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The Real Numbers

CONTENTS

Chapter 2
Section 2.1: The Real and Extended Real Number System.

2.1.1. (a) If 1
0 = x, then by multiplying by x, we have 1 = x · 0 = 0. (b) If

0
0 = x, then again, 0 = x · 0 = y · 0, so 0

0 = y as well.

2.1.2. Since x · 1x = 1 6= 0, and x 6= 0, it must be the case that 1
x 6= 0. If

x > 0 but 1
x < 0, then 1 = x · 1x < 0, in contradiction to Proposition

2.6, part (4).

2.1.3. Suppose without loss of generality that x < y. Then

x =
x+ x

2
<
x+ y

2
<
y + y

2
= y.

2.1.4. (a) In the proof of part (3) of Proposition 2.8, replace < and > with
≤ and ≥. (b) In the proof of part (4) of Proposition 2.8, replace <
and > with ≤ and ≥.

2.1.6. If x, y ≥ 0, then xy ≥ 0 and |xy| = xy = |x||y|. If x, y < 0, then
again xy > 0, and so |xy| = xy. Since x, y < 0, |x| = −x, and
|y| = −y, so |x||y| = (−x)(−y) = xy, and again the result holds.
Suppose exactly one of x or y is negative, and the other is non-
negative; without loss of generality, suppose x < 0 and y ≥ 0. Then
xy ≤ 0, so |xy| = −xy (or 0), while |x| = −x and |y| = y (or 0), so
that |x||y| = (−x)y = −xy (or 0).

2.1.7. If x ≥ 0, then |x| = x and the result is true. If x < 0 then |x| = −x
and x < 0 < −x, and so x < |x| in that case.

2.1.8. We must have a and b to have the same sign.

2.1.9. (a) Following the hint, replacing b = c− a we have

|a+b| ≤ |a|+|b| ⇔ |a+(c−a)| = |c| ≤ |a|+|c−a|, so |c|−|a| ≤ |c−a|.

(b) Following the hint, replacing b̃ = a− c we have

|c+b̃| ≤ |c|+|b̃| ⇔ |c+(a−c)| = |a| ≤ |c|+|a−c|, so |a|−|c| ≤ |a−c| = |c−a|.
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(c) This follows directly from the previous parts and Assertion (3)
of Proposition 2.8.

2.1.10. Writing 0 = 1− 1, we would have ∞ · 0 =∞(1− 1) =∞−∞, the
latter cannot be defined.

2.1.11. If x = ∞
∞ , then

x =
∞
∞

=
∞+∞
∞

=
∞
∞

+
∞
∞

= x+ x = 2x.

So x = 0. But if x = 0 = ∞
∞ , it must be the case that 0 · ∞ = ∞,

and the former cannot be defined.

2.1.12. Let x, y ∈ R], we construct a neighborhood U of x and a neigh-
borhood V of y so that U ∩ V = ∅. If x and y are both real,
then the proof of Theorem 2.14. Suppose then that one of x or y
is infinite, suppose without loss of generality that it is x. If y is
finite, then choose our neighborhood of y to have radius 1, so that
V = (y−1, y+1). If x =∞, then choose U = (y+2,∞). If x = −∞,
choose U = (−∞, y − 2). If x and y are both infinite, say x = −∞
and y =∞, then choose U = (−∞, 0, and V = (0,∞).

Section 2.2: The Supremum and Infimum.

2.2.1. (a) sup(S) = 4, inf(S) = −7. (b) sup(S) = ∞, inf(S) = 0. (c)
sup(S) =∞, inf(S) = −∞. (d) sup(S) =∞, inf(S) = −∞.

2.2.2. Suppose S is bounded, and that M is an upper bound for S, and
m is a lower bound for S. Let N = max{|m|, |M |}. Then N ≥ |M |,
and N ≥ |m|, so that −N ≤ M ≤ N and −N ≤ m ≤ N . So, for
every s ∈ S, we have

−N ≤ m ≤ s ≤M ≤ N, so 0 ≤ |s| ≤ N.

Conversely, suppose N is an upper bound for |S|. Then, for every
|s| ∈ |S|, we have |s| ≤ N . But this means that −N ≤ s ≤ N , and
so N and −N are upper and lower bounds for S, respectively.

2.2.3. b is an upper bound for S since S ⊆ [a, b] and b is an upper bound
for [a, b]. Thus sup(S) ≤ b. Since S is nonempty, there exists an
x ∈ S, so since S ⊆ [a, b], a ≤ x ≤ b. So, sup(S) ≥ x ≥ a. So,
sup(S) ∈ [a, b].

2.2.4. (a) Let α = sup(S) for convenience. Notice that for every s ∈ S,
s ≤ α, and so since a > 0, as ≤ aα. So, aα is an upper bound
for aS. Now suppose b < aα. Then b

a < α, and so b
a is not an

upper bound for S. Therefore there exists an s ∈ S with b
a < s, so

b < as. So, b is not an upper bound for aS. (b) Let β = inf(S) for
convenience. Notice for every s ∈ S, we have s ≥ β. Since a > 0, we
have as ≥ aβ. So, aβ is a lower bound for S. Now suppose b > aβ.
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Then b
a > β, and so b

a is not a lower bound for S. Therefore there

exists an s ∈ S so that b
a > s, so b > as. So, b is not a lower bound

for S.

2.2.5. Let α = sup(S), and let s ∈ S. Then s ≤ α and so since a < 0 we
have as ≥ aα. So, aα is a lower bound for aS. Now let b > aα. Then
b
a < α, and so there exists an s ∈ S with b

a < s, so that b > as, so
that b is not a lower bound for aS. To prove the next assertion, let
a = −1.

2.2.6. Suppose, without loss of generality, that α = sup(A) =
max{sup(A), sup(B)}. Let x ∈ A ∪ B, then x ∈ A or x ∈ B. If
x ∈ A, then x ≤ α. If x ∈ B, then x ≤ sup(B) ≤ α. So α is an
upper bound for A∪B. Now suppose b < α. Since α = sup(A), and
b < α, there exists an element a ∈ A with b < a. Therefore, b is not
an upper bound for A ∪B since a ∈ A ⊆ A ∪B, and b < a.

2.2.7. Suppose, without loss of generality, that β = inf(A) =
min{inf(A), inf(B)}. Let x ∈ A∪B. Then x ∈ A or x ∈ B. If x ∈ A,
then x ≥ inf(A) = β. If x ∈ B, then x ≥ inf(B) ≥ inf(A) = β. So,
β is a lower bound for A ∪ B. Now let b > β. Since β = inf(A),
there exists an a ∈ A so that b > a. So, b is not a lower bound for
A ∪B, since a ∈ A ⊆ A ∪B, and b > a.

2.2.8. (a) Since A and B are each bounded, there exists upper bounds MA

and MB for A and B, respectively. In addition, there exists lower
bounds mA and mB for A and B, respectively. For each a ∈ A and
b ∈ B, we have

mA +mB ≤ a+ b ≤MA +MB .

Therefore, A+B is bounded. (b) Let α = sup(A) and β = sup(B),
both real numbers. Let a ∈ A, and b ∈ B. Then a + b ≤ α + β,
so α + β is an upper bound for A + B. Since α + β is an upper
bound for A+B, α+ β is either the sup(A+B), or, sup(A+B) <
α+ β. If the latter were true, there would exist a+ b ∈ A+B with
α+β < a+ b. But for this to be true, one of a or b must be greater
than α or β, respectively. Either possibility is a contradiction, so
α+ β = sup(A+B).

2.2.9. Let A = {1,−1}, and B = {−2, 1}. Then sup(A) = 1, sup(B) = 1,
but AB = {−2,−1, 1, 2}, so sup(AB) = 2 6= 1 · 1 = 1.

2.2.10. (a) Let ε > 0. Notice that sup(S) − ε is not an upper bound for S
since it is strictly less than sup(S), the smallest upper bound. So,
there exists an s ∈ S with sup(S)− ε < s. That s ≤ sup(S) follows
from the fact that sup(S) is an upper bound for S. (b) Let ε > 0.
Notice that inf(S) + ε is not a lower bound for S since it is strictly
greater than inf(S), the largest upper bound. So, there exists an
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s ∈ S with s < inf(S) + ε. That inf(S) ≤ s follows from the fact
that inf(S) is a lower bound for S.

2.2.11. We determine whether or not inf(U) is greater or less than sup(S).
Suppose inf(U) < sup(S). Then inf(U) is not an upper bound for S,
and so there exists an s ∈ S with inf(U) < s. Consider the number
1
2 (inf(U)+s): this is larger than inf(U), and so there exists a u ∈ U
with u < 1

2 (inf(U) + s) < s. This contradicts the fact that every
element in U is an upper bound for s. The argument that inf(U) is
not greater than sup(S) is similar.

2.2.12. Let x ∈ A. Then f(x) + g(x) ≤ sup(f(A)) + sup(g(A)). Therefore,
sup(f(A)) + sup(g(A)) is an upper bound for (f + g)(A), and the
result follows, since sup((f + g)(A)) is the smallest upper bound of
(f + g)(A). An example that illustrates inequality is A = [−1, 1],
f(x) = x, and g(x) = −x. We have (f + g)(x) = 0 for all x, but
sup(f(A)) = sup(g(A)) = 1.

2.2.13. We use Mathematical Induction on the cardinality of S. Suppose
S = {x1} contains one element, then sup(S) = x1 ∈ S. Now suppose
S = {x1, . . . , xn, xn+1}, and any finite set containing n or fewer
elements has a supremum within the set. Consider S − {xn+1}.
This set has n elements, and therefore sup(S − {xn+1}) = xi ∈ S
for some i = 1, . . . , n. Now S = (S − {xn+1}) ∪ {xn+1}, and so by
exercise 6, sup(S) is either xi or xn+1, whichever is larger.

Section 2.3: The Completeness Axiom.

2.3.1. (a) The inf is 0. This is clearly a lower bound, and if 0 < ε, the
Archimedean Property asserts the existence of N ∈ N for which
1
N < ε, so ε is not a lower bound for this set. (b) The sup is 1. This
is clearly an upper bound, and if b < 1, then 0 < 1 − b, and so
0 <
√

1− b, so again by the Archimedean Property, there exists an
N ∈ N for which 1

N <
√

1− b, so that b < 1− 1
N2 . (c) The sup is 1.

This is clearly an upper bound, and if b < 1 there exists a rational
number between them, since Q is dense in R.

2.3.2. The inf exists in R]. Suppose that inf(S) = γ, and inf(S) = δ, with
γ < δ. Both are greatest lower bounds. Since γ is such, and δ > γ,
δ must not be a lower bound, which is a contradiction to it being
an infimum of this set.

2.3.3. Suppose that N were bounded above by M . Then consider applying
the Archimedean Property to ε = 1

M . There exists an N ∈ N for
which 1

N < 1
M , or, M < N , contradicting M being an upper bound

for N.

2.3.4. Let ε > 0 be given. Since S is not bounded above, there exists an
s ∈ S for which 1

ε < s. Or rather, 1
s < ε.
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2.3.5. Let s ∈ S be the largest element in S, and consider x = s + 1 and
y = s + 2. Every element in s is strictly smaller than x (which is
the smaller of x and y), and so there is no element of S between x
and y. Thus, S is not dense in R.

2.3.6. An example is N, which is countably dense, but there is no natural
number between 1

4 and 1
2 .

2.3.7. Let α be given. For any n ∈ N, α − 1
n < α, so by the denseness of

Q in R, there exists an rn ∈ Q so that α− 1
n < rn < α. Since 1

n can
be arbitrarily close to 0 by the Archimedean Property, α − 1

n can
be made arbitrarily close to α, and so rn can be found arbitrarily
close to α.

2.3.8. Let a < b be given, and suppose there were only finitely many
rational numbers between a and b, and that r is the largest of these.
Then r < b and so there exists a rational number q so that r < q < b.
This q is also between a and b and contradicts the assumption that
r was the largest of the rational numbers between a and b.

2.3.9. We first claim that if q is rational, then
√

2q is not rational. If√
2q = r ∈ Q, then

√
2 = r

q . But r
q is rational since both r and q

are, but
√

2 is not rational. Now let a < b be given. Since Q is dense
in R, there exists a q ∈ Q for which a√

2
< q < b√

2
. So,

√
2q is an

irrational number, and a <
√

2q < b.
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