memory, if 

such a mapping exists. If no mapping is defined, the desired information is loaded 

from secondary memory and an appropriate mapping is created. The translation 

process is overseen by the operating system, with much of the work done in 

hardware by a memory management unit (MMU) for speed reasons. It is usually 

done via a multi-level table lookup procedure, with the MMU internally caching 

frequently- or recently-used translations so that the costly (in terms of performance) 

table lookups can be avoided most of the time. 

 The principal advantage of virtual memory is that it frees the programmer 

from the burden of fitting his or her code into available memory, giving the illusion 

of a large memory space exclusively owned by the program (rather than the usually 

much more limited physical main memory space that is shared with other resident 



 

 

programs). The main disadvantage is the overhead of implementing the virtual 

memory scheme, which invariably results in some increase in average access time vs. 

a system using comparable technology with only physical memory. Table lookups 

take time, and even when a given translation is cached in the MMU’s Translation 

Lookaside Buffer, there is some propagation delay involved in address translation. 

12. Name and describe the two principal approaches to implementing virtual memory 

systems. How are they similar and how do they differ? Can they be combined, and if so, 

how? 

 The two principal approaches to implementing virtual memory (VM) are 

demand-paged VM and demand-segmented VM (paging and segmentation, for short). 

They are similar in that both map a virtual (or logical) address space to a physical 

address space using a table lookup process managed by an MMU and overseen by 

the computer’s operating system. They are different in that paging maps fixed-size 

regions of memory called pages, while segmentation maps variable-length segments. 

Page size is usually determined by hardware considerations such as disk sector size, 

while segment size is determined by the structure of the program’s code and data. A 

paged system can concatenate the offset within a page with the translated upper 

address bits, while a segmented system must translate a logical address into the 

complete physical starting address of a segment and then add the segment offset to 

that value. 

 It is possible to create a system that uses aspects of both approaches; 

specifically, one in which the variable-length segments are each comprised of one or 

more fixed-sized pages. This approach, known as segmentation with paging, trades 

off some of the disadvantages of each approach to try to take advantage of their 

strengths. 

13. What is the purpose of having multiple levels of page or segment tables rather than a 

single table for looking up address translations? What are the disadvantages, if any, of 



 

 

this scheme? 

 The main purpose of having multiple-level page or segment tables is to 

replace one huge mapping table with a hierarchy of smaller ones. The advantage is 

that the tables are smaller (remember, they are stored in main memory, though 

some entries may be cached) and easier for the operating system to manage. The 

disadvantage is that “walking” the hierarchical sequence of tables takes longer than 

a single table lookup. Most systems have a TLB to cache recently-used address 

translations, though, so this time penalty is usually only incurred once when a given 

page or segment is first loaded into memory (or perhaps again later if the TLB fills 

up and a displaced entry has to be reloaded). 

14. A process running on a system with demand-paged virtual memory generates the 

following reference string (sequence of requested pages): 4, 3, 6, 1, 5, 1, 3, 6, 4, 2, 2, 3. 

The operating system allocates each process a maximum of four page frames at a time. 

What will be the number of page faults for this process under each of the following page 

replacement policies? 

a) LRU 7 page faults 

b) FIFO 8 page faults 

c) LFU (with FIFO as tiebreaker) 7 page faults 

15. In what ways are cache memory and virtual memory similar? In what ways are they 

different? 

 Cache memory and virtual memory are similar in several ways. Both involve 

the interaction between two levels of a hierarchical memory system – one larger and 

slower, the other smaller and faster. Both have the goal of performing close to the 

speed of the smaller, faster memory while taking advantage of the capacity of the 

larger, slower one; both depend on the principle of locality of reference to achieve 

this. Both operate on a demand basis and both perform a mapping of addresses 

generated by the CPU. 



 

 

 One significant difference is the size of the blocks of memory that are 

mapped and transferred between levels of the hierarchy. Cache lines tend to be 

significantly smaller than pages or segments in a virtual memory system. Because of 

the size of the mapped areas as well as the speed disparity between levels of the 

memory system, cache misses tend to be more frequent, but less costly in terms of 

performance, than page or segment faults in a VM system. Cache control is done 

entirely in hardware, while virtual memory management is accomplished via a 

combination of hardware (the MMU) and software (the operating system). Cache 

exists for the sole reason of making main memory appear faster than it really is; 

virtual memory has several purposes, one of which is to make main memory appear 

larger than it is, but also to support multiprogramming, relocation of code and data, 

and the protection of each program’s memory space from other programs. 

16. In systems which make use of both virtual memory and cache, what are the advantages of 

a virtually addressed cache? Does a physically addressed cache have any advantages of 

its own, and if so, what are they? Describe a situation in which one of these approaches 

would have to be used because the other would not be feasible. 

 All else being equal, a virtually mapped cache is faster than a physically 

mapped cache because no address translation is required prior to checking the tags 

to see if a hit has occurred. The appropriate bits from the virtual address are 

matched against the (virtual) tags. In a physically addressed cache, the virtual-to-

physical translation must be done before the tags can be matched. A physically 

addressed cache does have some advantages, though, including the ability to 

perform task switches without having to flush (invalidate) the contents of the cache. 

In a situation where the MMU is located on-chip with the CPU while a cache is 

located off-chip (for example a level-2 or level-3 cache on the motherboard) the 

address is already translated before it appears on the system bus and, therefore, 

that cache would have to be physically addressed. 



 

 

17. Fill in the blanks below with the most appropriate term or concept discussed in this 

chapter: 

Information density - A characteristic of a memory device that refers to the amount of 

information that can be stored in a given physical space or volume. 

Dynamic Random Access Memory (DRAM) - A semiconductor memory device made 

up of a large array of capacitors; its contents must be periodically refreshed in order to 

keep them from being lost. 

Magnetic RAM (MRAM) - A developing memory technology that operates on the 

principle of magnetoresistance; it may allow the development of “instant-on” computer 

systems. 

Erasable/Programmable Read-Only Memory (EPROM) - A type of semiconductor 

memory device, the contents of which cannot be overwritten during normal operation, but 

can be erased using ultraviolet light. 

Associative memory - This type of memory device is also known as a CAM. 

Argument register - A register in an associative memory that contains the item to be 

searched for. 

Locality of reference - The principle that allows hierarchical storage systems to function 

at close to the speed of the faster, smaller level(s). 

Miss - This occurs when a needed instruction or operand is not found in cache and thus a 

main memory access is required. 

Refill line - The unit of information that is transferred between a cache and main 

memory. 

Tag - The portion of a memory address that determines whether a cache line contains the 

needed information. 

Fully associative mapping - The most flexible but most expensive cache organization, in 

which a block of information from main memory can reside anywhere in the cache. 

Write-back - A policy whereby writes to cached locations update main memory only 



 

 

when the line is displaced. 

Valid bit - This is set or cleared to indicate whether a given cache line has been 

initialized with “good” information or contains “garbage” due to not yet being initialized. 

Memory Management Unit (MMU) - A hardware unit that handles the details of 

address translation in a system with virtual memory. 

Segment fault - This occurs when a program makes reference to a logical segment of 

memory that is not physically present in main memory. 

Translation Lookaside Buffer (TLB) - A type of cache used to hold virtual-to-physical 

address translation information. 

Dirty bit - This is set to indicate that the contents of a faster memory subsystem have 

been modified and need to be copied to the slower memory when they are displaced. 

Delayed page fault - This can occur during the execution of a string or vector instruction 

when part of the operand is present in physical main memory and the rest is not. 


