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2. Spring Mass Damper System – Unforced Response 
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Example 
 
Solve for five cycles, the response of an unforced system given by the equation 

0
...

=++ kxxcxm                                                                            (1) 
 

For ξ = 0.1; m = 1 kg; k = 100 N/m; x (0) = 2 cms; 
.
x (0) = 0; 

 
Solution 
 
The above equation is a second order constant-coefficient differential equation.  To solve 
this equation we have to reduce it into two first order differential equations. This step is 
taken because MATLAB uses a Runge-Kutta method to solve differential equations, 
which is valid only for first order equations. 
 
Let  

vx =
.

                                                                                                                               (2) 
 
From the above expression we see that 

 
so the equation (1) reduces to 
 

])()[(
.

x
m
kv

m
cv −

−
=                                                                                                         (3)                                      

 
We can see that the second order differential equation (1) has been reduced to two first 
order differential equations (2) and (3). 

0
.

=++ kxcvvm



 11

For our convenience, put 
 
 x = y (1); 

);2(
.

yvx ==  
 
Equations (2) and (3) reduce to 

)1(
.
y  = y (2);                (4) 

)2(
.
y  = [(-c/m)*y (2) – (k/m)*y (1)];                                                                                (5) 
 
To calculate the value of ‘c’, compare equation (1) with the following generalized 
equation. 

02 2...
=++ nn xx ωξω  

 
Equating the coefficients of the similar terms we have 
 

nm
c ξω2=                                                                                                                          (6) 

m
k

n =2ω                                                                                                                            (7) 

 
Using the values of ‘m’ and ‘k’, calculate the different values of ‘c’ corresponding to 
each value of ξ. Once the values of ‘c’ are known, equations (4) and (5) can be solved 
using MATLAB. 
  
The problem should be solved for five cycles. In order to find the time interval, we first 
need to determine the damped period of the system. 
 
Natural frequency ωn = )/( mk = 10 rad/sec. 
For ξ = 0.1 

Damped natural frequency ωd = ωn ξ 2
1− = 9.95 rad/sec. 

Damped time period Td = 2π/ωd = 0.63 sec. 
 
Therefore for five time cycles the interval should be 5 times the damped time period, i.e., 
3.16 sec. 
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MATLAB Code 
 
In order to apply the ODE45 or any other numerical integration procedure, a separate 
function file must be generated to define equations (4) and (5). Actually, the right hand 
side of equations (4) and (5) are what is stored in the file. The equations are written in the 
form of a vector. 
 
The MATLAB code is given below. 
 
function yp = unforced1(t,y) 
yp = [y(2);(-((c/m)*y(2))-((k/m)*y(1)))];               (8) 
 
 
Open a new M-file and write down the above two lines. The first line of the function file 
must start with the word “function” and the file must be saved corresponding to the 
function call; i.e., in this case, the file is saved as unforced1.m. The derivatives are stored 
in the form of a vector. 
 
This example problem has been solved for ξ = 0.1. We need to find the value of ‘c/m’ 
and ‘k/m’ so that the values can be substituted in equation (8). Substituting the values of 
ξ and ωn in equations (6) and (7) the values of ‘c/m’ and ‘k/m’ can be found out. After 
finding the values, substitute them into equation (8).  
 
Now we need to write a code, which   calls the above function and solves the differential 
equation and plots the required result. First open another M-file and type the following 
code. 
    
tspan=[0 4]; 
y0=[0.02;0]; 
[t,y]=ode45('unforced1',tspan,y0); 
plot(t,y(:,1)); 
hold; 
 
The ode45 command in the main body calls the function unforced1, which defines the 
systems first order derivatives. The response is then plotted using the plot command. 
‘Tspan’ represents the time interval and ‘y0’ represents the initial conditions for y(1) and 
y(2) which in turn represent the displacement ‘x’ and the first derivative of ‘x’. In this 
example, the initial conditions are taken as 0.02 m for ‘x’ and 0 m/sec for the first 
derivative of ‘x’. 
 
In order to solve for different values of ξ, calculate the values of ‘c/m’ for each value of 
ξ. Substitute each value of ξ in the function file, which has the derivatives, save the file 
and then run the main program to view the result. 
 
In the above code ‘y(:,1) represents the displacement ‘x’. To plot the velocity, change the 
variable in the plot command line to ‘y(:,2)’. 
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The plot is attached below 
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Assignment 
 
Solve for six cycles the response of an unforced system given by  

0
...

=++ kxxcxm  
 

For ξ = {0, 0.1 0.25, 0.5, 0.75, 1.0}. 

Take m = 5 kg; k = 1000 N/m; x(0) = 5 cms; 
.
x (0) = 0; 

 
Develop a plot for the solutions corresponding to the seven ξ values and comment on the 
plots obtained. 
 
 



 15

Spring Mass Damper System – Forced Response 
 
 
                                  fsinωt 
 
 
 
                                                    m 
 
 
 
                                         k                      c 
 
 
 
 
 
 
Example 
 
Plot the response of a forced system given by the equation 

tfkxxcxm ωsin
...

=++                                                                (1) 
 

For ξ = 0.1; m = 1 kg; k = 100 N/m; f = 100 N; ω = 2ωn; x(0) = 2 cms; 
.
x (0) = 0. 

 
Solution 
 
The above equation is similar to the unforced system except that it has a forcing function. 
To solve this equation we have to reduce it into two first order differential equations. 
Again, this step is taken because MATLAB uses a Runge-Kutta method to solve 
differential equations, which is valid only for first order equations. 
 
Let  

vx =
.

                                                                                                                               (2) 
 
so the above equation reduces to 
 

])()(sin)[(
.

x
m
kv

m
ct

m
fv −−= ω                                                                                       (3) 

 
We can see that the second order differential equation has been reduced to two first order 
differential equations. 
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For our convenience, put 
 
 x = y (1); 

);2(
.

yvx ==  
 
Equations (2) and (3) then reduce to 

)1(
.
y  = y (2); 

)2(
.
y  = [(f/m)*sin(ω * t) + (-c/m)*y (2) – (k/m)*y (1)]; 
 
Again, to calculate the value of ‘c’, compare equation (1) with the following generalized 
equation 

tfxx nn ωωξω sin2 2...
=++  

 
Equating the coefficients of the similar terms we have 

nm
c ξω2=  

m
k

n =2ω  

 
Using the values of ‘m’ and ‘k’, calculate the different values of ‘c’ corresponding to 
each value of ξ.  
 
To find the time interval the simulation should run, we first need to find the damped time 
period. 
 
Natural frequency ωn = )/( mk = 10 rad/sec. 
For ξ = 0.1; 

Damped natural frequency ωd = ωn ξ 2
1− = 9.95 rad/sec. 

Damped time period Td = 2π/ωd = 0.63 sec. 
 
Therefore, for five time cycles the interval should be 5 times the damped time period, i.e., 
3.16 sec. Since the plots should indicate both the transient and the steady state response, 
the time interval will be increased. 
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MATLAB Code 
 
The MATLAB code is similar to that written for the unforced response system, except 
that there is an extra term in the derivative vector, which represents the force applied to 
the system. 
 
The MATLAB code is given below. 
 
function yp = forced(t,y) 
yp = [y(2);(((f/m)*sin(ωn*t))-((c/m)*y(2))-((k/m)*y(1)))]; 
 
 
Again the problem is to be solved for ξ = 0.1. So, calculate the value of ‘c/m’, ‘k/m’ and 
‘f/m’ by following the procedure mentioned in the earlier example and then substitute 
these values into the above expression. Save the file as ‘forced.m’. 
 
The following code represents the main code, which calls the function and solves the 
differential equations and plots the required result. 
 
tspan=[0 5]; 
y0=[0.02;0]; 
[t,y]=ode45('forced',tspan,y0); 
plot(t,y(:,1)); 
hold; 
 
Again, ‘tspan’ represents the time interval and ‘y0’ represents the initial conditions for 
y(1) and y(2) which in turn represent the displacement ‘x’ and the first derivative of ‘x’. 
In this example the initial conditions are taken as 0.02 m for ‘x’ and 0 cm/sec for the first 
derivative of ‘x’. 
 
To solve for different values of ξ, calculate the values of ‘c/m’ for each value of ξ. 
Substitute each value of ξ in the function file, which has the derivatives, save the file and 
then run the main program to view the result. 
 
In the above code ‘y(:,1) represents the displacement ‘x’. To plot the velocity,  change the 
variable in the plot command line to ‘y(:,2)’. 
 
The plot is attached below. 
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Assignment 
 
Plot the response of a forced system given by the equation 

tfkxxcxm ωsin
...

=++  
For ξ = {0, 0.1 0.25, 0.5, 0.75, 1.0}. 

Take m = 5 kg; k = 1000 N/m; f = 50 N; ω = 4ωn, x(0) = 5 cms; 
.
x (0) = 0. 

 
Develop a plot for the solutions corresponding to the seven ξ values and comment on the 
plots obtained. 
 
 
 
 
 
 
 


