
Solutions to Problems for Chapter 2 

 

2.1 Find the momentum and velocity of an electron with mass of 9.1x10-31 kg and de 

Broglie wavelength of 20 nm.  
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2.2 Find the frequency f (Hz)  radian frequency  (rad/s) and period T of the infra-red 

radiation with wave length of 1 µm.  Find the energy of the infra-red photon. 

Express its energy both in Joules and eV. 
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2.3 The potential (in V) due to a point charge q at a distance r from the charge is given 

by 
1

4 o

q
V

r
 .  (a) Evaluate the potential of nuclear charge +q in the hydrogen 

atom at a distance r=r1=0.053 nm (radius of the first Bohr orbit). (b) Obtain the 

potential energy (PE) U=-qV of the electron with charge –q in the potential of the 

nucleus. Calculate the kinetic energy K
2

1

1 1

2 4 o

q
E

r
  of the electron revolving in 

the first orbit. (c) Calculate the total energy E=KE+PE.  Express your answers for 

PE (U),  KE, and total energy E  in joules (J) and electron volts (eV). (d) What is the 

linear momentum and the angular momentum of the electron in the ground state? 

(e) What is the time required to complete one orbit. 
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 and r=r1=0.053 nm 
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Potential energy (PE), 
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Total energy,  
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Linear momentum 
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Angular momentum, 
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2.4 Find (a) the longest wavelength in the Lyman series and (b) the shortest wavelength 

in the Paschen series.  What is the energy of the photon in each case (a) and (b). 

Name the region of the electromagnetic spectrum in which these wavelengths are. 

The image shows two electron transitions in hydrogen. The transition at 

lower right is a member of the Lyman series, and the transition at 

upper left is in the Paschen series. We want to calculate the longest 

wavelength in the Lyman series and the shortest wavelength in the 

Paschen series. 

The longest wavelength in a series has the smallest change in energy. In 

the Lyman series this corresponds to the transition nu = 2 to 1n  . 

The shortest wavelength in a series has the largest energy 

transition. In the Paschen series this transition corresponds to 

un  

 
to 3n   Use the following equation to calculate the 

corresponding wavelengths. 

 



2 2 2 2

1240 91.18

1 1 1 1
13.6

u u

nm nm

n n n n

  
   

    
   
     

 Calculate the longest wavelength in the Lyman series: 
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Calculate the longest wavelength in the Lyman series: 
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The longest wavelength in the Lyman series is ultraviolet while the shortest in the Paschen is 

infrared. Visible light is therefore not possible from either series. 
 

2.5 Calculate the wavelength and energy of a photon in the following transitions of an 

electron in a hydrogen atom.  Which part of electromagnetic spectrum these 

photons of emitted light reside? 

(a) 2 1n n     10.2E hf eV     121.6nm     UV 

(b) 5 4n n     0.306E hf eV     4054.5nm   far infrared 

(c) 10 9n n     0.0319E hf eV     38.9 m   microwave 

(d) 8 2n n     3.188E hf eV     389.2nm   visible-violet 

(e) 12 1n n     13.51E hf eV     91.83nm     UV 

(f) 1n n    13.6E hf eV     91.23nm   UV 

  

2.6. (a) Find the de Broglie wavelength of the ground state (n=1) of the hydrogen atom.  (b) 

What is the quantum number n of the hydrogen-atom orbit represented by the Figure 

F2.5? (c)What is the radius of the hydrogen-atom orbit represented by the Figure F2.5? 

(d) What is the velocity of the electron in the hydrogen-atom orbit represented by the 

Figure F2.5?  

 

The Bohr model can be used to calculate the de Broglie wavelength of an electron in the ground 

state of a hydrogen atom. The orbit contains integer number of the de Broglie waves: 
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Fig. F2.5. Problem 2.6 

(b)  There are five wavelengths contained in the orbit shown in the figure, so we conclude the 

electron is in the n = 5 state.  

(c)  The de Broglie wavelength is proportional to the orbit number, and the number of 

wavelengths contained in the circumference is equal to the orbit number. These two facts 

require the radius to be proportional to n2: 
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2.7. Hydrogen atom number 1 is known to be in the 4f state. (a) What is the energy of 

this atom? (b) What is the magnitude of this atom's orbital angular momentum? (c) 

Hydrogen atom number 2 is in the 5d state. Is this atom's energy greater than, less 

than, or the same as that of atom 1? Explain. (d) Is the magnitude of the orbital 

angular momentum of atom 1 greater than, less than, or the same as that of atom 2? 

Explain. 

 

Hydrogen atom 1 is in the 4f state and hydrogen atom 2 is in the 5d state. The energy and orbital 

angular momentum of each are described by the quantum mechanical model of the atom. 

Calculate the energy in the 4f state with n = 4. Calculate the orbital angular momentum 

with 3  corresponding to the subshell f.  To compare the energies of atoms 1 and 2, 

compare their principal quantum numbers. To compare the orbital angular momenta, 

compare their subshells. 
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(c)     The energy in atom 2 is greater than the energy in atom 1, because an n = 5 state is farther 

from the nucleus and has a smaller negative energy. 

(d) The orbital angular momentum in atom 1 is greater than the orbital angular momentum in 



atom 2, because 3  for an f sublevel and 2  for a d sublevel. 

 

2.8.  Give the electronic configuration for the ground state of carbon, nitrogen, silicon, 

phosphorus, boron, gallium and arsenic. 

 

The figure shows how the levels are filled for a carbon atom. A carbon atom has six protons (Z = 

6) and six electrons. Start filling at the n = 1 shell, for which there is only an s subshell. 

The 1s-subshell is filled with two electrons. Then start filling the n = 2 shell. First fill the 

2s subshell with two electrons, and then place the remaining two electrons in the 2p 

subshell. 
 

C (Z=6):  1s
2
2s

2
2p

2   
N (Z=7):

  2 2 31 2 2s s p
 

   
 
Nitrogen has seven protons (Z = 7) and seven electrons. Fill the 1s shell with the first two electrons. Fill the 

2s subshell with the next two electrons. Place the last three electrons in the 2p subshell. 

 

Silicon Si (Z=14) 1s
2
2s

2
2p

6
3s

2
3p

2
 

 

Phosphorus P (Z= 15)  1s2 2s2 2p6 3s2 3p3 

Boron B (Z=5)  1s2 2s2 2p1  

 Gallium Ga (Z=31) 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p1 

Arsenic  As (Z=33) 1s2 2s2 2p6 3s2 3p6 3d104s2 4p3 

 

2.9.  Suppose that the 5d subshell is filled in a certain atom. Write out the 10 sets of four 

quantum numbers ( , , , )n m m  s  for the electrons in this subshell.  

 

The 5d notation refers to the subshell for which n = 5 and 2.  The fact that 2  means 

that the magnetic quantum numbers m range from −2 to +2. For each m  there are two 

states corresponding to 1
s 2

.m     Use these facts to write out the ten possible states in 

tabular format.  
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2.10 (a) In an AlxGa1-xAs /GaAs/ AlxGa1-xAs quantum well with electrons, find the value of 

x for AlGaAs GaAs

c c cE E E   is 0.238 eV. The bandgap as a function of x is given by 

1.426 1.247gE x   

 (b) Assume 2/3
rd

 of the bandgap difference of AlxGa1-xAs goes to conduction band 

discontinuity.  Since 0.238 Bk T , it is justified to assume quantum well with infinite 

boundaries. What should be the thickness L of the semiconductor layer to ensure 

that the difference between the ground (i.e. the lowest) energy level and the first 

excited level is equal to the thermal energy (kBT) at room temperature (T = 300 K)?   
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2.11 Exciton in the semiconductors lessen the bandgap by the exciton energy:  
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(a)  For GaAs, determine the required photon energy to create an exciton. The 

reduced effective mass for exciton is
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(b) The application of a dc electric field tends to separate the electron and the hole.  

Using Coulomb’s law, show that the magnitude of the electric field between the 

electron and hole is  
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(c) For GaAs, determine |E|, the magnitude of an electric field that would break 

apart the exciton. 
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(b)  The electron and hole in an exciton rotate at the center of mass which is in the 

middle of the exciton. The electric field is the force on a unit positive charge that 

is given 
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A unit charge kept at the center of mass will be attracted by electron and repelled 

by hole, making it twice as large as that of a single electron. The electric field in 

the middle of the exciton is thus 
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2.12.  The conduction band minima in GaP occur right at the first Brillouin zone 

boundary along <100> directions in k-space.  Taking the constant energy surface to 

be ellipsoids with * 1.12 om m and * 0.22t om m , determine the density-of-states 

effective mass of electrons in GaP. What will be the conductivity effective mass? 

 



The DOS effective mass for electrons in GaP will be,  
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The conductivity effective mass of electrons in GaP is,  
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2.13.  In Si, what fraction of the holes are heavy holes?  How does this fraction change in a 

2D quantum well? Discuss and obtain effective density of states effective mass.  

 

The DOS effective mass of holes is given by, 
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* *3/2 *3/2 0.54dsp hh h om m m m     , where 00.48hhm m  and 00.16lhm m  for Si. 

The fraction of heavy holes present in the effective mass is,  
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In 2D quantum well, DOS is directly proportional to the effective mass. So the DOS 

effective mass will be,  
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2.14 Estimate tunneling coefficient for an electron in gallium arsenide ( * 0.067 om m  ), 

tunneling through a rectangular barrier with a barrier height Uo =1 eV and a 

barrier width of 2.0 nm.  The electron energy is 0.25 eV.  

 

Given *

00.067em m ; 0 1U eV ; d=2nm and E=0.25eV 

The tunneling coefficient is given by, 
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With large  , the approximate expression given by 
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the same result:
 

 

9 92 1.15 10 2.0 10

2

16 0.25 (1.0 0.25)
3 0.01 0.03

1
T e

      
   

 

If WKB approximation is used, the expression is
2 0.01aT e   . Using MWKB approximation, 

you get 
2

0 0.03aT T e  
 

 

2.15 Estimate tunneling coefficient for free electrons with energy of 0.5 eV (mo = 

9.11x10-31 kg) incoming onto a parabolic barrier shown in the Fig. F2.11 with 

parabolic barrier Uo = fsx2 with fs = 4x1016 eV/m2 rising from x=0 to x=5.0 nm. 

 

 
Fig. F2.11. Problem 2.15 

The parabolic potential barrier is described by the following equation: 2

0 sU f x  

where 
16 2 16 19 2 3 24 10   /  4 10 1.6 10 / 6.4 10 /s eV m J mf J m          

WKB approximation gives the tunneling coefficient given by, 
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x1 is calculated using the approximation, 
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2.16. Obtain an expression for the tunneling coefficient of a rectangular barrier of width 

a using the WKB approximation and compare with the exact calculations 

 

Tunneling coefficient for a rectangular barrier using the WKB approximation is,  

2
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2 ( )o

m
a U E

T e
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2.17. Calculate the tunneling probability for free electron incoming onto the triangular 

barrier and compare it with the tunneling probability of a rectangular barrier using 

MWKB approximation. Assume the height is each case is 1.0oU eV .  The 

triangular barrier is described by ( ) for 0 2.0o

x
U x U x L nm

L
    .  The 

rectangular barrier has the same area as triangular barrier with 

( ) for 0 1.0oU x U x nm   .  The energy of the incoming electron 0.5E eV . 

 

The triangular potential barrier (TPB) is described by ( )U x q x E  where o oV U

L qL
E = . The 

turning points for the TPB is 1
1 1( ) o

o

x E
E U x U x L

L U
     and 2x L . 
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2 *2 *
( ) ( ) ( )

m qm
x q x E x x    

E
E

 

2

1

exp( 2 | ( ) | )
x

o
x

T T x dx  
= 1

1

2 *
exp( 2 ( )

L

o
x

m q
T T x x dx  

E

 

1
1

2 *
exp( 2 ( )

L

o
x

m q
T T x x dx  

E 3/2

1

2 * 2
exp( 2 ( )

3
o

m q
T T L x  

E

 
 



For given parameters 4oT  , 1 1.0x nm , 2.0L nm , 85 10
V

m
 E ,  T is found to be 0.032T  . 

For the rectangular barrier T=0.00284. 

 

2.18.  The potential energy of electrons in a metal with a surface electric field is shown in the 

Fig. P2.12.  The electron concentration is 1023 cm-3, the electronic effective mass is 

9.11x10-31 kg.  The velocity of electrons impinging on the metal surface is 

1 2

4 o

E

m  with 

E= 4eV.  (a) Find the strength of the electric field at the surface.  (b) Calculate the electric 

current density J=nqv T  (in A/m2) of electrons escaping the metal.  

 

 
Fig. P2.12.  Triangular barrier of 1.0 nm thickness 

 

 

The strength of the electric field at the surface is 8 85/10 / 5 10 /V m V m  E .  

The strength of the electric field at the surface is E = 5/10-9 = 5x109 V/m.  The tunneling 

probability for a triangular barrier is given by 

* 34 2 ( - )
exp

3

n om q d d
T

 
  
 
 

E

 

Substituting the parameter values, we find   T= 2.34x10-6, vn =  2.97x105 m/s, 

J = 0.56x104 A/m2 = 0.56 A/cm2 

 

  

 

 



2.19. Al-SiO2-Al, a metal-insulator-metal hetrojunction is a practical example of a rectangular 

barrier.  Its barrier height is 4.1 0.9 3.2bq q q eV eV eV       , where 4.1q eV   

is the work function of Aluminium and  0.9q eV  is electron affinity for SiO2.  

Determine the tunnelling probability if the barrier width is 1 nm and the electron energy 

is 3.5 eV.  State if any approximation used. Repeat for barrier width of 2 nm, 3nm, and 

10 nm. 

 

T=0.791 for d= 1 nm;  T=0.515 for d= 2 nm; T=0.293 for d= 3 nm; and T=0.901 for d= 

10 nm 

 

2.20.  In a GaAs HEMT (High Electron Mobility Transistor), the gate electric field with 

triangular potential well is 75 10 /V m . Calculate the first two energy levels. 
1 2

2 3 3

1
3

3 3
0

2 2 4
t

q

m


    

     
     

E

 

 
1

22 334
19 3

7
1 31

1.055 10 9 1.6 10
5 10

82 0.067 9.11 10

276.5meV








 
    

   
      

 


 

Through scaling of 

2 2

3 33 3
0

4 4
i
   
     

    to

2

33
1

4

 
 

  , 113.2 meV is multipled by

2

37

3

 
 
  to 

obtain 

2

3

2

7
276.5 486.4

3
meV meV  

   
   

 

2.21. Silicon crystal has 
22 35 10 /atoms cm .  It is doped so 1 in 10,000 atoms are replaced by 

phosphorus. A donor impurity like phosphorus must replace a silicon atom (substitutional 

impurity) for silicon to become n-type.  The interstitial phosphorus in the empty space 

between silicon atoms does not donate an electron.  Assuming 30% of the implanted 

phosphorus is substitutional, determine the effective doping level and the electron 

concentration.  Determine the average distance between the phosphorus atoms and 

between the mobile electrons. 

 The total number of active donors are 

22
3 18 35.0 10

0.3 / 5.0 10
10,000

atoms cm cm 
 

 

Assuming at room temperature, every donor has donated an electron 18 3

3 5.0 10Dn N cm   .  

 Assuming that each atom or electron are length L apart, each one will occupy volume L3.  

Therefore number density should be 1/ L3=number desnity.  For silicon atom 1/ L3=NSi 



giving 

1/3 1/3

28 3

1 1
0.272

5 10Si

L nm
N m

   
     

   . For electrons interatomic spacing is 
1/3 1/3

24 3

1 1
8.8

1.5 10Si

L nm
N m

   
     

    
 Each electron is many atomic spacings apart. 

 

2.22 An electron leaves a heated cathode with kinetic energy of 1 eV in free space. 

Determine the velocity, the wave number, the wavelength, and the frequency of the 

electron wave.  Repeat if the electron acquires an energy of 10 keV while acclerted 

through a potential drop of 10 kV. 

 

19
5

31

2 2 1 1.6 10 /
5.93 10 /

9.1 10

KE eV J eV
v m s

m kg





  
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31 5 59.1 10 5.93 10 / 5.40 10 /p mv kg m s kgm s      
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9 12
5.12 10

D
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

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D

v
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
  

 

 

 For KE=10,000 eV, 104 , all factors are scaled by 102 giving  

 

75.93 10 /v m s 
75.40 10 /p kgm s 

 

 
0.0123D

h
nm

p
  

 

11 12
5.12 10
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