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Chapter 2
Section[21): The Real and Ezxtended Real Number System.

RI0 (a) If 3 = , then by multiplying by z, we have 1 =2 -0 = 0. (b) If
%:m, then again, 0 =z -0 =1y-0, so % =y as well.

2121 Since x - % =1+#0, and =z # 0, it must be the case that % #0. If
r>0but L <0,then 1= x% < 0, in contradiction to Proposition

part .

RIBl Suppose without loss of generality that z < y. Then

xr+x x+y y+uy
< < =
2 2 2

214 (a) In the proof of part of Proposition replace < and > with
< and >. (b) In the proof of part (4) of Proposition [2.8] replace <
and > with < and >.

16l If 2,y > 0, then zy > 0 and |zy| = zy = |z||y|. If =,y < 0, then
again xzy > 0, and so |zy| = zy. Since z,y < 0, || = —=z, and
lyl = —y, so |z|ly| = (—x)(—y) = 2y, and again the result holds.
Suppose exactly one of x or y is negative, and the other is non-
negative; without loss of generality, suppose < 0 and y > 0. Then
xy <0, so |zy| = —zy (or 0), while |z| = —z and |y| = y (or 0), so
that |z|[y| = (-z)y = —ay (or 0).

27 If 2 > 0, then |z| = x and the result is true. If < 0 then |z| = —z
and z < 0 < —z, and so x < |z| in that case.

RIR We must have a and b to have the same sign.

210 (a) Following the hint, replacing b = ¢ — a we have
|a+0] < |al+[b] & [a+(c—a)| = |¢| < |al+|c—a], so |¢[-[a| < [c—al.
(b) Following the hint, replacing b = a — ¢ we have
|e+0] < Je[+Bl & [e+(a—c)| = la| < |e|+]a—c|, 5o |al~|e| < |a—c| = |e—al.
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(¢) This follows directly from the previous parts and Assertion
of Proposition [2.8

Writing 0 = 1 — 1, we would have 0o -0 = co(1 — 1) = 0o — 00, the
latter cannot be defined.

If z = 32, then

o0 o0 4 00 o0 o0
r=—= =—+4+ —=zx+4+x=21.
00 00 00 00

Soz = 0. But if z = 0 = 22, it must be the case that 0 - oo = oo,
and the former cannot be defined.

Let =,y € Rf, we construct a neighborhood U of x and a neigh-
borhood V of y so that UNV = . If  and y are both real,
then the proof of Theorem Suppose then that one of = or y
is infinite, suppose without loss of generality that it is x. If y is
finite, then choose our neighborhood of y to have radius 1, so that
V =(y—1,y+1). If £ = oo, then choose U = (y+2,00). If x = —o0,
choose U = (—o0,y — 2). If  and y are both infinite, say z = —o0
and y = oo, then choose U = (—00,0, and V' = (0, 00).

Section[2:9: The Supremum and Infimum.
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(a) sup(S) = 4,inf(S) = =7. (b) sup(S) = oo,inf(S) = 0. (¢)
sup(S) = oo, inf(S) = —o0. (d) sup(S) = oo, inf(S) = —occ.
Suppose S is bounded, and that M is an upper bound for S, and
m is a lower bound for S. Let N = max{|m/|, |M|}. Then N > |M]|,
and N > |m|, so that —N < M < N and —N < m < N. So, for
every s € S, we have

“—N<m<s<M<N,so0<|s|<N.

Conversely, suppose N is an upper bound for |S|. Then, for every
|s| € |S], we have |s| < N. But this means that —N < s < N, and
so N and —N are upper and lower bounds for .S, respectively.

b is an upper bound for S since S C [a,b] and b is an upper bound
for [a,b]. Thus sup(S) < b. Since S is nonempty, there exists an
x € S, so since S C [a,b], a < z < b. So, sup(S) > z > a. So,
sup(S) € [a, b].

(a) Let o = sup(S) for convenience. Notice that for every s € S,
s < a, and so since a > 0, as < aa. So, aa is an upper bound
for aS. Now suppose b < aa. Then g < a, and so g is not an
upper bound for S. Therefore there exists an s € S with 3 < s, 80
b < as. So, b is not an upper bound for aS. (b) Let § = inf(S) for
convenience. Notice for every s € S, we have s > . Since a > 0, we

have as > af. So, a3 is a lower bound for S. Now suppose b > af.
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Then g > (3, and so g is not a lower bound for S. Therefore there

exists an s € S so that 3 > 8,80 b > as. So, b is not a lower bound
for S.

Let o = sup(S), and let s € S. Then s < « and so since a < 0 we
have as > aa. So, aa is a lower bound for aS. Now let b > a«. Then
g < «, and so there exists an s € S with 3 < s, so that b > as, so
that b is not a lower bound for aS. To prove the next assertion, let
a=—1.

Suppose, without loss of generality, that a = sup(4) =
max{sup(A4),sup(B)}. Let x € AUB, then z € Aor z € B. If
x € A, then z < a. If x € B, then 2 < sup(B) < a. So « is an
upper bound for AU B. Now suppose b < a. Since a = sup(A), and
b < «, there exists an element a € A with b < a. Therefore, b is not
an upper bound for AU B sincea € AC AUB, and b < a.

Suppose, without loss of generality, that 5 = inf(4) =
min{inf(A),inf(B)}. Let # € AUB. Thenz € Aorz € B. Ifz € A,
then x > inf(A) = B. If z € B, then z > inf(B) > inf(A) = S. So,
B is a lower bound for AU B. Now let b > . Since f = inf(A4),
there exists an a € A so that b > a. So, b is not a lower bound for
AUB, sincea€ ACAUB, and b > a.

(a) Since A and B are each bounded, there exists upper bounds M4
and Mp for A and B, respectively. In addition, there exists lower
bounds m 4 and mp for A and B, respectively. For each a € A and
b € B, we have

ma+mp<a+b< Mg+ Mp.

Therefore, A+ B is bounded. (b) Let a@ = sup(A) and § = sup(B),
both real numbers. Let a € A, and b € B. Then a +b < o + §3,
so a 4+ (8 is an upper bound for A 4+ B. Since o +  is an upper
bound for A+ B, a+ 3 is either the sup(A+ B), or, sup(A+ B) <
«a + (. If the latter were true, there would exist a +b € A+ B with
a+ B < a+b. But for this to be true, one of a or b must be greater
than « or 3, respectively. Either possibility is a contradiction, so
a+ B =sup(A+ B).

Let A ={1,-1}, and B = {—2,1}. Then sup(4) = 1,sup(B) = 1,
but AB={-2,—-1,1,2}, sosup(AB)=2#1-1=1.

(a) Let € > 0. Notice that sup(S) — € is not an upper bound for S
since it is strictly less than sup(S), the smallest upper bound. So,
there exists an s € S with sup(S) — € < s. That s < sup(S) follows
from the fact that sup(S) is an upper bound for S. (b) Let € > 0.
Notice that inf(S) + € is not a lower bound for S since it is strictly
greater than inf(S), the largest upper bound. So, there exists an
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s € S with s < inf(S) + e. That inf(S) < s follows from the fact
that inf(.S) is a lower bound for S.

We determine whether or not inf(U) is greater or less than sup(S).
Suppose inf(U) < sup(S). Then inf(U) is not an upper bound for S,
and so there exists an s € S with inf(U) < s. Consider the number
$(inf(U) + 5): this is larger than inf(U), and so there exists au € U
with u < 3(inf(U) 4+ s) < s. This contradicts the fact that every
element in U is an upper bound for s. The argument that inf(U) is

not greater than sup(.S) is similar.

2202 Let x € A. Then f(x) + g(x) < sup(f(A)) + sup(g(A)). Therefore,
sup(f(A)) + sup(g(A)) is an upper bound for (f + ¢g)(A), and the
result follows, since sup((f + ¢g)(A)) is the smallest upper bound of
(f + 9)(A). An example that illustrates inequality is A = [—1,1],
f(x) = z, and g(z) = —x. We have (f + g)(z) = 0 for all z, but
sup(f(4)) = sup(g(4)) = 1.

22131 We use Mathematical Induction on the cardinality of S. Suppose
S = {z1} contains one element, then sup(S) = 21 € S. Now suppose
S = {z1,...,Zn,Tny1}, and any finite set containing n or fewer
elements has a supremum within the set. Consider S — {z,41}.
This set has n elements, and therefore sup(S — {zp,41}) =z, € S
for some i =1,...,n. Now S = (S — {n11}) U{zn+1}, and so by
exercise |§|, sup(S) is either z; or x,1, whichever is larger.

Section [2-3: The Completeness Aziom.

230 (a) The inf is 0. This is clearly a lower bound, and if 0 < ¢, the
Archimedean Property asserts the existence of N € N for which
4 <€, 50 € is not a lower bound for this set. (b) The sup is 1. This
is clearly an upper bound, and if b < 1, then 0 < 1 — b, and so
0 < v/1 — b, so again by the Archimedean Property, there exists an
N € N for which % <+1—b,s0that b<1— ﬁ (c) The sup is 1.
This is clearly an upper bound, and if b < 1 there exists a rational
number between them, since Q is dense in R.

2321 The inf exists in Rf. Suppose that inf(S) = v, and inf(S) = §, with
v < 4. Both are greatest lower bounds. Since v is such, and 6 > v,
6 must not be a lower bound, which is a contradiction to it being
an infimum of this set.

238l Suppose that N were bounded above by M. Then consider applying
the Archimedean Property to € = ﬁ There exists an N € N for
which % < ﬁ, or, M < N, contradicting M being an upper bound
for N.

R34l Let € > 0 be given. Since S is not bounded above, there exists an
s € S for which % < s. Or rather, % < e.
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Let s € S be the largest element in S, and consider x = s + 1 and
y = s+ 2. Every element in s is strictly smaller than 2 (which is
the smaller of = and y), and so there is no element of S between x
and y. Thus, S is not dense in R.

An example is N, which is countably dense, but there is no natural

number between i and %

Let a be given. For any n € N, o — % < a, so by the denseness of

Q in R, there exists an r, € Q so that o — %L < rp < a. Since %L can

be arbitrarily close to 0 by the Archimedean Property, a — % can
be made arbitrarily close to «, and so r, can be found arbitrarily

close to a.

Let a < b be given, and suppose there were only finitely many
rational numbers between a and b, and that r is the largest of these.
Then r < b and so there exists a rational number ¢ so that » < ¢ < b.
This q is also between a and b and contradicts the assumption that
r was the largest of the rational numbers between a and b.

We first claim that if ¢ is rational, then \/2¢ is not rational. If

\/iq =7r € Q, then V2 = g. But g is rational since both r and ¢

are, but /2 is not rational. Now let a < b be given. Since Q is dense
in R, there exists a ¢ € Q for which % <q< %. So, v/2q is an

irrational number, and a < \/iq < b.
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