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Ans: 

Since h has units of length and g has units of (length)(time)-2, let us divide both 

sides of the above equation by h g : 

 

 
 , ,f h m gt

h g h g
  

 

The left side of this equation is now dimensionless.  Therefore, the right side must 

also be dimensionless, which implies that the time of flight cannot depend on the 

mass of the object.  Thus dimensional analysis implies the following functional 

relationship: 

 

 
h

t
g

  

 

where  is a dimensionless constant.  Only one experiment would be required to 

estimate , but several trials at various heights might be advisable to obtain a 

reliable estimate of this constant.  Note that 2  according to Newton's laws of 

motion. 
 

CHAPTER 2 

 

2.1 According to Eq. (2.25), the energy required to increase the crack area a unit amount is equal 

to twice the fracture work per unit surface area, w
f
.  Why is the factor of 2 in this equation 

necessary? 

 

Ans: 

The factor of 2 stems from the difference between crack area and surface area.  

The former is defined as the projected area of the crack.  The surface area is twice 

the crack area because the formation of a crack results in the creation of two 

surfaces.  Consequently, the material resistance to crack extension = 2 wf. 
 

2.2 Derive Eq. (2.30) for both load control and displacement control by substituting Eq. (2.29) 

into Eqs. (2.27) and (2.28), respectively. 

 

Ans: 

(a) Load control. 

 
 

2 2 2P P

d CPP d P P dC

B da B da B da

  
    

   
G  
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(b) Displacement control. 

 
2

dP

B da 

  
   

 
G  

 

 
 

2

1ddP dCC

da da C da

 
    

 
 

 

 
 

2

2

2 2

dC P dCC

B da B da



 G  

 

 

2.3 Figure 2.10 illustrates that the driving force is linear for a through-thickness crack in an 

infinite plate when the stress is fixed.  Suppose that a remote displacement (rather than load) 

were fixed in this configuration.  Would the driving force curves be altered?  Explain.  (Hint:  

see Section 2.5.3). 

 

Ans: 

In a cracked plate where 2a << the plate width, crack extension at a fixed remote 

displacement would not effect the load, since the crack comprises a negligible 

portion of the cross section.  Thus a fixed remote displacement implies a fixed load, 

and load control and displacement control are equivalent in this case.  The driving 

force curves would not be altered if remote displacement, rather than stress, were 

specified. 

 Consider the spring in series analog in Fig. 2.12.  The load and remote 

displacement are related as follows: 

 

  T  =  (C + Cm) P  T mC C P    

 

where C is the “local” compliance and Cm is the system compliance.  For the present 

problem, assume that Cm represents the compliance of the uncracked plate and C is 

the additional compliance that results from the presence of the crack.  When the 

crack is small compared to the plate dimensions, Cm >> C.  If the crack were to 

grow at a fixed T, only C would change; thus load would also remain fixed. 

 

2.4 A plate 2W wide contains a centrally located crack 2a long and is subject to a tensile load, 

P.  Beginning with Eq. (2.24), derive an expression for the elastic compliance, C (= /P) in 

terms of the plate dimensions and elastic modulus, E.  The stress in Eq. (2.24) is the nominal 

value; i.e.,   =  P/2BW in this problem.  (Note:  Eq. (2.24) only applies when a << W; the 

expression you derive is only approximate for a finite width plate.) 
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Ans: 

The through-thickness crack has two tips; an increment of crack growth causes the 

crack area to increase by 2B da.  The compliance relationship for energy release 

rate must be modified accordingly: 

 

 
 

2 2

2 2 4

P dC P dC

B d a B da
 G  

 

Equating the above expression with Eq. (2.24) gives 

 

 
2 2 2

2 24 4

a P a P dC

E B W E B da

  
  G  

 

Solving for compliance leads to 

 

 

2

2
 constant

a
C dC ada

BW E BE W

   
    

 
   

 

The constant corresponds to the compliance of the uncracked plate.  Assuming a 

gage length L, the total compliance is given by 

 

 
 22 1

2
tot m

La
C C C

BE W BWE

  
    

 
 

 

where Cm represents the compliance of the uncracked plate and C is the additional 

compliance due to the crack. When a << W or a << L, the first term in the above 

expression is negligible.  Recall the previous problem, where it was argued that 

displacement control is equivalent to load control in an infinite plate because C << 

Cm. 

 

2.5 A material exhibits the following crack growth resistance behavior: 

 

  0.56.95( )oR a a   

 

 where a
o
 is the initial crack size.  R has units of kJ/m2 and crack size is in millimeters.  

Alternatively, 

 

  0.5200( )oR a a   

 

 where R has units of in-lb/in2 and crack size is in inches.  The elastic modulus of this material 

= 207,000 MPa (30,000 ksi).  Consider a wide plate with a through crack (a << W) that is 

made from this material. 
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 (a)  If this plate fractures at 138 MPa (20.0 ksi), compute the following: 

  (i)   The half crack size at failure (a
c
). 

  (ii)  The amount of stable crack growth (at each crack tip) that precedes failure   

   (a
c
 - a

o
). 

 (b)  If this plate has an initial crack length (2a
o
) of 50.8 mm (2.0 in)  

 and the plate is loaded to failure, compute the following: 

  (i)     The stress at failure. 

  (ii)    The half crack size at failure. 

  (iii)  The stable crack growth at each crack tip 

 

Ans: 

At instability, G = R and dG/da = dR/da.  Therefore, 

 

   
2

0.5
6.95c

c o

a
a a

E


   (1) 

and 

   
2

0.5
3.48 c oa a

E

 
   (2) 

 

Thus we have two equations to relate , ac and ao, and we must specify one of these 

quantities. 

 

(a)   = 138 MPa 

 

From Eq. (1) above, 

 

 
 

 
2

0.5

8

138,000 kPa
3.48

2.07 10  kPa
c oa a

 
 


 

 

 ac - ao  = 145 mm 

 

Substituting into (2) gives 

 

 
 

 
2

0.5

8

138,000 kPa
6.95 145 mm

2.07 10  kPa

ca



 

 

Thus 

 (i)  ac  =  290 mm 

 (ii)  ac - ao = 145 mm 

 (iii)  ao  =  145 mm 
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(b)  ao  =  25.4 mm 

 

Dividing Eq. (1) by Eq. (2) leads to 

 

  2c c oa a a   

 

Therefore, if ao = 25.4 mm, ac = 50.8 mm and (ac - ao) = 25.4 mm.  We can solve 

for critical stress by substituting these results into Eq. (1): 

 

 
 

 
2

0.5

8

0.0508 m
6.95 25.4 mm

2.07 10  kPa





 

 

Thus 

 (i)    =  213,000 kPa  =  213 MPa 

 (ii)  ac = 50.8 mm 

 (iii)  ac - ao  = 25.4 mm 

 

2.6 Suppose that a double cantilever beam specimen (Fig. 2.9) is fabricated from the same 

material considered in Problem 2.5. Calculate the load at failure and the amount of stable 

crack growth. The specimen dimensions are as follows:  

  

 B = 25.4 mm (1 in) h = 12.7 mm (0.5 in) ao = 152 mm (6 in) 

 

Ans: 

At instability, G = R and dG/da = dR/da. Hence, 

 

  
2 2

0.5

2 3

12
6.95c c

c c o

P a
a a

B h E
  G  (1) 

 

  
0.52

3.48c
c oa a

a


 

G
 (2) 

 

Dividing (1) by (2) gives 

 

  2
2

c
c o

a
a a   

Thus 

 
4

203 mm
3

c oa a   

and 
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 

   
 

22
0.5

2 3 8

12 0.203 m
6.95 203 152

0.025 m 0.0127 m 2.07 10  kPa

c

c

P
  


G  

 

 Pc = 5.16 kN 

 

2.7 Consider a nominally linear elastic material with a rising R curve (e.g., Problems 2.5 and 

2.6). Suppose that one test is performed on wide plate with a through crack (Fig. 2.3) and a 

second test on the same material is performed on a DCB specimen (Fig. 2.9). If both tests 

are conducted in load control, would the Gc values at instability be the same? If not, which 

geometry would result in a higher Gc? Explain.  

 

Ans 

The driving force curve for the through crack is linear, while G varies with a2 for 

the DCB specimen. Therefore, the two geometries would have different points of 

tangency on the R curve, as Fig. S1 illustrates. The Gcvalue for the through crack 

would be higher, and this geometry would experience more stable crack growth 

prior to failure. 

 

 
 

FIGURE S1  Effect of specimen geometry on instability (Problem 2.7) 

 

 

 

2.8 Example 2.3 showed that the energy release rate, G, of the double cantilever beam (DCB) 

specimen increases with crack growth when the specimen is held at a constant load.  

Describe (qualitatively) how you could alter the design of the DCB specimen such that a 

growing crack in load control would experience a constant G. 

Crack Size

R

DCB
Specimen

Through
Crack

G, R

Gc(1)

Gc(2)
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Ans: 

In a conventional DCB specimen, compliance varies with a3, and energy release is 

proportional to a2 when load is fixed.  In order for G to remain constant with crack 

growth, compliance must vary linearly with crack length.  One way to accomplish 

this is to taper the specimen width, as Fig. S2 illustrates.  Alternatively, the 

thickness can be tapered.  The latter method is not as effective as the former because 

compliance is less sensitive to the thickness dimension; recall that the moment of 

inertia of the cross section is proportional to Bh3.  Specimens such as illustrated in 

Fig. S2, where G is relatively constant over a range of crack lengths, have been used 

successfully in laboratory experiments. 

 

 

 

 
 

 

 

 

 

 

FIGURE S2  Tapered DCB specimen 

(Problem 2.8). 

 

 

2.9 Beginning with Eq. (2.20), derive an expression for the potential energy of a plate subject 

to a tensile stress  with a penny-shaped flaw of radius a.  Assume that a << plate 

dimensions. 

 

Ans: 

At fracture, 

  SdWd

d d


   

 

For the penny-shaped crack, 

 

  
22S sW a  

and 

  2S
s

dW

d
  

 

Combining the above results with Eq. (2.20) gives 
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 2 24 1

2
f

s

a d

E d

 



 

    

 

The above equation must be integrated with respect to crack area to infer the 

potential energy.  The crack area can be written in terms of the the crack radius, a: 

 

 2dA ada  

and 

 
1

2

d d

dA a da
  

 

Therefore, 

 

 
 2 2 28 1ad

da E

 
   

and 

 
 2 3 28 1

3
o

a

E

 
    

where 
o
 is the potential energy of the uncracked solid. 

 

2.10 Beginning with Eq. (2.20), derive expressions for the energy release rate and Mode I stress 

intensity factor of a penny-shaped flaw subject to a remote tensile stress.  (Your KI 

expression should be identical to Eq. (2.44).) 

 

Ans: 

At fracture in an ideally brittle material, 2c s G G .  Rearranging Eq. (2.20) leads 

to 

 

 
 2 24 1

2
f

s c

a

E

 





  G  

Thus 

 
 2 24 1 a

E

 



G G  =  
4(1 - 2) a 2

 E
  

 

Invoking the relationship between KI and G (Eq. (2.56)) gives 

 

 
2

IK a 


  
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which agrees with Eq. (2.44).  Note that the plane strain KI–G relationship is 

appropriate in this case.  The strain parallel to the crack front is zero because the 

crack is axisymmetric. 

 

2.11 Calculate K
I
 for a rectangular bar containing an edge crack loaded in three point bending. 

 

 P = 35.0  kN (7870 lb);   W = 50.8 mm (2.0 in);   B = 25 mm (1.0 in);   a/W = 0.2;  S = 203 

mm (8.0 in). 

 

Ans: 

The KI solutions in Table 2.4 have the following form: 

 

   I

P aK f
WB W

  

 

Inserting a/W = 0.2 and S/W = 4 into the appropriate polynomial in Table 2.4 gives 

f(a/W) =  4.70.  Thus 

 

 
  35 kN 4.70

29,400 kPa m 29.4 MPa m
0.025 m 0.050 m

IK     

 

2.12 Consider a material where KIC = 35 MPa m  (31.8 ksi in ). Each of the five specimens in 

Table 2.4 and Fig. 2.23 have been fabricated from this material. In each case, B = 25.4 mm 

(1 in), W = 50.8 mm (2 in), and a/W = 0.5. Estimate the failure load for each specimen. 

Which specimen has the highest failure load? Which has the lowest? 

 

Ans: 

Failure load is inversely proportional to the geometry correction factor, f(a/W): 

 

 
 
Ic

crit

K B W
P

f a W
  

 

 Thus it is obvious from Fig. 2.23 that the CCT and DENT geometries have the 

highest failure load and the SE(B) geometry the lowest (for fixed B, W, and a).  The 

calculated failure loads are tabulated below. 
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Geometry 

 

f(0.5) 

 

Pcrit, kN 

SENT 3.543 5.57 

SE(B) 10.65 1.85 

CCT 1.051 18.76 

DENT 1.049 18.80 

Compact 9.659 2.04 

 

 

2.13 A large block of material is loaded to a stress of 345 MPa (50 ksi).  If the fracture toughness 

(KIc) is 44 MPa m  (40 ksi in ), determine the critical radius of a buried penny-shaped 

crack. 

 

Ans: 

At fracture, KI = KIc.  Substituting the above data into Eq. (2.44) gives 

 

   
2

44 MPa m 345 MPa ca


  

 

  ac  =  12.8 mm 

 

2.14 A semicircular surface crack in a pressure vessel is 10 mm (0.394 in) deep. The crack is on 

the inner wall of the pressure vessel and is oriented such that the hoop stress is perpendicular 

to the crack plane.  Calculate KI if the local hoop stress = 200 MPa (29.0 ksi) and the internal 

pressure = 20 MPa (2900 psi).  Assume that the wall thickness >> 10 mm. 

 

Ans: 

Applying the principle of superposition (see Example 2.5) results in the following 

stress intensity solution for this case: 

 

    I s

a
K p f

Q

     

 

   
 0.01 m

1.14 220 MPa 28.4 MPa m
2.64


    

 

at  = 0°. 
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2.15 Calculate KI for a semi-elliptical surface flaw at  = 0°, 30°, 60°, 90°. 

 

  = 150 MPa (21.8 ksi);  a = 8.00 mm (0.315 in);  2c = 40 mm (1.57 in). 

 

Ans: 

From Fig. 2.19, 

 

  
 

 
0.008 m

150 MPa
Q

I sK f


    

 
 

, Degrees 

 

s 

 

f() 

 

KI, MPa m  

0.00 1.20 0.632 15.74 

30.00 1.12 0.780 18.08 

60.00 1.10 0.943 21.36 

90.00 1.09 1.000 22.62 

 

 

2.16 Consider a plate subject to biaxial tension with a through crack of length 2a, oriented at an 

angle  from the 
2
 axis (Fig. 13.1).  Derive expressions for K

I
 and K

II
 for this configuration.  

What happens to each K expression when 
1
 = 

2
? 

 

Ans: 

We can apply the principle of superposition separately to KI and KII: 

 

     2 2

1 2cos cos 90IK a a         

 

     2 2

1 2cos sin a         

 

         1 2cos sin cos 90 sin 90IIK a a            

 

       1 2 cos sin a       

 

when 1 2  , 
1IK a   and KII = 0. 
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2.17 A wide flat plate with a through-thickness crack experiences a nonuniform normal stress 

which can be represented by the following crack face traction: 

 

  
/( ) x

op x p e   

 

 where po = 300 MPa and  = 25 mm. The origin (x = 0) is at the left crack tip, as illustrated 

in Fig. 2.27. Using the weight function derived in Example 2.6, calculate KI at each crack 

tip for 2a = 25, 50, and 100 mm. You will need to integrate the weight function numerically. 

 

 

Ans: 

Figure S3 is a plot of KI versus crack length for the through crack with the 

exponential stress distribution given above. Values for three crack lengths are 

tabulated below. 

 

2a, mm 
KI, MPa m  

x = 2a x = 0 

25 29.21 48.15 

50 21.74 57.37 

100 11.06 62.65 

 

 

 

2.18 Repeat Problem 2.17 with the following crack face pressure profile: 

   

     cos
50 mm

o

x
p x p

 
  

 
 

 

 At what crack length(s) does KI = 0 at the right tip? 

 

Ans. 

Figure S4 is a plot of KI versus crack length for the right tip (x = 2a).  The curve 

passes through zero at 2a = 33 mm and 88 mm. 
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FIGURE S3.  Solution to Problem 2.17. 

 

 
FIGURE S4.  Solution to Problem 2.17 
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2.19 For an infinite plate with a through crack 50.8 mm (2.0 in) long, compute and tabulate K
eff 

v. stress using the three methods indicated below.  Assume 
YS

 = 250 MPa (36.3 ksi). 

 

Ans: 

Applying Eqs. (2.41), (2.70), and (2.81) to the values above results in the following 

stress intensity factors for the LEFM, Irwin, and strip yield methods respectively: 

 

 
  

Keff, MPa m  or ksi in  

 

Stress, MPa (ksi) 

 

LEFM 

 

Irwin Correction 

 

Strip Yield Model 

 

25 (3.63) 

50 (7.25) 

100 (14.5) 

150 (21.8) 

200 (29.0) 

225 (32.6) 

249 (36.1) 

250 (36.3) 

 

7.06 

14.1 

28.2 

42.4 

56.5 

63.6 

70.3 

70.6 

 

7.08 

14.3 

29.5 

46.8 

68.5 

82.4 

99.1 

99.9 

 

7.08 

14.2 

29.3 

46.3 

68.9 

86.6 

143 

 

 

 

2.20 A material has a yield strength of 345 MPa (50 ksi) and a fracture toughness of 110 MPa 

m (100 ksi in ).  Determine the minimum specimen dimensions (B, a, W) required to 

perform a valid K
Ic test on this material, based on the traditional size requirements in Eq. 

(2.88).  Comment on the feasibility of testing a specimen of this size. 

 

Ans: 

From Eq. (2.88), 

 

     

2

110 MPa m
, , 2.5 0.254 m 10.0 in

345 MPa
a B W a

 
    

 
 

Therefore, 
  0.508 m (20.0 in)W   

 

Testing such a large specimen would impractical because: 

 

• Machining costs would be very high. 

• A very large test machine would be required. 

• Materials are usually not available in such large section thicknesses.  Even if 

a section of sufficient size could be produced, its metallurgical properties 

would not be representative of a thinner plate of the same material. 
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2.21 You have been given a set of fracture mechanics test specimens, all of the same size and 

geometry.  These specimens have been fatigue precracked to various crack lengths.  The 

stress intensity of this specimen configuration can be expressed as follows: 

 

  ( / )I

P
K f a W

B W
  

 

 where P is load, B is thickness, W is width, a is crack length, and f(a/W) is a dimensionless 

geometry correction factor. 

 

 Describe a set of experiments you could perform to determine f(a/W) for this specimen 

configuration.  Hint:  you may want to take advantage of the relationship between K
I
 and 

energy release rate for linear elastic materials. 

 

Ans: 

The stress intensity factor can be inferred from compliance measurements as 

follows: 

 

   
2 2 2

2

2' 2 '

IK P dC P af
WE B da B WE

  G  

 

assuming the specimen contains an edge crack, such that dA = Bda. Solving for 

f(a/W) gives 

 

   
 

'

2

BE dCaf
W d a W

  

 

Thus f(a/W) for the geometry of interest can be inferred by measuring the elastic 

compliance as a function of crack length, evaluating dC/d(a/W), and inserting the 

result into the above expression.  Note that the absolute compliance depends on 

specimen size and material properties, but the quantity (B E' C) is dimensionless, 

and depends only on a/W. 

 

 

2.22 Derive the Griffith-Inglis result for the potential energy of a through crack in an infinite 

plate subject to a remote tensile stress (Eq. (2.16)).  Hint:  solve for the work required to 

close the crack faces; Eq. (A2.43) gives the crack opening displacement for this 

configuration. 

 

The crack opening displacement at a distance x from the center of the crack 

(assuming the coordinate system in Fig. 13.2) is given by 
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  2 24
2 yu a x

E


   

 

for plane stress loading.  The incremental closure work done at a point is as follows:   

 

  
1

2
2

yd u x Bdx   d  =  
1

2
  •2 uy(x) B dx 

 

Thus the decrease in potential energy due to the formation of the crack is given by 

 

 
2 2 2

2 2

0

4
a

o

B a B
a x dx

E E

 
     

 

which agrees with Eq. (2.16). 

 

2.23 Using the Westergaard stress function approach, derive the stress intensity factor 

relationship for an infinite array of collinear cracks in a plate subject to biaxial tension (Fig. 

2.21). 

 

Ans: 

Substituting z* = z - a into Eq. (A2.39) and re-arranging gives 

 

   

 

 
2 2

*
sin

2
*

*
sin sin

2 2

a z

W
Z z

a z a

W W




 

 
 
 

     
     

    

 

 

Let us now perform a series expansion about z* = 0 on the sin2 term on the left side 

of the denominator: 
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Substituting this result into the stress function and taking a limit leads to 
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Solving for stress intensity gives 
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which agrees with Eq. (2.45). 

 
CHAPTER 3 

 

3.1 Repeat the derivation of Eqs. (3.1) to (3.3) for the plane strain case. 

 

Ans: 

In plane strain, the displacement of the crack face a distance ry behind the tip is 

given by 
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Substituting Eq. (2.63) into the above expression leads to 
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3.2 A CTOD test is performed on a three point bend specimen.  Figure 13.3 shows the deformed 

specimen after it has been unloaded.  That is, the displacements shown are the plastic 

components. 

 

 (a)  Derive an expression for plastic CTOD (
p
) in terms of 

p
 and specimen dimensions. 

 

 (b)  Suppose that V
p
 and 

p
 are measured on the same specimen, but that the plastic rotational 

factor, r
p
, is unknown.  Derive an expression for r

p
 in terms of 

p
, V

p
 and specimen 

dimensions, assuming the angle of rotation is small. 

 


