
Chapter 2

Connected Graphs and
Distance

Section 2.1. Connected Graphs

1. Let G = K2,3 and let u and v be the two vertices of G with deg u = deg v = 3.

2. Consider the path P3 = (v, u, w) of order 3.

3. (a) The statement is true. Proof. Suppose that A1 = A2. Then A1 and A2

are both n × n matrices for some positive integer n. Hence the orders
of G1 and G2 are n. Let u1, u2, . . . , un be a labeling of the vertices
of G1 that gives the adjacency matrix A1 and let v1, v2, . . . , vn be a
labeling of the vertices of G2 that gives the adjacency matrix A2. Define
f : V (G1) → V (G2) by f(ui) = vi for 1 ≤ i ≤ n. Since A1 = A2, two
vertices ui and uj are adjacent in G1 if and only if vi and vj are adjacent
in G2. Hence G1

∼= G2.

(b) The statement is false. Let G2 = (u1, u2, u3) be a path of order 3
and G3 = (v1, v3, v2) be a path of order 3. Then G2

∼= G3 but A2 =[
0 1 0
1 0 1
0 1 0

]
and A3 =

[
0 0 1
0 0 1
1 1 0

]
and so A2 6= A3.

4. (a) The matrix A is the adjacency matrix of the graph K2 with V (K2) =
{v1, v2}. Since there is one v1 − v1 walk of length 4, one v2 − v2 walk of
length 4, and no v1 − v2 walks or v2 − v1 walks of length 4, the matrix

A4 is

[
1 0
0 1

]
.

(b) Since deg v1 = deg v2 = 1 and there exist no v1 − v2 paths or v2 − v1

paths of length 2, it follows that A2 =

[
1 0
0 1

]
. Since A2 is the identity

matrix I, it follows that A4 = A2 ·A2 = I · I = I.
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5. The adjacency matrix of G1 is A =


0 1 1 1
1 0 1 1
1 1 0 1
0 1 1 0

. To compute A2, observe

that deg v1 = deg v4 = 2 and deg v2 = deg v3 = 3. For i 6= j, the (i, j)-
entry of A2 is the number of different vi − vj paths of length 2. Thus A2 =

2 1 1 2
1 3 2 1
1 2 3 1
2 1 1 2

. To compute A3, observe that v1 and v4 belong to one

triangle and v2 and v3 belong to two triangles each. For i 6= j, the (i, j)-
entry of A3 is the number of different vi − vj walks of length 3. Thus A3 =

2 5 5 2
5 4 5 5
5 5 4 5
2 5 5 2

.

6. The adjacency matrix of the graph G2 is A =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

. The

(i, j)-entry of Ak is the number of different vi − vj walks of length k in G.
Thus

A2 =


1 0 1 0 0
0 2 0 1 0
1 0 2 0 1
0 1 0 2 0
0 0 1 0 1

, A3 =


0 2 0 1 0
2 0 3 0 1
0 3 0 3 0
1 0 3 0 2
0 1 0 2 0

 and

A4 =


2 0 3 0 1
0 5 0 4 0
3 0 6 0 3
0 4 0 5 0
1 0 3 0 2

.

7. V (G) = {v1, v2, v3, v4, v5} and E(G) = {v1v2, v1v3, v2v3, v3v4, v4v5}.

8. Since there is one vi − vi walk of length 0 and no vi − vj walks of length 0
for i 6= j, the (i, j)-entry of A0 gives the number of vi − vj walks of length 0.
Therefore, Theorem 2.2 also holds for k = 0.

9. Let Pk+1 = (u1, u2, . . . , uk+1) be a path of order k+ 1 and let G be the graph
obtained from Pk+1 by adding k new vertices v1, v2, . . . , vk and joining vi to
ui and ui+1 for 1 ≤ i ≤ k. Then G has the desired property.

[Note: Also, consider G = K1 ∧ kK2.]
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10. (a) See Figure 2.1.
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Figure 2.1: The graph in Exercise 10

(b) Let G = K3,3. Then g(G) = 4 and c(G) = 6 but G contains no 5-cycle.

11. (a), (b). Let P = (u1, u2, . . . , u`) be a longest path in G. Thus, u1 is only
adjacent to vertices of P , for otherwise, there is a path longer than P . Let
k be the greatest integer, 2 ≤ k ≤ `, such that u1uk ∈ E(G). Therefore,
C = (u1, u2, . . . , uk, u1) is a k-cycle, where k ≥ δ(G) + 1.

12. Note that g(G) = 3 and c(G) = 6k.

13. Proof. Let G be a graph. Since (v) is a trivial path for every vertex v
of G, the vertex v is connected to itself. Suppose that u is connected to
v. Then G contains a u − v path P , say P = (u = u1, u2, . . . , uk = v).
Then (v = uk, uk−1, . . . , u2, u1 = u) is a v − u path and v is connected to
u. Next, suppose that u is connected to v and v is connected to w. Then
G contains a u − v path P = (u = u1, u2, . . . , uk = v) and a v − w path
Q = (v = v1, v2, . . . , u` = w). Then

(u = u1, u2, . . . , uk = v = v1, v2, . . . , u` = w)

is a u− w walk. By Theorem 2.1, G contains a u− w path.

14. Proof. Suppose that there is a partition {V1, V2} of V (G) such that no edge
joins a vertex of V1 and a vertex of V2. Let x ∈ V1 and y ∈ V2. Then x and y
are not connected in G and so G is not connected.

For the converse, suppose that for every partition {V1, V2} of V (G), there
exists an edge of G joining a vertex of V1 and a vertex of V2. We claim that
G is connected, for otherwise, there exist two distinct vertices x and y in G
that are not connected. Let U1 be the set of vertices that are connected to x
and let U2 = V (G)− U1. Then there is no edge joining a vertex of U1 and a
vertex of U2.

15. Proof. Assume, to the contrary, that the statement is not true. Then there
exists a connected graph G of order n and an integer k with 2 ≤ k ≤ n − 1
such that deg u + deg v ≥ k for every pair u, v of nonadjacent vertices of G
but G contains no path of length k. Let P be a longest path in G. Suppose
that P is a u− v path of length `. Then 2 ≤ ` < k. We consider two cases.
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Case 1. uv ∈ E(G). Then G has a cycle C of length ` + 1 < n. Since G is
connected, there is a vertex w ∈ V (G)−V (C) such that w is adjacent to some
vertex x on C. Then G has a path of length `+ 1, which is a contradiction.

Case 2. uv /∈ E(G). By hypothesis, deg u+ deg v ≥ k. Suppose that

P = (u = u0, u1, · · · , u` = v).

Since P is a longest path in G, every vertex adjacent to u (and to v) belongs
to P . If u is adjacent to ui (1 ≤ i ≤ `), then v is not adjacent to ui−1, for
otherwise, G contains a cycle of length `+ 1 and we can proceed as in Case 1.
Thus deg v ≤ `− deg u. However then

deg u+ deg v ≤ ` < k,

which is a contradiction.

16. Proof. Let G be a disconnected graph of order n ≥ 6 having three compo-
nents. We show that there exists some vertex v ∈ V (G) such that degG v ≤
(n− 3)/3.

Let G1, G2 and G3 be the three components of G with |V (Gi)| = ni ≥ 1 for
1 ≤ i ≤ 3. Suppose that n1 ≤ n2 ≤ n3. Then n1 ≤ n/3. If v ∈ V (G1), then

degG v = degG1
v ≤ n1 − 1 ≤ n

3
− 1 =

n− 3

3
.

Since δ(G) ≤ (n− 3)/3, it follows that ∆(G) ≥ (n− 1)− (n− 3)/3 = 2n/3.

17. Let V (G) = {u = v1, v2, · · · , vn = v}. Since G is connected, it follows that
G contains a vi − vi+1 path Pi for i = 1, 2, · · · , n − 1. Proceeding along the
paths P1, P2, . . . , Pn−1 in the given order produces a u− v walk containing all
vertices of G.

18. A graph G of order n has the property that every induced subgraph of G is
connected if and only if G = Kn.

Proof. First, if G = Kn, then every induced subgraph of G is complete
and therefore connected. For the converse, suppose that G is not complete.
Then G contains two nonadjacent vertices u and v. Let S = {u, v}. Then
G[S] = K2 is disconnected.

19. (a) Proof. Let the distinct degrees be a, b and c. Let deg x = a and deg y =
b. Then there exists an x− y path P ′. If there is a vertex of degree c on
P ′, then the proof is complete. Otherwise, there are adjacent vertices u
and v with deg u = a and deg v = b. Let P = (u, v) be this subpath of
P ′. Now, let z be a vertex with deg z = c and let Q be a shortest path
from z to P . This produces a path containing vertices of degrees a, b and
c.

(b) No. Consider K1 ∨ (K1 +K2 +K3).
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20. Proof. If every two vertices of G are of the same parity, then the result
follows immediately. If this is not the case, then let V1 = {v ∈ V (G) :
v is odd} and V2 = {v ∈ V (G) : v is even}. Thus {V1, V2} is a partition of
V (G). Since G is not bipartite, V1 and V2 cannot be partite sets for G. So
either two vertices of V1 are adjacent or two vertices of V2 are adjacent. In
either case, G contains two adjacent vertices whose degree sum is even.

21. Proof. Assume, to the contrary, that G has k (or more) components. Then
G has a component G1 of order at most n/k. Each vertex of G1 has degree
at most (n/k)− 1 = (n− k)/k, which is a contradiction.

22. Proof. Let M = (k − 1)(n− k − 1) +
(
k+1

2

)
. Assume, to the contrary, that

there is a graph G of order n ≥ k + 1 and size m ≥M , no subgraph of which
has minimum degree k. Thus δ(F ) ≤ k − 1 for every subgraph F of G. In
particular, δ(G) ≤ k− 1. Let v1 ∈ V (G) such that degG v1 ≤ k− 1. Consider
G1 = G−v1. The size of G1 is at least M−(k−1). Since δ(G1) ≤ k−1, there is
a vertex v2 ∈ G1 such that degG1

(v2) ≤ k−1. Let G2 = G1−v2 = G−{v1, v2}.
The size of G2 is at least M−2·(k−1). In general, let Gi = G−{v1, v2, . . . , vi}
such that degGi−1

(vi) ≤ k− 1 for 1 ≤ i ≤ n− k− 1, where G0 = G. Thus the
size of of Gi is at least M − i(k − 1). In particular, the size of Gn−k−1 is at
least M − (k− 1)(n−k− 1) =

(
k+1

2

)
. Since Gn−k−1 has order k+ 1, it follows

Gn−k−1 = Kk+1, which has minimum degree k, producing a contradiction.

23. Proof. Select some vertex v1 in G. Since G is connected, there is a vertex
v2 in G that is adjacent to v1. If n ≥ 3, then the subgraph induced by
S2 = {v1, v2} is not a component of G. Thus there is a vertex v3 /∈ S2 that is
adjacent to some vertex in S2. Continuing in this way, we obtain a sequence
v1, v2, . . . , vn where each vertex vi (2 ≤ i ≤ n) is adjacent to some vertex in
the set {v1, v2, . . . , vi−1}.

24. Proof. We show, by induction, for each integer p with 2 ≤ p ≤ n that the
subgraph G[{v1, v2, . . . , vp}] is connected. Since v1v2 ∈ E(G), the subgraph
G[{v1, v2}] is connected. Assume for an integer k with 2 ≤ k < n that
H = G[{v1, v2, . . . , vk}] is connected. Suppose that vk+1 is adjacent to v` ∈
{v1, v2, . . . , vk}. Since there is a v` − vi path in H for every i with 1 ≤ i ≤ k,
there is a vk+1 − vi path in H ′ = G[{v1, v2, . . . , vk+1}] for every i with 1 ≤
i ≤ k. Furthermore, since there is a vi − vj path in H for every two vertices
vi, vj ∈ V (H), there is a vi − vj path in H ′. Thus, H ′ is connected. By
the Principle of Mathematical Induction, the subgraph G[{v1, v2, . . . , vp}] is
connected for every integer p with 2 ≤ p ≤ n. In particular, G is connected.

Section 2.2. Distance in Graphs

25. Proof. Observe that

d(u, v) + d(u,w) + d(v, w) = [d(u, v) + d(v, w)] + d(u,w) ≥ 2d(u,w)

by the triangle inequality.
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26. Proof. If G is a bipartite graph, then G contains no odd cycle by Theo-
rem 1.18 and so G contains no induced odd cycle. For the converse, assume
that G contains no induced odd cycle. We show that G does not contain any
odd cycle (which implies that G is bipartite by Theorem 1.18). If this is not
the case, among all odd cycles of G, let C be one of minimum size. If C is not
induced, then there is a chord in C. This, however, produces an odd cycle of
smaller size in G, which is impossible.

27. Since m is an integer, n is even and so n = 2k for some integer k ≥ 3. We

claim that G = Kk−1,k+1, which has order n and size m = (n−2)(n+2)
4 = k2−1.

If G is a graph of order n ≥ 6 and size m = (n−2)(n+2)
4 containing no odd cycle,

then G is a bipartite graph with partite sets U and W where say |U | ≤ |W |. It
is known (by Theorem 1.8) that the size of G is at most k2. If |U | = |W | = k,
then G = Kk,k−e has size k2−1, but then only two vertices of G have degree
less than k. Thus, |U | < |W |. Then |U | = k − a and |W | = k + a for some
positive integer a. If a ≥ 2, then the size of G is at most k2 − a2 < k2 − 1,
which does not occur and so a = 1. Thus, G is a subgraph of Kk−1,k+1. Since
the size of Kk−1,k+1 is k2 − 1, it follows that G = Kk−1,k+1.

28. (a) Proof. Assume, to the contrary, that there exists a connected graph
G containing two paths P ′ and P ′′ of maximum length ` that have no
vertex in common. Suppose that P ′ is u′ − v′ path and P ′′ is a u′′ − v′′
path. Let

s = min{d(w′, w′′) : w′ ∈ V (P ′), w′′ ∈ V (P ′′)}.

Thus s ≥ 1. Let x ∈ V (P ′) and y ∈ V (P ′′) such that d(x, y) = s and let
P be an x− y path of length s. Let Q′ be the u′ − x subpath or x− v′
subpath of P ′, whichever has length at least d`/2e. Similarly, let Q′′ be
either the u′′ − y subpath or the y − v′′ subpath of P ′′, whichever has
length at least d`/2e. Then Q′, P,Q′′ is a path of length more than `,
which is a contradiction.

(b) Proof. Suppose that ` is odd, say ` = 2k + 1 for some positive integer
k. Suppose that P is a u − v path and Q an x − y path such that
V (P ) ∩ V (Q) = {w}. Then either the u − w subpath or the w − v
subpath of P has length at least k+ 1, say the w− v path P ′ has length
at least k+ 1. Similarly, we may assume that the x−w subpath Q′ of Q
has length at least k+ 1. Then P ′ and Q′ form a path of length at least
2k + 2 > 2k + 1 = `, a contradiction.

29. (a) d1(v) = deg v.

(b) For 1 ≤ k ≤ n− 1, let mk denote the number of pairs u, v of vertices of
G such that d(u, v) = k. Then

∑
v∈V (G) dk(v) = 2mk.

(c)
∑
v∈V (G)

(∑n−1
k=1 dk(v)

)
=
∑
v∈V (G)(n− 1) = n(n− 1) = n2 − n.
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30. Proof. Let u and v be two vertices of G. We show that u and v are connected
and dG(u, v) ≤ 2. If u and v are in different components of G, then uv is
an edge in G and so dG(u, v) = 1. Suppose that u and v are in the same
component G1 of G. Let w be a vertex that is in another component G2 of G.
Then (u,w, v) is a path in G. Thus dG(u, v) ≤ 2. Therefore diam(G) ≤ 2.

31. First, let a = 1. For b = 1, let G = P2; while for b = 2, let G = P3. For a ≥ 2,
let G = C2a if b = a; while for b > a, let G be obtained from C2a and Pb−a+1

by identifying an end-vertex of Pb−a+1 with a vertex of C2a.

32. (a) Assume, to the contrary, that 2, 3, 3, 3 is the eccentricity sequence of
some graph G (necessarily of order 4). Let u be a vertex with eccentricity 3
and suppose that v is a vertex of G such that e(u) = d(u, v) = 3. Let
P = (u,w, x, v) be a u− v geodesic. Then neither w nor x has eccentricity 3,
a contradiction.

(b) Since a graph with eccentricity sequence a, b, b, b has order 4, it follows
that either (i) a = 1 and b = 2 or (ii) a = 2 and b = 3. The eccentricity
sequence of the graph K1,3 is 1, 2, 2, 2; while 2, 3, 3, 3 is not the eccentricity
sequence of any graph by (a). Thus a = 1 and b = 2.

33. For n ≥ 4, let e1, e2 and e3 be the edges of a triangle in Kn. Let F =
Kn − e1 − e2 and G = Kn − e1 − e2 − e3. Then F 6∼= G but the eccentricity
sequence of both is 1, 1, . . . , 1, 2, 2, 2.

34. (a) K2. (b) P3.

35. Let H = K2,k where the partite sets of H are U = {u1, u2} and W =
{w1, w2, . . . , wk} and let G be the graph obtained from H by adding two
vertices v1 and v2 and the two edges u1v1 and u2v2. Then degwi = e(wi) = 2
for i = 1, 2, . . . , k.

36. Proof. Let w be a vertex with e(w) = k and let u be a vertex with d(w, u) =
e(w) = k. For a central vertex v of G, let P be a u − v path of length
d(u, v). Thus d(u, v) ≤ e(v) = rad(G). Since d(u,w) = k, it follows that
e(v) < k ≤ e(u). By Theorem 2.7, there is a vertex x on P such that e(x) = k.
Because d(u, x) ≤ d(u, v) < k and d(w, u) = k, it follows that x 6= w.

37. Proof. Let n = 2 + (r− 1)
∑s−1
i=1 (r− 2)i and suppose that G is a connected

graph of order n such that ∆(G) < r and diam(G) < s. Let x ∈ V (G) such
that e(x) = diam(G) < s. Let Ai(x) denote the set of vertices at distance i
from x where 0 ≤ i ≤ s− 1. Then |A0(v)| = 1 and |Ai(x)| ≤ (r− 1)(r− 2)i−1

for 1 ≤ i ≤ s− 1. Since

n = |V (G)| = |
s−1⋃
i=0

Ai(v)| ≤ 1 + (r − 1)

s−1∑
i=1

(r − 2)i,

this is a contradiction.
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38. No. Suppose that G is a connected graph with diam(G) ≥ 2 such that H =
Per(G) is complete. Let u and v be two antipodal vertices of G. Then 1 =
dG(u, v) = diam(G) ≥ 2, which is a contradiction.

39. For the graph G in Figure 2.2 and the four distinct vertices v1, v2, v3, v4 in G,
vi+1 is an eccentric vertex of vi for i = 1, 2, 3. Also, e(v1) = 4, e(v2) = 6 and
e(v3) = 8.
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Figure 2.2: The graph in Exercise 39

40. In the graph G of Figure 2.3, each vertex is labeled with its total distance.
The median is also shown.

........
....................................
.

........
....................................
.

........
....................................
.

........
....................................
.........

....................................
.

........
....................................
.

........
....................................
.

........
....................................
. ........

....................................
.

........
....................................
.

........
....................................
.

........
....................................
. ........

....................................
. ........

....................................
.

...............
...............

...............
...........

........................................................ ............
............
............
............
............
...

..............................................................

..................................................................

.............
.............
.............
.............
.............
....G :

2937

37

38

38

2628 26

29

34 42 52
Med(G) :

vu u v

Figure 2.3: The median of a graph

41. Let 2k+ 1 ≥ 3 and let G be the graph obtained by identifying the center v of
K1,2k+1 with the end-vertex v2k+1 of the path P = (v1, v2, . . . , v2k+1). Then
vk+1 is the only central vertex of G. Observe that

td(v) =

(
2k + 1

2

)
+ (2k + 1) =

(
2k + 2

2

)
,

td(v2k) =

(
2k

2

)
+ 1 + 2(2k + 1) =

(
2k + 2

2

)
+ 2,

and for an end-vertex x adjacent to v,

td(x) =

(
2k + 3

2

)
+ 2(2k).

Since all other vertices of G have a total distance greater than that of v, the
vertex v is the only median vertex of G. Thus

d(Cen(G), Med(G)) = k.
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42. (a) Proof. Let u and v be vertices at distance 3 in G. Select any two
vertices x and y. We consider three cases. Recall that the closed neigh-
borhood N [u] of u consists of u and all the neighbors of u.

Case 1. x ∈ N [u] and y ∈ N [u]. Then (x, v, y) is a path in G and
d(x, y) ≤ 2.

Case 2. x ∈ N [u] and y /∈ N [u]. Then (x, v, u, y) is a path in G and
d(x, y) ≤ 3.

Case 3. x /∈ N [u] and y /∈ N [u]. Then (x, u, y) is a path in G and
d(x, y) ≤ 2.

Since d(x, y) ≤ 3 in each case, the diameter is at most 3.

(b) If G has diameter at least 4, then G has diameter at most 3; so G cannot
be self-complementary. If diam(G) = 1, then G is complete and is not
self-complementary. So the diameter must be 2 or 3 for G to be self-
complementary.

Figure 2.4(a) shows a self-complementary graph of order 4k and diam-
eter 3 and a self-complementary graph of order 4k + 1 and diameter 2,
where the bold lines between two graphs indicate that all possible edges
join these two graphs.

(c) If the diameter of G is 2, the diameter of G can be any integer k for
2 ≤ k ≤ n− 1. For k = 2, see Figure 2.4(b). For 3 ≤ k ≤ n− 1, let G be
the graph obtained by identifying a vertex of Kn−k+1 with an end-vertex
of the path Pk. Then diam(G) = 2 and diam(G) = k.

43. Proof. Certainly, d(G,H) = 0 if and only if G ∼= H. Since each 2-switch
from F to F ′ results in an inverse 2-switch from F ′ to F , the distance d is
symmetric. Let F,G and H be three graphs in Gs such that d(F,G) = a
and d(G,H) = b. Then there are a 2-switches that transforms F into G and
b 2-switches that transforms G into H. Hence there is a sequence of a + b
switches that transforms F into H. Therefore,

d(F,H) ≤ a+ b = d(F,G) + d(G,H)

and so the triangle inequality holds.

44. Proof. Let G be a connected graph. Since (1) D(u, v) ≥ 0, (2) D(u, v) = 0 if
and only if u = v and (3) D(u, v) = D(v, u) for every pair u, v of vertices of G,
it remains only to show that detour distance satisfies the triangle inequality.

Let u, v and w be any three vertices of G. Since the inequality D(u,w) ≤
D(u, v) +D(v, w) holds if any two of these three vertices are the same vertex,
we assume that u, v and w are distinct. Let P be a u − w detour in G of
length k = D(u,w). We consider two cases.

Case 1. v lies on P . Let P1 be the u−v subpath of P and let P2 be the v−w
subpath of P . Suppose that the length of P1 is s and the length of P2 is t. So
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s+ t = k. Therefore,

D(u,w) = k = s+ t ≤ D(u, v) +D(v, w).

Case 2. v does not lie on P . Since G is connected, there is a shortest path
Q from v to a vertex of P . Suppose that Q is a v − x path. Thus x lies on
P but no other vertex of Q lies on P . Let r be the length of Q. Thus r > 0.
Let the u − x subpath P ′ of P have length a and the x − w subpath P ′′ of
P have length b. Then a ≥ 0 and b ≥ 0. Therefore, D(u, v) ≥ a + r and
D(v, w) ≥ b+ r. So

D(u,w) = k = a+ b < (a+ r) + (b+ r) ≤ D(u, v) +D(v, w),

and so the triangle inequality holds.


