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Review of Perturbative Field
Theory

2.1 PROBLEMS
2.1 From (A.7), the Hamiltonian for a free complex scalar field is

H =

∫
d3~x

[(
∂φ†

∂t

)(
∂φ

∂t

)
+ (~∇φ†) · (~∇φ) +m2φ†φ

]
.

Show that

H =

∫
d3~p

(2π)32Ep
Ep
[
a†(~p )a(~p ) + b†(~p )b(~p )

]
.

Assume that H is normal ordered.

Solution: From (2.93) and using∫
d3~x e±i(~p±~p

′)·~x = (2π)
3
δ3 (~p± ~p ′)

we find

H =

∫
d3~p

(2π)3(2Ep)2
E2
p

[
a†pap + b†pbp − e2iEpt a†pb

†
−p − e−2iEpt bpa−p

]
+
(
~p 2 +m2

) [
a†pap + b†pbp + e2iEpt a†pb

†
−p + e−2iEpt bpa−p

]
=

∫
d3~p

(2π)32Ep
Ep
[
a†pap + b†pbp

]
.

2.2 The CM differential and total cross sections for the elastic scattering of a Hermitian
scalar of mass m with potential (2.22) is given in (2.59) and (2.61). Choose m = 0.5 GeV,
λ = 0.3, and κ = 1.2 GeV. Plot the CM differential cross section dσ/d cos θ in units of
fm2 = 10−26 cm2 as a function of cos θ for s = 5m2, 6m2, and 7m2, and plot the total cross
section as a function of

√
s for 2m <

√
s < 3m. Use any convenient plotting program.

Solution: We have

t = −2p2(1− cos θ), u = −2p2(1 + cos θ) with p =
√
s− 4m2/2.

5
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Also,
dσ

d cos θ
=
|Mfi|2

32πs
, σ =

1

2

∫ +1

−1

dσ

d cos θ
d cos θ.

These must be multiplied by (~c)2 = (0.197 GeV-fm)2, to convert from GeV−2 to fm2.
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Left: dσ/d cos θ in units of fm2 as a function of cos θ for s = 5m2, 6m2, and 7m2 (from
upper to lower). Right: σ(s) in units of fm2 as a function of

√
s

2.3 Derive (2.64) for the special case m1 = m3 = 0 and m2 = m4 by Lorentz transforming
(2.57). Hint: use the fact that σ, s, and t are invariant.

Solution: In the lab, using (2.42) and (2.46),

p1 =
s−m2

2

2m2
, t = −2p1p3 (1− cos θ3)

and
p3

p1
=

1

1 + p1

m2
(1− cos θ3)

,

while in the CM

pcm =
s−m2

2

2
√
s
, t = −2p2

cm (1− cos θ) .

But σ is invariant, so

dσ

d cos θ3
=

dσ

d cos θ

d cos θ

d cos θ3

=
|Mfi|2

32πs

p2
1

p2
cm

d

d cos θ3

[
p3

p1
(cos θ3 − 1)

]
=
|Mfi|2

32πs

s

m2
2

(
p3

p1

)2

,

from which the result follows easily.

2.4 Consider the process π+(~p1)π−(~p2) → π+(~p3)π−(~p4), with p1 6= p3 and p2 6= p4, in
the theory of a complex scalar field with Lagrangian density given in (2.88) with

VI =
λ

4
(φ†φ)2.
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As shown in Appendix B, the tree-level amplitude Mfi is given by

(2π)4δ4 (p3 + p4 − p1 − p2)Mfi =

∫
d4x 〈~p3~p4| − iVI(φ0(x), φ†0(x))|~p1~p2〉.

Calculate this explicitly using the free-field expression for φ0, and show that Mfi = −iλ.

Solution: This is similar to the calculation for the Hermitian scalar field in Appendix B.
Here, the relevant matrix element is

−iλ
4

∫
d4x 〈0|a3b4(φ†0φ0)2a†1b

†
2|0〉,

where the free-field expressions for φ0 and φ†0 are given in (2.93). Similar to (B.7) one can
move the a’s and b’s from the fields to the right, and the a†’s and b†’s to the left. The only
surviving terms involve the commutators with the a3, b4, a

†
1, and b†2. The δ3(~p ) functions

eliminate the momentum integrals, and the (2π)32Ep factors from the commutators cancel
the denominators in the fields. There are two ways to associate the a’s from the φ0’s with
a†1, and two ways to associate the a†’s from the φ†0’s with a3, so one obtains

−iλ
∫
d4x ei(p3+p4−p1−p2) = −iλ(2π)4δ4(p3 + p4 − p1 − p2).

2.5 Consider the Lagrangian density in (2.84) for 3 non-identical Hermitian fields. Calcu-
late the lowest order differential cross section in the center of mass for φ1(~p1 )φ2(~p2 ) →
φ1(~p3 )φ2(~p4 ) as a function of s and the CM scattering angle θ for the special case
m1 = m2 6= m3.

Solution: There are two diagrams, involving φ3 exchange in the s and u channels. The
scattering amplitude is

Mfi = (−iκ)2

[
i

s−m2
3

+
i

u−m2
3

]
and

dσ

d cos θ
=
|Mfi|2

32πs
,

where (for equal external masses) pi = pf ≡ p =
√
s− 4m2

1/2 and u = −2p2(1 + cos θ).

2.6 Suppose that the interaction potential for a complex scalar field were

VI = σ4

(
φ4 + φ†4

)
(rather than λ(φ†φ)2/4), which is not U(1) invariant. Show that charge is not conserved
and calculate the lowest order amplitude for π+(~p1)π+(~p2)→ π−(~p3)π−(~p4).

Solution: Both operators in φ0 lower charge by one unit, while those in φ†0 raise it by one.
Thus, the first term lowers the charge by 4. The relevant matrix element is

−iσ4〈0|b3b4 φ4
0 a
†
1a
†
2|0〉 ∼ −iσ4〈0|b3b4 (a+ b†)4 a†1a

†
2|0〉.

There are 4! ways to associate the four φ0 fields with the external states, so Mfi = −24iσ4.
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2.7 Consider charged pion QED with a massive photon, i.e., add the term 1
2M

2
AAµA

µ to
the Lagrangian density in (2.133) (with (VI = 0). Assume MA > 2m. (The photon mass
term is not gauge invariant, but the model still makes sense at tree level.)
(a) Calculate the decay rate for γ → π+π− in the photon rest frame at tree level for an
unpolarized massive photon.
(b) Calculate the π+ angular distribution dΓ/d cos θ for a polarized photon, where θ is the
angle between the photon polarization direction in the rest frame and the π+ direction.
(c) Show that one recovers the result in (a) when dΓ/d cos θ is integrated over cos θ.

Solution: (a) Define momenta by γ(~k ) → π+(~p1)π−(~p2). In the rest frame, k =
p1 + p2 = (MA,~0 ), p1 = (Ef , ~pf ), and p2 = (Ef ,−~pf ), where Ef = MA/2 and

pf ≡ |~pf | =
√
M2
A − 4m2/2. Just as for a massless photon, the tree-level amplitude is

Mfi = −ie(p1 − p2) · ε(~k, λ). Thus, the spin-averaged squared amplitude is

|M̄fi|2 ≡
1

3

3∑
λ=1

|Mfi|2 =
e2

3
(p1 − p2)µ (p1 − p2)ν

3∑
λ=1

ε(~k, λ)µ ε(~k, λ)∗ν .

For a massive vector,
3∑

λ=1

ε(~k, λ)µ ε(~k, λ)∗ν = −gµν +
kµkν
M2
A

.

But k · (p1 − p2) = 0, and (p1 − p2)2 = 4m2 −M2
A, so

Γ̄ =
pf

8πM2
A

|M̄fi|2 =
αMA

12

(
1− 4m2

M2
A

)3/2

.

(b)
dΓ

d cos θ
=

pf
16πM2

A

|Mfi|2, |Mfi|2 = e2 (p1 − p2)µ (p1 − p2)νεµ ε
∗
ν .

Choose axes so that

ε = (0, 0, 0, 1), p1,2 = (Ef ,±pf sin θ, 0,±pf cos θ).

Then, (p1 − p2) · ε = −2pf cos θ and

dΓ

d cos θ
=
αMA

8

(
1− 4m2

M2
A

)3/2

cos2 θ.

(c) Integrating
∫ +1

−1
d cos θ dΓ

d cos θ recovers Γ̄ from (a), i.e., the decay rate is independent of
the spin direction.

2.8 Consider π+(~p1)π−(~p2)→ π+(~p3)π−(~p4) in massive scalar electrodynamics, i.e., with

VI = gφ†φA,

where A, the analog of the electromagnetic field, is a Hermitian spin-0 field with mass µ 6= 0.
The analog of the charge is g, which now has dimensions of mass.
(a) Find expressions for the differential and total cross sections in the CM to lowest non-
trivial order, in terms of s, m, µ, g, and cos θ.
(b) Define the dimensionless variable x = s/m2 ≥ 4, and specialize to the values m = g = 1
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GeV, µ = 0.5 GeV. Plot dσ/d cos θ vs cos θ in units of 1 fm2 = 10−26 cm2 for x = 4, 4.2,
and 4.4. Use any other plotting program.
(c) Plot σ in units of 1 fm2 vs x for the same parameter values and the range 4 ≤ x ≤ 5.

Solution: (a) The ππA vertex is −ig ∝ −iVI . The scalar photon can be exchanged in
the s or t channels, so

Mfi = (−ig)2

(
i

s− µ2
+

i

t− µ2

)
,

where

t = −2p2(1− cos θ), p =

√
s− 4m2

2
, E =

√
s

2
,

and θ is the CM scattering angle. Then

dσ

d cos θ
=
|Mfi|2

32πs
, σ =

∫ +1

−1

dσ

d cos θ
d cos θ.

(b,c) Plugging in the numerical values, and multiplying by (~c)2 = (0.197 GeV-fm)2 to
convert the units from GeV−2 to fm2 one can evaluate and plot these functions numerically.
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Left: dσ/d cos θ in units of fm2 for x = 4, 4.2, and 4.4. Right: σ in units of fm2 vs x.

2.9 Prove directly from the defining relations that

σµνγ5 = − i
2
εµνρσσρσ.

Solution: Using (2.155), σµνγ5 must be of the form Cεµνρσσρσ. Obtain C = −i/2 from
example, e.g.,

σ01γ5 = −γ2γ3 = − i
2
ε01ρσσρσ.

2.10 Prove the Gordon decomposition formulas

2m (ū2γ
µu1) = ū2(p2 + p1)µu1 + iū2σ

µν(p2 − p1)νu1

2m (ū2γ
µγ5u1) = ū2(p2 − p1)µγ5u1 + iū2σ

µν(p2 + p1)νγ
5u1

0 = ū2(p2 − p1)µu1 + iū2σ
µν(p2 + p1)νu1

0 = ū2(p2 + p1)µγ5u1 + iū2σ
µν(p2 − p1)νγ

5u1,
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where u1,2 are two Dirac u spinors for a particle of mass m.

Solution: Using (2.161) and (2.170) ,

iū2σ
µν(p2 − p1)νu1 = −1

2
ū2 [γµ(6p2− 6p1)− (6p2− 6p1)γµ]u1

= 2m (ū2γ
µu1)− ū2(p2 + p1)µu1,

and similarly for other identities.

2.11 Prove the identity

γµγνγρ = γµgνρ + γρgµν − γνgµρ + iεσµνργσγ
5.

Solution: Any 4 × 4 matrix can be expanded in terms of I, γ5, γσ, γσγ5, and στσ. In this
case, only γσ and γσγ5 will contribute, since we have an odd number of γ matrices. Thus

γµγνγρ = Aσγ
σ +Bσγ

σγ5 = Aσγσ +Bσγσγ
5,

where A and B depend on µ, ν, and ρ. Clearly,

Aσ =
1

4
Tr (γσγµγνγρ), Bσ = −1

4
Tr (γσγ5γµγνγρ).

The result follows using (2.172).

2.12 Show by explicit construction that the Pauli-Dirac and chiral representations are
related by a unitary transformation, i.e., that there exists a unitary matrix U such that

UγµPDU
† = γµch, UuPD(~p, s) = uch(~p, s), UvPD(~p, s) = −vch(~p, s).

(The extra sign in the v-spinor transformation is due to a sign convention.)

Solution: U must commute with γi but not γ0, so it should be of form

α

(
I 0
0 I

)
+ β

(
0 I
−I 0

)
→ 1√

2

(
I −I
I I

)
,

where the explicit form is obained by the transformation of γ0. The correct transformation
of the spinors follows by inspection.

2.13 The angular momentum operator for a Dirac field can be written as

J i =

∫
d3~xψ†(x)

1

4
εijkσjkψ(x) + orbital,

where normal ordering is implied. Show, in the free field limit, that J3 has the expected
behavior

J3|ψ (~p, s1,2)〉 = ±1

2
|ψ (~p, s1,2)〉, J3|ψc (~p, s1,2)〉 = ±1

2
|ψc (~p, s1,2)〉,

where ψ and ψc represent particle and antiparticle states, ~p is in the ẑ direction (so that
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the orbital terms do not enter), and s = s1 or s2 represent spins in the ±ẑ direction.

Solution: One has
1

4
εijkσjk =

1

2
Σi =

1

2

(
σi 0
0 σi

)
Using the expression (2.159) for the free fermion field

ψ(x)|ψ (~p, s)〉 =

∫
d3~p ′

(2π)32Ep′
e−ip

′·x u (~p ′, s′) a (~p ′, s′) a† (~p, s) |0〉

= e−ip·x u (~p, s) |0〉,

so that

J3|ψ (~p, s)〉 =
∑
s′′

1

2Ep
u† (~p, s′′)

1

2
Σ3u (~p, s) |ψ (~p, s′′)〉

=
∑
s′′

1

2

(
Ep +m

2Ep

)
φ†s′′

(
σ3 +

~σ · ~p
Ep +m

σ3 ~σ · ~p
Ep +m

)
φs|ψ (~p, s′′)〉

= ±1

2

∑
s′′

δs′′,s

(
Ep +m

2Ep

)(
1 +

~p 2

(Ep +m)
2

)
|ψ (~p, s′′)〉

= ±1

2
|ψ (~p, s)〉,

where the ± corresponds to s1,2, i.e., σ3φs1,2 = ±φs1,2 . The calculation is similar for ψc

except for two compensating signs:

J3|ψc (~p, s)〉 = −
∑
s′

1

2Ep
v† (~p, s)

1

2
Σ3v (~p, s′) |ψc (~p, s′)〉,

where the − sign is because b and b† had to be anticommuted. But this is

= −1

2

∑
s′

(
Ep +m

2Ep

)
χ†s

(
~σ · ~p

Ep +m
σ3 ~σ · ~p
Ep +m

+ σ3

)
χs′ |ψc (~p, s′)〉

= ±1

2
|ψc (~p, s)〉,

where the second − sign is from σ3χs1,2 = ∓χs1,2 .

2.14 Derive the results in (2.181) for the helicity projections in the massless limit.

Solution: Write p =
(
E, pβ̂

)
where p = βE. Then

ms± = ±E
(
β, β̂

)
= ±

(
p,Eβ̂

)
= ±

(
E, pβ̂

)
±
(
p− E, [E − p] β̂

)
∼ ±

[
p− m2

2p2
(p,−~p)

]
.

Therefore,

(6p+m)
1 + γ5 6s

2
=

1

2
( 6p+m+ γ5m 6s± − γ5 6p 6s±)

=
1

2
( 6p± γ5 6p) +O(m)

=6pPL,R = PR,L 6p.
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Similarly,

(6p−m)
1 + γ5 6s±

2
= 6pPR,L = PL,R 6p.

2.15 Weak charged current transitions involve the chiral spinors uL(~p, s) and vL(~p, s) de-
fined in (2.203). Show that in the relativistic limit such transitions mainly involve negative
helicity particles or positive helicity antiparticles, and estimate the suppression factor for
transitions involving the “wrong” helicity.

Solution: Expressions for the helicity spinors in the chiral representation are given in

(2.193). For E � m, λ+ → m/E and λ− → 2. Then, applying PL =

(
I 0
0 0

)
,

PLu(+)→ m

2E

√
2E

(
φ+

0

)
, PLu(−)→

√
2E

(
φ−
0

)
PLv(+)→

√
2E

(
χ+

0

)
, PLv(−)→ m

2E

√
2E

(
χ−
0

)
,

so the rates for the wrong helicity are suppressed by m2/4E2.

2.16 Show in two ways that |ū(~p2,+)u(~p1,−)|2 = 2p1 · p2, where u(~p,±) are the helicity
spinors for a massless fermion: (a) directly from the form of the spinors in the chiral repre-
sentation, (b) using trace techniques.

Solution: (a) From (2.195) and Table 2.1,

ū(~p2,+)u(~p1,−) =
√

2E2

√
2E1φ+(2)†φ−(1)

=
√

2E2

√
2E1

[
− cos

θ2

2
sin

θ1

2
e−iϕ1 + sin

θ2

2
cos

θ1

2
e−iϕ2

]
,

so that

|ū(~p2,+)u(~p1,−)|2 =2E2 2E1

[
cos2 θ2

2
sin2 θ1

2
+ sin2 θ2

2
cos2 θ1

2

−2 cos
θ2

2
sin

θ1

2
sin

θ2

2
cos

θ1

2
cos(ϕ1 − ϕ2)

]
=2E1E2 [1− cos θ1 cos θ2 − sin θ1 sin θ2 cos(ϕ1 − ϕ2)]

=2p1 · p2.

(b) From (2.181)

|ū(~p2,+)u(~p1,−)|2 = Tr (PL 6p1PR 6p2) = 2p1 · p2.

2.17 Prove the Fierz identity in (2.216).

Solution: Expand

w2Lw̄3L = PLw2Lw̄3L = aPL + PLcνγ
ν + PLeρτσ

ρτ .
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Only the cν survives when inserted back in the l.h.s. of (2.216), yielding

(w̄1Lγ
µγνγµw4L) cν = −2 (w̄1Lγ

νw4L) cν .

But

cν =
1

2
Tr (γνw2Lw̄3L) =

1

2
(w̄3Lγνw2L) .

(The last step would yield an extra minus sign for anticommuting fields.)

2.18 Suppose a fermion ψ of mass m interacts with a Hermitian scalar φ of mass µ with

LI = hψ̄ψφ,

where h is small.
(a) Calculate the spin-averaged differential cross section for ψ(~p1)ψ(~p2) → ψ(~p3)ψ(~p4) in
the CM in terms of the invariants s, t, and u.
(b) Specialize to m = µ = 0. Show that the scattering is isotropic in that limit and calculate
the total cross section.

Solution: (a)

M = (ih)
2
i

[
ū3u1ū4u2

t− µ2
− ū4u1ū3u2

u− µ2

]
,

so that
dσ̄

d cos θ
=

1

32πs
|M̄ |2

with

|M̄ |2 =
1

4

∑
|M |2

=
h4

4

[(
1

t− µ2

)2

[Tr (6p1 +m) (6p3 +m)] [Tr (6p2 +m) (6p4 +m)]

+

(
1

u− µ2

)2

[Tr (p1 +m) (6p4 +m)] [Tr (6p2 +m) (6p3 +m)]

−
(

1

t− µ2

)(
1

u− µ2

)[
Tr ( 6p2 +m) (6p3 +m) (6p1 +m) (6p4 +m) + (3↔ 4)

]]

= h4

[(
1

t− µ2

)2 (
4m2 − t

)2
+

(
1

u− µ2

)2 (
4m2 − u

)2
−1

2

(
1

t− µ2

)(
1

u− µ2

)[(
4m2 − u

)2
+
(
4m2 − t

)2 − (s− 4m2
)2]]

,

where

E =

√
s

2
, k =

√
s− 4m2

2
, t = −2k2(1− cos θ), u = −2k2(1 + cos θ).

(b)

dσ̄

d cos θ
=

1

32πs
|M̄ |2 =

2h4

32πs

[
1− t2 + u2 − s2

4tu

]
=

h4

16πs

[
1− 1

4

(
(1− cos θ)2 + (1 + cos θ)2 − 4

1− cos2 θ

)]
=

3h4

32πs
.
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Therefore,

σ̄ =
1

2

∫ 1

−1

d cos θ
dσ̄

d cos θ
=

3h4

32πs
.

2.19 Consider e−(~k1)π+(~p1) → e−(~k2)π+(~p2) elastic scattering. Show that the spin-
averaged differential cross section in the pion rest frame is

dσ̄

d cos θL
=

πα2 cos2 θL
2

2k2
1 sin4 θL

2

[
1 + 2k1

mπ
sin2 θL

2

] ,
where θL is the electron scattering angle and we have neglected the electron mass. Hint: use
(2.224).

Solution: From (2.65) and (2.46),

dσ̄

d cos θL
=
|M̄ |2

32πm2
π

(
k2

k1

)2

,

where
k2

k1
=

1

1 + 2k1

mπ
sin2 θL

2

.

But from (2.224) and using t = −2k1 · k2 and p2 = k1 + p1 − k2,

|M̄ |2 =
e4

2(k1 · k2)2

[
8k1 · p1k2 · p1 − 4k1 · k2m

2
π

]
.

But

k1 · k2 = k1k2(1− cos θL) = 2k1k2 sin2 θL
2

k1 · p1 = k1mπ, k2 · p1 = k2mπ,

so that

|M̄ |2 =
16π2α2m2

π

k1k2

cos2 θL
2

sin4 θL
2

.

2.20 Calculate the CM differential cross section for the process e−(~p1)µ+(~k1) →
e−(~p2)µ+(~k2) in terms of s = E2

CM , the CM scattering angle θ, and the muon mass mµ.
Neglect the electron mass.

Solution: Similar to (2.225),

Mfi =
ie2

t
ū2γ

µu1 v̄1γµv2,

where the u spinors refer to p1,2 with me ∼ 0, while the v spinors refer to k1,2 and mµ.
Then,

|M̄fi|2 =
e4

4t2
Tr (γµ 6p1γ

ν 6p2)× Tr (γµ(6k2 −mµ)γν(6k1 −mµ))

=
8e4

t2
[
p1 · k1 p2 · k2 + p1 · k2 p2 · k1 −m2

µ p1 · p2

]
,
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and
dσ̄

d cos θ
=

1

32πs

pf
pi
|M̄fi|2.

In the CM, the four-momenta are

p1 = (p, 0, 0, p), p2 = (p, p sin θ, 0, p cos θ)

k1 = (E, 0, 0,−p), k2 = (E,−p sin θ, 0,−p cos θ),

where

p = pi = pf =
s−m2

µ

2
√
s
, E =

s+m2
µ

2
√
s
.

Therefore,

p1 · k1 = p2 · k2 = p (E + p) = p
√
s

p1 · k2 = p2 · k1 = p (E + p cos θ)

p1 · p2 = −t/2 = p2 (1− cos θ),

so that
dσ̄

d cos θ
= 4πα2 p

2

st2
[
s+ (E + p cos θ)2 −m2

µ(1− cos θ)
]
.

2.21 Verify the expressions for Bhabha scattering in (2.234) and (2.235). Rewrite the final
result in terms of s and cos θ.

Solution: From (2.233) and (2.208),

|M̄fi|2 =
e4

4

[
ū3γµv4v̄2γ

µu1

s
− ū3γµu1v̄2γ

µv4

t

] [
v̄4γνu3ū1γ

νv2

s
− ū1γνu3v̄4γ

νv2

t

]
,

which yields (2.234). The first term is

4e4

s2
[p4µp3ν + p4νp3µ − gµνp3 · p4] [pµ1p

ν
2 + pν1p

µ
2 − gµνp1 · p2]

=
8e4

s2
(p1 · p4 p2 · p3 + p1 · p3 p2 · p4) = 32π2α2

(
t2 + u2

s2

)
and similarly for the second. Using (2.174), the third term is

− e4

4st
[−2Tr (6p2γν 6p4 6p1γ

ν 6p3)] =
2e4u2

st
= 32π2α2

(
u2

st

)
,

and the same for the last term. For massless particles,

t = −s
2

(1− cos θ) = −s sin2(θ/2), u = −s
2

(1 + cos θ) = −s cos2(θ/2),

leading to

dσ̄

d cos θ
=
πα2

s

[
1 + cos2 θ

2
+

(1 + cos4 θ
2 )

sin4 θ
2

−
2 cos4 θ

2

sin2 θ
2

]
=
πα2

2s

(
3 + cos2 θ

1− cos θ

)2

,

which displays the singularity from the t-channel pole in the forward direction.
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2.22 Calculate the differential cross section for unpolarized Møller scattering, e−e− →
e−e−, both in terms of the invariants and θ.

Solution: From the t and u-channel diagrams in Figure 2.14

M = ie2

[
ū3γµu1ū4γ

µu2

(p1 − p3)2
− ū4γµu1ū3γ

µu2

(p1 − p4)2

]
.

By a calculation essentially identical to the one for Bhabha scattering,

dσ̄

d cos θ
=
πα2

s

[
s2 + u2

t2
+
s2 + t2

u2
+

2s2

tu

]
=
πα2

s

[
(1 + cos4 θ

2 )

sin4 θ
2

+
(1 + sin4 θ

2 )

cos4 θ
2

+
2

sin2 θ
2 cos2 θ

2

]

=
2πα2

s

[
16

sin4 θ
− 8

sin2 θ
+ 1

]
,

showing the singularities for θ = 0 and π.

2.23 Calculate the spin-average differential cross section dσ̄/d cos θ in the center of mass
for e−(p1)e+(p2)→ π−(p3)π+(p4), and the total cross section σ̄. Neglect the electron mass
but not the pion mass. Ignore strong interaction effects. The angular distribution should be
proportional to sin2 θ. Interpret this result.

Solution: The calculation is similar to e−π+ scattering and e−e+ → ff̄ in Section 2.8.
The differential cross section is the same as in (2.226), with the kinematic variables given
in (2.229) (with mf = mπ). The amplitude due to the s channel photon diagram is

Mfi = −ie (p4 − p3)µ

(
−igµρ

s

)
(+ie v̄2γρu1) =

−ie2

s
(p4 − p3)µ v̄2γ

µu1,

so that

|M̄fi|2 =
1

4

e4

s2
(p4 − p3)µ(p4 − p3)ν Tr [γµ 6p1γ

ν 6p2]

=
e4

s2
(p4 − p3)µ(p4 − p3)ν (pµ1p

ν
2 + pν1p

µ
2 − gµνp1 · p2)

=
1

2
e4β2

f sin2 θ,

where we have used (2.229) and (2.230). Then,

dσ̄

d cos θ
=
πα2β3

f

4s
sin2 θ, σ̄ =

πα2β3
f

3s
.

Because of their vector couplings, the initial e− and e+ have opposite helicities in the rela-
tivistic limit. Thus, the z component of angular momentum is ±1. The pions have no spin
and there is no orbital angular momentum in the direction of motion, so they cannot move
in the ±z direction. Equivalently, their angular distribution should be ∝ (|Y 1

1 |2 + |Y −1
1 |2) ∼

sin2 θ, where Y ml is a spherical harmonic.
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2.24 (a) Consider the Mott scattering process in which an electron of momentum p = βE
scatters from a static Coulomb potential of charge Ze,

Aµ(x) =
Ze

4π|~x|
(1, 0, 0, 0).

Show that the unpolarized (Mott) cross section for scattering angle θ is

dσ̄

d cos θ
=

(Zα)2π(1− β2 sin2 θ
2 )

2β2p2 sin4 θ
2

−−−→
β�1

Z2α2π

2β2p2 sin4 θ
2

.

The last formula is the the Rutherford cross section.
(b) Suppose the Coulomb potential for an electron in a nuclear field transformed as a scalar
rather than as the time component of a four-vector, i.e.,

HI = −eψ̄(x)ψ(x)φ(x), φ(x) =
Ze

4π|~x|
.

Calculate the unpolarized differential cross section, and compare it with the Mott formula.

Solution: (a) This is an example of scattering from a static source, with LI(x) in (2.66)
given by

Lp = Ze2ψ̄(x)γ0ψ(x), Φ(0, ~x) =
1

4π|~x|
, Φ̃(~q ) =

1

|~q |2
.

Therefore, from (2.74)

dσ̄

d cos θ
=

1

8π
|M̄fi|2 =

1

2

∑
s1,s2

2π(Zα)2

|~q |4
|ū2γ

0u1|2

=
π(Zα)2

|~q |4
Tr [γ0( 6p1 +m)γ0( 6p2 +m)] =

π(Zα)2[2E2 − p1 · p2 +m2]

4p4 sin4 θ
2

,

from which the result follows.
(b) Calculation is identical to Mott scattering, except

Tr [γ0(6p1 +m)γ0(6p2 +m)] = 4
(
E2 +m2 + p2 cos θ

)
= 8E2

(
1− β2 sin2 θ

2

)
is replaced by

Tr [(6p1 +m)( 6p2 +m)] = 4
(
E2 +m2 − p2 cos θ

)
= 8E2

(
1− β2 cos2 θ

2

)
.

2.25 The interaction of the Z (a massive neutral vector boson in the electroweak theory)
with a fermion f is

L = −Gψ̄(x)γµ
(
gV − gAγ5

)
ψ(x)Zµ(x),

where G, gV , and gA are real constants. Calculate the width for Z → ff̄ . Let MZ and m
be the Z and f masses, and set G = 1.

Solution: The amplitude for Z(p1)→ f(p2)f̄(p3) is

M = −iεµ(λ)ū2γ
µ
(
gV − gAγ5

)
v3.
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From (2.82) the differential decay rate is

dΓ

d cos θ
=

pf
16πM2

Z

1

3

∑
λ

|M |2, pf =

√
M2
Z − 4m2

2
,

with

1

3

∑
λ

|M |2 ≡|M̄ |2 =
1

3

∑
λ

εµ(λ)∗εν(λ)

× Tr
[
γµ
(
gV − gAγ5

)
( 6p3 −m) γν

(
gV − gAγ5

)
(6p2 +m)

]
=

4

3

(
−gµν +

p1µp1ν

M2
Z

)[
(pµ3p

ν
2 + pν3p

µ
2 − gµνp2 · p3)

(
g2
V + g2

A

)
−m2gµν

(
g2
V − g2

A

)
+2igV gAε

µρνσp3ρp2σ

]
=

4

3

(
M2
Z −m2

) (
g2
V + g2

A

)
+ 4m2

(
g2
V − g2

A

)
,

where we have used p1 · p2 = p1 · p3 = M2
Z/2 and p2 · p3 = (M2

Z − 2m2)/2. Therefore,

Γ =
pf

8πM2
Z

|M̄ |2 −−−→
m→0

MZ

12π

(
g2
V + g2

A

)
.

2.26 The Λ is a heavy spin- 1
2 hyperon that decays into pπ− via the non-leptonic weak

interactions. The decay interaction can be modeled by

LI = ψ̄p(gS − gP γ5)ψΛφπ+ + h.c.,

where gS and gP are complex constants that lead respectively to S and P -wave final states.
(a) Calculate the width Γ and the differential width dΓ/d cos θ in the Λ rest frame for a
polarized Λ, where θ is the angle between ŝΛ and the proton momentum ~pp. Use trace
techniques.
(b) Show that dΓ/d cos θ is not reflection invariant for <e (gP g

∗
S) 6= 0, i.e., that it is not

invariant under ~pp → −~pp, ŝΛ → ŝΛ.
(c) Repeat (a), but use explicit expressions for the Λ and p spinors in the Pauli-Dirac rep-
resentation. Justify the claim that gS and gP generate S and P -wave amplitudes.

Solution: (a,b) The decay amplitude and differential width are

iūp
(
gS − gP γ5

)
uΛ,

dΓ

d cos θ
=
pf |M |2

16πm2
Λ

,

where pf is the final state momentum in the Λ rest frame, given by a form similar to (2.83).
Summing over the proton spin,∑

sp

|M |2 =Tr

[(
gS − gP γ5

)
( 6pΛ +mΛ)

(
1 + γ5 6sΛ

2

)(
g∗S + g∗P γ

5
)

(6pp +mp)

]
= 2mpmΛ

(
|gS |2 − |gP |2

)
+ 2pp · pΛ

(
|gS |2 + |gP |2

)
− 2mΛpp · sΛ (gP g

∗
S + g∗P gS) ,
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where we used pΛ · sΛ = 0. But pp · pΛ = EpmΛ and pp · sΛ = −pf cos θ, where θ is the angle
between ~pp and ŝΛ. Therefore,

dΓ

d cos θ
=

pf
8πmΛ

[(
|gS |2 + |gP |2

)
Ep +

(
|gS |2 − |gP |2

)
mp

+ 2<e (gP g
∗
S) pf cos θ] .

This is clearly not invariant under cos θ → − cos θ.
(c) The Dirac spinors in the Pauli-Dirac representation are

uΛ =
√

2mΛ

(
φΛ

0

)
, up =

√
Ep +mp

(
φsp

~σ·~pp
Ep+mp

φsp

)
.

Using the expressions in (2.164) for γ0 and γ5,

M = i
√

2mΛ

√
Ep +mp φ

†
sp

(
gS + gP

~σ · ~pp
Ep +mp

)
φΛ,

which are obviously S and P wave. Therefore,∑
sp

|M |2 =
∑
p

2mΛ (Ep +mp)

φ†Λ

(
g∗S + g∗P

~σ · ~pp
Ep +mp

)
︸ ︷︷ ︸

A†

φspφ
†
sp

(
gS + gP

~σ · ~pp
Ep +mp

)
︸ ︷︷ ︸

A

φΛ

=2mΛ (Ep +mp) Tr
(
A†AφΛφ

†
Λ

)
,

where we have used
∑
sp
φspφ

†
sp = I. Taking

φΛ =

(
1
0

)
⇒ φΛφ

†
Λ =

1

2

(
I + σ3

)
,

we have ∑
sp

|M |2 =2mΛ (Ep +mp)

×

[
|gS |2 + |gP |2

p2
p

(Ep +mp)
2 + (g∗SgP + gSg

∗
P )

pp cos θ

Ep +mp

]
,

which reproduces the result obtained from the trace calculation.

2.27 A vector resonance Vµ of mass MV and width ΓV couples to massless fermions a
and b with the interaction in (F.12) of Appendix F. Calculate the total spin-averaged cross
section for aā→ bb̄. Assume that the propagator in (2.129) is modified to the Breit-Wigner
form

iDµν
V (k) = i

[
−gµν + kµkν

M2
V

k2 −M2
V + iMV ΓV

]
,

and express the result in a form similar to (F.11).
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Solution: The kµkν/M2
V term in the propagator vanishes when contracted with the massless

fermion bilinears. The total cross section calculation is then almost identical to the one for
e+e− → ff̄ . Applying the obvious modifications to (2.232) one finds

σ̄(s) =
g2
ag

2
b

12π

s

(s−M2
V )2 +M2

V Γ2
V

.

To put this into the form (F.11) we calculate the spin-average total width for V → bb̄,

Γ̄bb̄ =
g2
b

16πMV

1

3

∑
λ

[εµ∗(λ)εν(λ)] Tr (γν 6pb̄γµ 6pb)

=
g2
b

12πMV

(
−gµν +

pµV p
ν
V

M2
V

)(
pb̄µpbν + pbµpb̄ν − gµνpb · pb̄

)
=
g2
bMV

12π

with a similar form for Γ̄aā. Therefore

σ̄(s) =
12π(s/M2

V )Γ̄aāΓ̄bb̄
(s−M2

V )2 +M2
V Γ2

V

−−−−→
s=M2

V

12π

M2
V

BaāBbb̄,

where the branching ratio into bb̄ is Bbb̄ = Γ̄bb̄/ΓV .

2.28 Consider the interaction

LI = g
(
ψ̄aLψbRφ+ ψ̄bRψaLφ

†)
between distinct fermions ψa and ψb, where φ is a complex scalar and g is real. Show that
the Lagrangian violates P and C, but is CP invariant.

Solution: Under space reflection

LI(t, ~x ) → gηP
(
ψ̄aRψbLφ+ ψ̄bLψaRφ

†) ,
where ηP is a parity phase from the 3 fields, the (t, ~x )→ (t,−~x ) dependence is implicit, and
we have used Table 2.2. This is 6= LI(t,−~x ) for any ηP . Similarly, under charge conjugation

LI → g
(
ηC ψ̄bLψaRφ

† + η∗C ψ̄aRψbLφ
)
6= LI .

However, under CP = PC,

LI(t, ~x )→ g
(
ηCηP ψ̄bRψaLφ

† + η∗CηP ψ̄aLψbRφ
)
,

which is equal to LI(t,−~x ) for the phase choice ηCηP = 1.

2.29 Consider e−(~k1)π+(~p1) → e−(~k2)π+(~p2) scattering, as in Figure 2.15. Use the two-
component formalism of Section 2.11 to calculate the amplitudes M(−,−) and M(+,+) for
me = 0 and mπ 6= 0. Express your results in terms of α, βπ, and the CM scattering angle θ.
(The two amplitudes should be equal up to a possible sign by (2.278).)

Solution: From (2.342), (2.207), and Figure 2.10,

M(−,−) =
[
ie 2k φ−(k2)†σ̄µφ−(k1)

] [−igµν
q2

]
[−ie(p1 + p2)ν ] .
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M(+,+) is the same except φ−(ki) → φ+(ki) and σ̄µ → σµ, where σ̄µ and σµ are defined
in (2.167). But,

k1 = k(1, 0, 0, 1), k2 = k(1, sin θ, 0, cos θ)

p1 = E(1, 0, 0,−βπ), p2 = E(1,−βπ sin θ, 0,−βπ cos θ)

q2 = −2k2(1− cos θ), k =
s−m2

π

2
√
s

= βπE, E =
s+m2

π

2
√
s
.

The spinors are given in Table 2.1, i.e.,

φ−(k1) =

(
0
1

)
, φ+(k1) =

(
1
0

)
φ−(k2) =

(
− sin θ

2

cos θ2

)
, φ+(k2) =

(
cos θ2
sin θ

2

)
.

Putting everything together,

M(−,−) = M(+,+) = 8πα i

(
1

βπ
+ 1

)
cos θ2

1− cos θ
.

2.30 Consider the non-relativistic limit of the matrix element (2.356) for an e− in a static
external field.
(a) Compute the limit to linear order in the momenta. Hint: use the explicit forms for the
spinors in the Pauli-Dirac representation. It simplifies the calculation to rewrite ū2Γµu1

using the Gordon decomposition.
(b) Suppose that Γµ(p2, p1) in (2.352) contained a term iσµν

2m qνγ
5G2(q2). This violates P

and T but in principle could be generated by a new interaction. Show how G2(0) is related

to the electric dipole moment ~de of the electron, which is defined by the non-relativistic
interaction HEDM = −~de · ~E(~x ), where ~E is an external electric field. Note that the Her-
miticity condition (2.354) requires that G2 is pure imaginary.

Solution: (a) Using the first Gordon identity in Problem 2.10, the r.hs. of (2.356) is

−eū2

(
pµ1 + pµ2

2m
F1 +

iσµν

2m
qν [F1 + F2]

)
u1 Ãµ(~q ).

From the explicit forms for the γ matrices in (2.164) and for the spinors in (2.184), only
the upper two components contribute to linear order, yielding

−eφ†s2
(

2mÃ0(~q )− (~p1 + ~p2) · ~̃A(~q )
)
φs1

for the first term. Only the space components contribute at O(~q ) in the second term, giving

−ie φ†s2σ
kφs1εijkq

jÃi(~q ) [1 + F2(0)] = e [1 + F2(0)]φ†s2~σ · ~̃B(~q )φs1 ,

since εijkq
jÃi(~q ) = iB̃k(~q ).

(b) The σi0q0 and σijqj terms are second order in the momenta, while the σ0iqi term reduces
to

−eG2(0)φ†s2~σ · ~qÃ0(~q )φs1 = −ieG2(0)φ†s2~σ · ~̃E(~q )φs1 ,
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where ~̃E(~q ) = −i~qÃ0(~q ) is the Fourier transform of the electric field ~E(~x ) = −~∇A0(~x ).
This corresponds to the covariantly normalized momentum space matrix element of HEDM

for

~de =
ieG2(0)

2m
~σ.

2.31 Suppose there is a small electric charge-violating coupling between the electron and
a massless left-chiral neutrino νL, with

Leν = −δeAµψ̄νLγµψe + h.c.

Calculate the lifetime for e− → νLγ, and find the value of δ corresponding to the limit in
Table 2.3.

Solution: The decay amplitude is

M = −iδeε∗µūνLγµue.

From (2.178) and (2.181), uνL ūνL → PL 6 pν in the massless limit, with PL ≡ (1 − γ5)/2.
Therefore,

|M̄ |2 =
1

2

∑
se,λγ

|M |2 =
1

2
δ2e2(−gµν) Tr [γµ(6pe +me)γ

νPL 6pν ] = 2δ2e2 pe · pν ,

with pe · pν = m2
e/2. Therefore,

Γ = τ−1 =
|M̄ |2

16πme
=

1

4
δ2αme.

Using ~ = 6.6 × 10−22 MeV-s and me ∼ 0.51 MeV from Table 1.1, the limit τ > 6.6 ×
1022 yr = 2.1× 1036 s corresponds to δ < 5.8× 10−28.

2.32 Consider the proton matrix element ū(~p2)ΓµQ(q)u(~p1) of the electromagnetic current

in (2.393), with ΓµQ given by (2.397). Calculate this explicitly in the Breit frame, in which

q0 = 0, i.e.,

q = (0, 0, 0,
√
Q2), p1 = (E, 0, 0,−

√
Q2/2), p2 = (E, 0, 0,+

√
Q2/2).

Express the time and space components in terms of the electric and magnetic form factors
defined in (2.398) and interpret the results.

Solution: Using the Gordon identity,

ū2

[
γµF1 +

iσµν

2mp
qνF2

]
u1 = ū2

[
γµ(F1 + F2)− (p1 + p2)µ

2mp
F2

]
u1.

But (p1 + p2)0 = 2E = 2
√
m2
p +Q2/4 and (p1 + p2)i = 0. Writing out the spinors and γ

matrices in the Pauli-Dirac representation,

ū2Γ0
Qu1 = 2mpφ

†
2GE(Q2)φ1

ū2ΓiQu1 = GM (Q2)φ†2
[
~σ · ~p2σ

i + σi~σ · ~p1

]
φ1

= GM (Q2)φ†2i(~σ × ~q)iφ1,

,
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where φ1,2 are the Pauli spinors and we used ~p2 = −~p1 = ~q/2. Then, similar to (2.356) (but
for the proton with charge +e),

〈p(2)|H|p(1)〉 = 〈p(2)|
∫
d3~x eJµQAµ|p(1)〉

= 2mp e φ
†
2

[
GE(Q2)Ã0(~q )− GM (Q2)

2mp
~σ · ~̃B(~q )

]
φ1

so that GE,M can be interpreted as the Fourier transforms of the electric and magnetic
distributions of the proton.

2.33 Let V (~x1 − ~x2) be the potential between two non-identical spin- 1
2 particles in non-

relativistic quantum mechanics (NRQM). (V may also depend on their spin and momentum
operators). One shows in time-dependent perturbation theory that the transition amplitude
Ufi from |i〉 = |~p1s1, ~p2s2〉 to |f〉 = |~p3s3, ~p4s4〉 with m1 = m3,m2 = m4 is

Ufi = −i(2π)4δ4 (p3 + p4 − p1 − p2)φ†3φ
†
4

(∫
d3~r e−i~q·~rV (~r )

)
φ1φ2,

where φi is a two-component Pauli spinor, and V contains appropriate spin matrices. Note
that these states are in our covariant normalization convention, which has an extra factor√

2π)32Ei ∼
√

2π)32mi for the ith external particle compared to the usual conventions of
NRQM. The corresponding formula in field theory is

Ufi = (2π)4δ4 (p3 + p4 − p1 − p2)M,

where M is the scattering amplitude with the phase convention of Appendix B. Comparing
these results, we can read off the equivalent non-relativistic potential corresponding to a
given scattering amplitude. Specifically, for

~p1 = −~p2 = ~p− ~q

2
, ~p3 = −~p4 = ~p+

~q

2
,

the non-relativistic limit ~p→ 0, |~q |2 � m2
i yields

M → −i(2m1)(2m2)φ†3φ
†
4Ṽ (~q )φ1φ2 ≡ −i(2m1)(2m2)φ†3φ

†
4

∫
d3~r e−i~q·~rV (~r )φ1φ2.

Non-leading terms in ~p can be interpreted as the non-relativistic momentum operator.
(a) Calculate the potential corresponding to the effective four-fermi Hamiltonian density
HI = λψ̄1ψ1 ψ̄2ψ2.
(b) Consider the interaction

LI =
[
g1ψ̄1ψ1 + g2ψ̄2ψ2

]
φ

between two fermions and a Hermitian scalar of mass mφ. Calculate the potential between
ψ1 and ψ2 generated by t-channel φ exchange, and show that it is attractive for g1g2 > 0.
(c) Calculate the potential generated by

LI =
[
g1ψ̄1γ

µψ1 + g2ψ̄2γ
µψ2

]
Vµ,

where Vµ is a spin-1 particle of mass MV . Show that it is repulsive for g1g2 > 0.
(d) Repeat parts (b) and (c) for the case g1g2 > 0, but for the potential between antipar-
ticle 1̄ and particle 2 and interpret the results. Hint: it is slightly easier to use the charge
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conjugation formalism of Section 2.10.
(e) Consider the interaction in (2.269) of a π0 with protons and neutrons. Calculate the
tree-level amplitude for p(~p1)n(~p2)→ p(~p3)n(~p4) by t-channel π0 exchange, and show that
it leads to the non-relativistic potential

V (~r) = − g2
πm

3
π

16πm2
p

[
1

3
~σp · ~σn

e−x

x
+
S

3

(
1

x
+

3

x2
+

3

x3

)
e−x

]
,

where mp ∼ mn, ~σp(~σn) are the Pauli matrices acting on the p (n) spin, x = mπr, and S is
the tensor operator

S = 3~σp · r̂ ~σn · r̂ − ~σp · ~σn.

Solution: (a) We have

M = −i〈f |HI |i〉 = −iλū3u1 ū4u2 −−−−→
~p=~q=0

−iλ(2m1)(2m2)φ†3φ1φ
†
4φ2,

where we have used the explicit expressions for the u spinors in the Pauli-Dirac representa-
tion. The absolute sign follows from explicitly writing out the fields and using

〈3 4| = |3 4〉† =
(
a†3a
†
4|0〉

)†
= 〈0|a4a3.

Thus, Ṽ (~q ) = λ and V (~r ) = λδ3(~r ).
(b)

M = (ig1)(ig2)

(
i

q2 −m2
φ

)
ū3u1 ū4u2 →

ig1g2

|~q |2 +m2
φ

(2m1)(2m2)

where the second form is the non-relativistic limit in the CM. Thus

Ṽ (~q ) = − g1g2

|~q |2 +m2
φ

, V (r) = −g1g2

4π

e−mφr

r
,

the Yukawa potential. It is attractive for g1g2 > 0 and repulsive for g1g2 < 0.
(c) The calculation is similar to part (b), except the propagator has −igµν in the numerator.
Only the µ = ν = 0 terms survive in the NR limit, yielding

V (r) = +
g1g2

4π

e−MV r

r
,

which is repulsive for same sign charges and attractive for opposite signs as expected. For
MV → 0 and gi = eQi, we recover the Coulomb potential V (r) = αQ1Q2/r, with α = e2/4π.
(d) From (2.296) and Table 2.2, we have that ψ̄1ψ1 = ψ̄c1ψ

c
1 and ψ̄1γ

µψ1 = −ψ̄c1γµψc1.
Thus, the scalar exchange potential is unchanged for 1 → 1̄ (i.e., it remains attractive),
while the vector exchange changes sign and becomes attractive. One can also write out the
matrix elements using the original ψ1 field. In both cases there is an extra minus sign from
anticommuting the b and b† operators, and another minus sign for the scalar case because
of the γ0 in ψ̄, e.g.,

〈3̄|ψ̄1ψ1|1̄〉 = −v̄1v3 → +χ†1χ3 = φ†3φ1, 〈3̄|ψ̄1γ
0ψ1|1̄〉 = −v̄1γ

0v3 → −χ†1χ3 = −φ†3φ1.
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(e) The p and n vertices are respectively iL = ∓gπγ5, so

M = − ig2
π

q2 −m2
π

ū3γ
5u1ū4γ

5u2.

But γ0γ5 =

(
0 I
−I 0

)
, so

ū3γ
5u1 = 2mpφ

†
3

[
~σ · ~p1

2mp
− ~σ · ~p3

2mp

]
φ1 = −φ†3~σ · ~qφ1.

Therefore,

V (~r ) =

∫
d3~q

(2π)3
ei~q·~r

g2
π

~q 2 +m2
π

~σp · ~q
2mp

~σn · ~q
2mp

=
−g2

π

32π3m2
p

(
~σp · ~∇

)(
~σn · ~∇

)∫ d3~q ei~q·~r

~q 2 +m2
π

where we have taken mp ∼ mn. Note that σp and σn act on their own spinors. Using contour
integration, the integral is just the Yukawa form

2π2

r
e−mπr = 2π2mπ

e−x

x
.

Also, ~∇ = mπ
~∇x where ~∇x = d

d~x , so that

V (~r ) =
−g2

πm
3
π

16πm2
p

(
~σp · ~∇x

)(
~σn · ~∇x

)(e−x
x

)
.

But (
~σn · ~∇x

) e−x
x

= σin
d

dxi

(
e−x

x

)
= σin

xi

x

d

dx

(
e−x

x

)
= −σinxi

[
1

x2
+

1

x3

]
e−x.

Therefore, (
~σp · ~∇x

)(
~σn · ~∇x

) e−x
x

= σjp
d

dxj

[(
~σn · ~∇x

) e−x
x

]
= −~σp · ~σn

[
1

x2
+

1

x3

]
e−x − (~σn · ~x)

(
~σp · ~∇x

)[ 1

x2
+

1

x3

]
e−x.

The second term reduces to

+ (~σp · ~x ) (σn · ~x )
1

x2

[
1

x
+

3

x2
+

3

x3

]
e−x,

yielding the result after a slight rearrangement.

2.34 Suppose that a new lepton-flavor violating interaction leads to the effective interac-
tion

Leff = −i e
2
Fµν ēσµν

[
A+Bγ5

]
µ+ h.c.,
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where A and B are respectively magnetic and electric dipole transition moments. Calculate
the decay rate for µ→ eγ, neglecting me.

Solution: Leff leads to the matrix element

M = −eūe 6q 6ε∗
[
A+Bγ5

]
uµ,

where q = pµ − pe is the photon momentum, ε is the polarization vector, and we have used
q · ε∗ = 0. But pµ · ε∗ = 0 also, and one can choose a linear polarization basis so that ε is
real. Then

M = +emµūe 6ε
[
A−Bγ5

]
uµ,

and

|M̄ |2 =
1

2

∑
λ

e2m2
µ Tr (6pe 6ε 6pµ 6ε)

(
|A|2 + |B|2

)
= 4e2m2

µ pe · pµ
(
|A|2 + |B|2

)
.

But pe · pµ = m2
µ/2, so

Γ =
pf

8πm2
µ

|M̄ |2 =
e2m3

µ

8π

(
|A|2 + |B|2

)
.


