Chapter 2

Connected Graphs and
Distance

Section 2.1. Connected Graphs

1. Let G = K3 3 and let v and v be the two vertices of G with degu = degv = 3.

2. Consider the path P3 = (v, u,w) of order 3.

3.

(a)

The statement is true. Proof. Suppose that A; = As. Then A; and A,
are both n x nm matrices for some positive integer n. Hence the orders
of G; and G5 are n. Let uj,us,...,u, be a labeling of the vertices
of G that gives the adjacency matrix A; and let vy, vs,...,v, be a
labeling of the vertices of G5 that gives the adjacency matrix As. Define
f:V(G1) = V(G2) by f(u;) =wv; for 1 < i < n. Since A; = A, two
vertices u; and u; are adjacent in G if and only if v; and v; are adjacent
in GQ. Hence Gl = GQ. ]

The statement is false. Let Go = (uj,us,u3) be a path of order 3
and G3 = (v1,v3,v2) be a path of order 3. Then Gy = G3 but Ay =
0 1 0 0 0 1
[ 1 0 1 ] and Az = [ 0 0 1 } and so Ag # As.
01 0 1 1 0
The matrix A is the adjacency matrix of the graph Ky with V(K3) =
{v1,v2}. Since there is one v; — v; walk of length 4, one vo — vo walk of
length 4, and no v; — vy walks or v, — v; walks of length 4, the matrix

1 0
4.
AIS|:01:|.

Since degv; = degvy = 1 and there exist no v; — vy paths or vy — vq

é (1) } . Since A? is the identity

matrix I, it follows that A* = 42 A2 =1-I=1.

paths of length 2, it follows that A% =

19
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. The adjacency matrix of G; is A =
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. To compute A?, observe

O~ =

0
1
1
0

=
O = ==

1
that degv; = degvy = 2 and degvy = degus = 3. For i # j, the (4,)-
entry of A? is the number of different v; — v; paths of length 2. Thus A% =
[2 1 1 2]

1 3 2 1

1 2 31
|2 1 1 2|
triangle and vy and w3 belong to two triangles each. For i # j, the (4,7)-
entry of A3 is the number of different v; — v; walks of length 3. Thus A3 =

2 5 5 2

To compute A3, observe that v; and vy belong to one

5 4 5 5
5 5 4 5
12 5 5 2|
01 00O
101 00
. The adjacency matrix of the graph Gois A = [ 0 1 0 1 0 The

0 01 01
00010

(i,7)-entry of A* is the number of different v; — v; walks of length k in G.
Thus

10100 02010
02010 2 0 301
A2=110201[,A4=[03 0 3 0]and
01020 1030 2
(00 1 0 1] 010 20
(2 0 3 0 1]
05040
A*=13 0 6 0 3
04050
103 0 2|

. V(G) = {v1,v2,v3,v4,v5} and E(G) = {v1va, v103, V203, U304, V4Us5 }.

. Since there is one v; — v; walk of length 0 and no v; — v; walks of length 0

for i # j, the (i, j)-entry of A® gives the number of v; — v; walks of length 0.
Therefore, Theorem 2.2 also holds for k£ = 0.

. Let Pry1 = (u1,u2,...,urt1) be a path of order k+ 1 and let G be the graph

obtained from Py41 by adding k new vertices vy, vs,...,v; and joining v; to
u; and wu;41 for 1 <4 < k. Then G has the desired property.

[Note: Also, consider G = K1 A kK>
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(a) See Figure 2.1.

Figure 2.1: The graph in Exercise 10

(b) Let G = K3 3. Then g(G) =4 and ¢(G) = 6 but G contains no 5-cycle.

(a), (b). Let P = (u1,usg,...,up) be a longest path in G. Thus, u; is only
adjacent to vertices of P, for otherwise, there is a path longer than P. Let
k be the greatest integer, 2 < k < ¢, such that ujur € E(G). Therefore,
C = (u1,uz,...,ug,u1) is a k-cycle, where k > 6(G) + 1.

Note that g(G) = 3 and ¢(G) = 6k.

Proof. Let G be a graph. Since (v) is a trivial path for every vertex v
of G, the vertex v is connected to itself. Suppose that u is connected to

v. Then G contains a v — v path P, say P = (u = wuj,ug,...,up = v).
Then (v = wug, Ug—1,...,u2,u1 = u) is a v — u path and v is connected to
u. Next, suppose that u is connected to v and v is connected to w. Then
G contains a u — v path P = (u = uj,u9,...,ur = v) and a v — w path
Q= (v=wy,v2,...,us = w). Then

(u=u1,ug,..., Uy =V =101,V2,...,U = W)
is a u — w walk. By Theorem 2.1, G contains a u — w path. ]

Proof. Suppose that there is a partition {Vi,V2} of V(G) such that no edge
joins a vertex of Vi and a vertex of V5. Let x € Vi and y € V5. Then x and y
are not connected in G and so (G is not connected.

For the converse, suppose that for every partition {V;,V2} of V(G), there
exists an edge of GG joining a vertex of V; and a vertex of V5. We claim that
G is connected, for otherwise, there exist two distinct vertices x and y in G
that are not connected. Let U; be the set of vertices that are connected to =
and let Uy = V(G) — Uy. Then there is no edge joining a vertex of U; and a
vertex of Us. n

Proof. Assume, to the contrary, that the statement is not true. Then there
exists a connected graph G of order n and an integer k with 2 < k <n—1
such that degu + degv > k for every pair u,v of nonadjacent vertices of G
but G contains no path of length k. Let P be a longest path in G. Suppose
that P is a u — v path of length ¢. Then 2 < /¢ < k. We consider two cases.
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Case 1. uv € E(G). Then G has a cycle C of length £ + 1 < n. Since G is
connected, there is a vertex w € V(G) —V(C) such that w is adjacent to some
vertex x on C. Then G has a path of length ¢ + 1, which is a contradiction.

Case 2. uv ¢ E(G). By hypothesis, degu + degv > k. Suppose that
P=(u=mwup,u1, ,u =0).

Since P is a longest path in G, every vertex adjacent to u (and to v) belongs
to P. If u is adjacent to u; (1 <4 < ¢), then v is not adjacent to u;_1, for
otherwise, G contains a cycle of length £+ 1 and we can proceed as in Case 1.
Thus degv < ¢ — degu. However then

degu +degv < £ < k,
which is a contradiction. [ ]

Proof. Let G be a disconnected graph of order n > 6 having three compo-
nents. We show that there exists some vertex v € V(G) such that degv <
(n—3)/3.

Let G1, G2 and G3 be the three components of G with |V(G;)| = n; > 1 for
1 <4 < 3. Suppose that n; < mng < ng. Then n; <n/3. If v € V(Gy), then

Q_lzn—?)'
3 3
>

(n=1)—(n-3)/3=2n/3.m

deggv =degg, v<mn; —1<

Since §(G) < (n — 3)/3, it follows that A(G)

Let V(G) = {u = v1,va, - -,v, = v}. Since G is connected, it follows that
G contains a v; — v;41 path P; for i = 1,2,--- n — 1. Proceeding along the
paths Py, Ps, ..., P,,_1 in the given order produces a u — v walk containing all
vertices of G.

A graph G of order n has the property that every induced subgraph of G is
connected if and only if G = K.

Proof. First, if G = K, then every induced subgraph of G is complete
and therefore connected. For the converse, suppose that G is not complete.
Then G contains two nonadjacent vertices v and v. Let S = {u,v}. Then
G[S] = K is disconnected. L]

(a) Proof. Let the distinct degrees be a,b and c. Let degx = a and degy =
b. Then there exists an x — y path P’. If there is a vertex of degree ¢ on
P’, then the proof is complete. Otherwise, there are adjacent vertices u
and v with degu = a and degv = b. Let P = (u,v) be this subpath of
P’. Now, let z be a vertex with degz = ¢ and let @ be a shortest path
from z to P. This produces a path containing vertices of degrees a, b and
c. n

(b) No. Consider K V (K1 + K3 + K3).
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Proof. If every two vertices of G are of the same parity, then the result
follows immediately. If this is not the case, then let V3 = {v € V(G) :
visodd} and Vo = {v € V(G) : wvis even}. Thus {Vi,V5} is a partition of
V(G). Since G is not bipartite, V3 and V5 cannot be partite sets for G. So
either two vertices of Vi are adjacent or two vertices of V5 are adjacent. In
either case, G contains two adjacent vertices whose degree sum is even. ]

Proof. Assume, to the contrary, that G has k (or more) components. Then
G has a component Gy of order at most n/k. Each vertex of Gy has degree
at most (n/k) — 1 = (n — k)/k, which is a contradiction. L]

Proof. Let M =(k—1)(n—k—1)+ (k"gl) Assume, to the contrary, that
there is a graph G of order n > k + 1 and size m > M, no subgraph of which
has minimum degree k. Thus §(F) < k — 1 for every subgraph F of G. In
particular, §(G) < k — 1. Let v; € V(G) such that deg. vy < k — 1. Consider
G1 = G—v;. Thesize of Gy is at least M —(k—1). Since 6(G1) < k—1, there is
avertex vo € G such that degg, (v2) < k—1. Let Go = G1—vy = G—{v1,v2}.
The size of G is at least M —2-(k—1). In general, let G; = G—{v1,va,...,v;}
such that degg,  (vi) <k—1for1<i<n—k—1, where Go = G. Thus the
size of of G; is at least M — i(k — 1). In particular, the size of G,,_;_1 is at
least M —(k—1)(n—k—1) = (k‘gl). Since G,,—,—1 has order k+ 1, it follows
Gr—k—1 = Ki41, which has minimum degree k, producing a contradiction. m

Proof. Select some vertex v; in G. Since G is connected, there is a vertex
ve in G that is adjacent to v;. If n > 3, then the subgraph induced by
Sy = {v1,v2} is not a component of G. Thus there is a vertex vs ¢ Sy that is
adjacent to some vertex in S5. Continuing in this way, we obtain a sequence
V1,3, ..., U, where each vertex v; (2 < i < n) is adjacent to some vertex in
the set {1}1,’02,...,’01'_1}. ]

Proof. We show, by induction, for each integer p with 2 < p < n that the
subgraph G[{vi,vs,...,vp}] is connected. Since v1v2 € E(G), the subgraph
G[{v1,v2}] is connected. Assume for an integer k with 2 < k < n that

H = G[{v1,vs,...,v;}] is connected. Suppose that vgy; is adjacent to vy €
{v1,v2,...,v}. Since there is a v, — v; path in H for every ¢ with 1 <14 < k,
there is a vi41 — v; path in H = G[{v1,va,...,vx41}] for every i with 1 <

i < k. Furthermore, since there is a v; — v; path in H for every two vertices
v;,v; € V(H), there is a v; — v; path in H’. Thus, H' is connected. By
the Principle of Mathematical Induction, the subgraph G[{vi,va,...,vp}] is
connected for every integer p with 2 < p < n. In particular, G is connected. m

Section 2.2. Distance in Graphs

Proof. Observe that

d(u,v) + d(u, w) + d(v,w) = [d(u,v) + d(v,w)] + d(u, w) > 2d(u,w)

by the triangle inequality. [
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Proof. If G is a bipartite graph, then G contains no odd cycle by Theo-
rem 1.18 and so G contains no induced odd cycle. For the converse, assume
that G contains no induced odd cycle. We show that G does not contain any
odd cycle (which implies that G is bipartite by Theorem 1.18). If this is not
the case, among all odd cycles of G, let C' be one of minimum size. If C' is not
induced, then there is a chord in C'. This, however, produces an odd cycle of
smaller size in GG, which is impossible. ]

Since m is an integer, n is even and so n = 2k for some integer k > 3. We
claim that G = Kj_1 j+1, which has order n and size m = (”72)4& =k2-1.

If G is a graph of order n > 6 and size m = (YL_Q)LLM containing no odd cycle,

then G is a bipartite graph with partite sets U and W where say |U| < |W]|. It
is known (by Theorem 1.8) that the size of G is at most k2. If [U| = |W| =k,
then G = K} i, — e has size k? — 1, but then only two vertices of G have degree
less than k. Thus, |U| < |[W|. Then |U| = k —a and |W| = k + a for some
positive integer a. If a > 2, then the size of G is at most k% — a? < k? — 1,
which does not occur and so a = 1. Thus, G is a subgraph of Kj_1 ;41. Since
the size of Kj_1 +1 is k% — 1, it follows that G = Kj_1 g41.

(a) Proof. Assume, to the contrary, that there exists a connected graph
G containing two paths P’ and P” of maximum length ¢ that have no
vertex in common. Suppose that P’ is v’ — v’ path and P is a u” — 0"
path. Let

s = min{d(w’,w") : w" € V(P"),w"” € V(P")}.

Thus s > 1. Let z € V(P’) and y € V(P") such that d(z,y) = s and let
P be an x — y path of length s. Let Q" be the v’ — x subpath or x — v’
subpath of P’, whichever has length at least [¢/2]. Similarly, let Q" be
either the u” — y subpath or the y — v”” subpath of P”, whichever has
length at least [£/2]. Then @', P,Q" is a path of length more than ¢,
which is a contradiction. ]

(b) Proof. Suppose that ¢ is odd, say ¢ = 2k + 1 for some positive integer
k. Suppose that P is a w — v path and @ an z — y path such that
V(P)NV(Q) = {w}. Then either the u — w subpath or the w — v
subpath of P has length at least k + 1, say the w — v path P’ has length
at least k + 1. Similarly, we may assume that the x — w subpath Q’ of Q
has length at least &+ 1. Then P’ and @’ form a path of length at least
2k + 2 > 2k + 1 = £, a contradiction. =

(a) di(v) =deguw.

(b) For 1 <k <n—1, let my denote the number of pairs u, v of vertices of
G such that d(u,v) = k. Then }_ .y () di(v) = 2my.

(©) Treviey (Thot de®) = Loevay(n—1) =n(n—1) =n* —n.
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Proof. Let u and v be two vertices of G. We show that u and v are connected
and dg(u,v) < 2. If w and v are in different components of G, then wv is
an edge in G’ and so dg(u,v) = 1. Suppose that u and v are in the same
component GG of G. Let w be a vertex that is in another component G of G.
Then (u,w,v) is a path in G. Thus dg(u,v) < 2. Therefore diam(G) < 2. =

First, let a = 1. For b =1, let G = P5; while for b = 2, let G = P5. For a > 2,
let G = Cs, if b = a; while for b > a, let G be obtained from Cs, and Py_,41
by identifying an end-vertex of P,_, 1 with a vertex of Cy,.

(a) Assume, to the contrary, that 2,3,3,3 is the eccentricity sequence of
some graph G (necessarily of order 4). Let u be a vertex with eccentricity 3
and suppose that v is a vertex of G such that e(u) = d(u,v) = 3. Let
P = (u,w,z,v) be a u — v geodesic. Then neither w nor x has eccentricity 3,
a contradiction.

(b) Since a graph with eccentricity sequence a,b,b,b has order 4, it follows
that either (i) a = 1 and b = 2 or (ii) @ = 2 and b = 3. The eccentricity
sequence of the graph K 3 is 1,2,2,2; while 2,3,3,3 is not the eccentricity
sequence of any graph by (a). Thus a =1 and b = 2.

For n > 4, let ej,es and e3 be the edges of a triangle in K,,. Let F =
K, —e —eyand G = K,, —e; — ez —e3. Then F' 2 G but the eccentricity
sequence of both is 1,1,...,1,2,2,2.

(a) KQ. (b) P3.

Let H = Ky where the partite sets of H are U = {uj,us} and W =
{wi,ws,...,w;} and let G be the graph obtained from H by adding two
vertices v1 and ve and the two edges uiv1 and ugvs. Then degw; = e(w;) = 2
fori=1,2,... k.

Proof. Let w be a vertex with e(w) = k and let u be a vertex with d(w,u) =
e(w) = k. For a central vertex v of G, let P be a u — v path of length
d(u,v). Thus d(u,v) < e(v) = rad(G). Since d(u,w) = k, it follows that
e(v) < k < e(u). By Theorem 2.7, there is a vertex x on P such that e(x) = k.
Because d(u,z) < d(u,v) < k and d(w,u) = k, it follows that = # w. L]

Proof. Letn=2+(r—1) Zf;ll (r —2)* and suppose that G is a connected
graph of order n such that A(G) < r and diam(G) < s. Let z € V(G) such
that e(z) = diam(G) < s. Let A;(z) denote the set of vertices at distance 4
from z where 0 < i < s — 1. Then |Ag(v)| = 1 and |A;(z)| < (r —1)(r — 2)"1
for 1 <i<s—1. Since

n= V@) = A <14 (- 1) 3 (2"
1=0 =1

this is a contradiction. n
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38. No. Suppose that G is a connected graph with diam(G) > 2 such that H =
Per(G) is complete. Let v and v be two antipodal vertices of G. Then 1 =
de(u,v) = diam(G) > 2, which is a contradiction.

39. For the graph G in Figure 2.2 and the four distinct vertices vy, v, vs,v4 in G,
v;41 18 an eccentric vertex of v; for ¢ = 1,2,3. Also, e(v1) =4, e(v2) = 6 and
e(vs) = 8.

V4 U1
vy O
U3
Figure 2.2: The graph in Exercise 39

40. In the graph G of Figure 2.3, each vertex is labeled with its total distance.
The median is also shown.

38
a7 O 29
28 26 26 34 42 52
G S S Med(G) : 0—0
u v u v
37 %9
38

Figure 2.3: The median of a graph

41. Let 2k +1 > 3 and let GG be the graph obtained by identifying the center v of
K1 2541 with the end-vertex vop41 of the path P = (v1,v2,...,v254+1). Then
V41 1s the only central vertex of G. Observe that

H(v) — (2k2+1> @kt1) = (2k2+2>7

2k

td(vop) = (2>+1+2(2k+1)=<2k;2>+2,

and for an end-vertex x adjacent to v,

td(z) = (2’“ ; 3) +2(2k).

Since all other vertices of G have a total distance greater than that of v, the
vertex v is the only median vertex of G. Thus

d(Cen(G), Med(G)) = k.
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(a) Proof. Let u and v be vertices at distance 3 in G. Select any two
vertices z and y. We consider three cases. Recall that the closed neigh-
borhood NJu] of u consists of u and all the neighbors of w.

Case 1. z € N[u] and y € Nu]. Then (z,v,y) is a path in G and

d(z,y) < 2.
Case 2. © € N[u] and y ¢ N[u]. Then (x,v,u,y) is a path in G and
d(z,y) < 3.
Case 3. x ¢ Nu] and y ¢ N[u]. Then (z,u,y) is a path in G and
d(z,y) < 2.
Since d(z,y) < 3 in each case, the diameter is at most 3. L]

(b) If G has diameter at least 4, then G has diameter at most 3; so G cannot
be self-complementary. If diam(G) = 1, then G is complete and is not
self-complementary. So the diameter must be 2 or 3 for G to be self-
complementary.

Figure 2.4(a) shows a self-complementary graph of order 4k and diam-
eter 3 and a self-complementary graph of order 4k + 1 and diameter 2,
where the bold lines between two graphs indicate that all possible edges
join these two graphs.

(c) If the diameter of G is 2, the diameter of G can be any integer k for
2 <k <n-—1. For k =2, see Figure 2.4(b). For 3 <k <n—1, let G be
the graph obtained by identifying a vertex of K,,_;4+1 with an end-vertex

of the path Pj. Then diam(G) = 2 and diam(G) = k.

Proof. Certainly, d(G,H) = 0 if and only if G = H. Since each 2-switch
from F to F’ results in an inverse 2-switch from F’ to F, the distance d is
symmetric. Let F,G and H be three graphs in G, such that d(F,G) = a
and d(G, H) = b. Then there are a 2-switches that transforms F' into G and
b 2-switches that transforms G into H. Hence there is a sequence of a + b
switches that transforms F' into H. Therefore,

d(F,H)<a+b=d(F,G)+d(G,H)
and so the triangle inequality holds. [

Proof. Let G be a connected graph. Since (1) D(u,v) >0, (2) D(u,v) = 0if
and only if u = v and (3) D(u,v) = D(v,u) for every pair u, v of vertices of G,
it remains only to show that detour distance satisfies the triangle inequality.

Let u,v and w be any three vertices of G. Since the inequality D(u,w) <
D(u,v)+ D(v,w) holds if any two of these three vertices are the same vertex,
we assume that u,v and w are distinct. Let P be a u — w detour in G of
length k& = D(u,w). We consider two cases.

Case 1. v lies on P. Let P; be the u— v subpath of P and let P, be the v —w
subpath of P. Suppose that the length of P, is s and the length of P is t. So
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(b)

Figure 2.4: Graphs in Exercise 42

s +t = k. Therefore,

D(u,w) =k =s+t < D(u,v) + D(v,w).

Case 2. v does not lie on P. Since G is connected, there is a shortest path
Q@ from v to a vertex of P. Suppose that @ is a v — x path. Thus z lies on
P but no other vertex of @ lies on P. Let r be the length of @. Thus r > 0.
Let the uw — x subpath P’ of P have length a and the x — w subpath P of
P have length b. Then a > 0 and b > 0. Therefore, D(u,v) > a + r and
D(v,w) >b+r. So

Du,w)=k=a+b< (a+r)+ (b+r) < D(u,v) + D(v,w),

and so the triangle inequality holds. ]



