
Courtesy of CRC Press/Taylor & Francis Group

Figure 3.1  Geometric vectors. An arrow from the origin 0
�

 to any point in the plane forms a geometric vector.
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Figure 3.2  Addition. We form p q
� �+  by sliding the tail of q

�
 to the tip of p

�  (dashed arrow on the right) or vice-versa 
(dashed arrow above). Either way yields the black vector p q

� �+ .

003x002.eps



Courtesy of CRC Press/Taylor & Francis Group

Figure 3.3  Vector summation. To sum the black vectors, we chain them tail-to-tip (dashed blue arrows). The solid 
blue arrow from the origin to the tip of the chain is the sum.
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Figure 3.4  A geometric vector p
�

 and some of its scalar multiples.
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Figure 3.5  Vector subtraction. We find the difference p q
� �−  by sketching an arrow from the tip of q

�
 to the tip of p

�
 

(here dashed black), then translating its tail to the origin.

003x005.eps



Courtesy of CRC Press/Taylor & Francis Group

Figure 3.6  Linear combination. Multiplying p
�

, q
�

, and r
�

 by 3,2, and 1, respectively before summing, we get the linear 
combination p q r3 2

� � �+ +  (blue arrow).
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Figure 3.7  Linear combination in space works just as it does in the plane. Here the black dot marks the tip of 
p q r3 2
� � �+ +  (not shown).
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Figure 3.8  Template for Exercises 135 and 136.
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Figure 3.9  Template for Exercises 137 and 138.
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Figure 3.10  Template for Exercise 139.
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Figure 3.11  At left, a “tour” around a random polygon. At right, each edge is translated back to the origin to give a 
geometric vector. Why do the vectors at right sum to 0

�
 ?
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Figure 3.12  Coordinates. If we choose x and y axes, and introduce units (gray arrows), we can assign a numeric vector 
(a, b) to each geometric vector v

�
, and vice-versa.
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Figure 3.13  Geometric/numeric duality. We can add numeric vectors and then interpret geometrically, or add geo-
metric vectors and interpret numerically—either way, we get the same result.
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Figure 3.14  Scalar multiplication respects numeric/ geometric duality because the triangles cut off by the dashed lines 
are similar.
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Figure 3.15  Graphic for Exercise 144.
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Figure 3.16  Template for Exercise 145.
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Figure 3.17  Using standard axes and units, the geometric vector v
�

 corresponds to the numeric vector (1,1). What 
numeric vector corresponds to v

�
 if we use the dashed blue axes? (Gray dots mark “1 unit of length”).
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Figure 3.18  Dot products and lengths. In a euclidean coordinate system, a geometric vector v
�

 with numeric “ad- 

dress” v = (a, b) has length |v
�

| = v a b v v2 2� = + = ⋅ .
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Figure 3.19  Lengths in 3D. In a 3D euclidean system that assigns numeric coordinates v = (a, b, c) to a geometric vec-
tor v
�

, the Pythagorean theorem, applied twice, gives v a b c v v2 2 2� = + + = ⋅ . Can you see why?
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Figure 3.20  By adding all multiples of v
�

 to p
�

, we trace out a line (solid blue) through the tip of p
�

 and parallel to the 
(dashed) line generated by v

�
.
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Figure 3.21  The vectors perpendicular to a
�

 form a line perpendicular to a
�

.
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Figure 3.22  The solution set of an inhomogeneous equation a · x = b is a line that goes through the tip of xp

�
, and runs 

parallel to the solution set of the homogeneous equation.

003x022.eps



Courtesy of CRC Press/Taylor & Francis Group

Figure 3.23  The vectors orthogonal to a non-zero vector a
�

 in space form a plane.
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Figure 3.24  The solution set of a · x = b represents a plane orthogonal to the line generated by a
�

, but through xp

�
 rather 

than the origin.
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Figure 3.25  The solution of a linear system of two equations in two variables locates the intersection of two lines in 
the plane.
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Figure 3.26  A system of two equations in 3 variables corresponds to a pair of planes in space. The solutions of the 
system are the vectors whose tips lie on the intersection of the planes—in this case, a line. The row interpretation of 
the system asks for this intersection.
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Figure 3.27  Typically, three planes in space intersect in a single point (upper left), corresponding to a 3-by-3 linear 
system with exactly one solution. But such a system may have an entire line of solutions (upper right), or none at all 
(bottom left and right).
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Figure 3.28  Which is it? White birds flying east, or black birds flying west? M.C. Escher’s Day and Night.
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Figure 3.29  The column problem. This interpretation of the system (25) asks which scalar multiples of the columns 
ci (black arrows) add up to b (blue arrow). The dashed gray arrows illustrate one of the many solutions, namely (−4, 
−3, −1).
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