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Chapter 2: Theorems of Euclidean Plane Geometry

2.1 The Exterior Angle Theorem

1. Suppose that a triangle does not have two acute interior angles. Then
at least two of its interior angles are right or obtuse. By the Supplement
Postulate, the exterior angle adjacent to the right or obtuse interior
angle is acute. Hence its measure is less than or equal to that of the
other right or obtuse interior angle. Since this contradicts the Exterior
Angle Theorem, a triangle has at least two acute interior angles.

2.2 Triangle Congruence Theorems

1. Let A,B, and C be distinct points. We proceed by cases:

Case 1: A,B, and C are collinear. Then either A− B − C, A− C − B,
or C −A−B.

Subcase 1a: A−B − C. Then AB +BC = AC.

Subcase 1b: A − C − B. Then AC + BC = AB so that AB + BC >
AB > AC.

Subcase 1c: C − A − B. Then AC + AB = BC so that AB + BC >
BC > AC.

Case 2: A,B, and C are non-collinear. By the Ruler Postulate,
there exists a point D such that A − B − D and BD = BC.
Then µ(∠ACD) > µ(∠BCD) by the Angle Addition Postulate, and
µ(∠BCD) = µ(∠BDC) = µ(∠ADC) by the Isosceles Triangle Theo-
rem. Thus µ(∠ACD) > µ(∠ADC) so that AD > AC by the Scalene
Inequality. Now AD = AB+BD = AB+BC. Therefore AB+BC > AC
by substitution.

In all cases we have proved that AB+BC ≥ AC, and the equality holds
if and only if A−B − C (Subcase 1a).

2. Let �ABC and �DEF be triangles such that ∠ABC ∼= ∠DEF ,
∠BCA ∼= ∠EFD, and AC ∼= DF . We must show that �ABC ∼=
�DEF .

By the Ruler Postulate, there exists a point B′ on
−−→
CB such that B′C ∼=

EF . Then �AB′C ∼= �DEF by SAS so that ∠AB′C ∼= ∠DEF by
CPCTC. Thus ∠ABC ∼= ∠AB′C. Now to show that B′ = B, suppose

that B′ �= B. Then by definition of ray
−−→
CB, either C − B′ − B or

C−B−B′. If C−B′−B, then µ(∠AB′C) > µ(∠ABC) by the Exterior
Angle Theorem; similarly, if C−B−B′, then µ(∠ABC) > µ(∠AB′C). In
both cases, we have a contradiction since ∠ABC ∼= ∠AB′C. Therefore
B′ = B and �ABC ∼= �DEF .
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3. Let �ABC and �DEF be triangles such that AB ∼= DE, BC ∼= EF ,
and ∠ACB ∼= ∠DFE. We must show that ∠BAC ∼= ∠EDF or
µ(∠BAC) + µ(∠EDF ) = 180◦.

By the Ruler Postulate, there exists a point A′ on
−→
CA such that A′C ∼=

DF . Then �A′BC ∼= �DEF by SAS so that ∠BA′C ∼= ∠EDF and
A′B ∼= DE by CPCTC. If A′ = A, then ∠BAC ∼= ∠EDF ; if A′ �= A,
then either A−A′−C or A′−A−C. Without loss of generality, assume
A − A′ − C. Since AB ∼= DE and A′B ∼= DE, we have A′B ∼= AB so
that ∠BA′A ∼= ∠BAC by the Isosceles Triangle Theorem. Since ∠BA′A
and ∠BA′C form a linear pair, µ(∠BA′A) + µ(∠BA′C) = 180◦ by
the Supplement Postulate. Therefore µ(∠BAC) + µ(∠EDF ) = 180◦ by
substitution.

4. Let �ABC and �DEF be triangles such that ∠ACB and ∠DFE are
right angles, AB ∼= DE and BC ∼= EF . We must show that �ABC ∼=
�DEF .

Since ∠ACB and ∠DFE are right angles, ∠ACB ∼= ∠DFE. Thus
∠BAC and ∠EDF are congruent or supplementary by Exercise 2.2.3.
Since ∠BAC and ∠EDF are both acute by Exercise 2.1.1, they are not
supplementary, so ∠BAC ∼= ∠EDF . Therefore �ABC ∼= �DEF by
AAS.

5. Let A and B be distinct points. We must show that a point P lies on
the perpendicular bisector of AB if and only if PA = PB. Let M be
the midpoint of AB. If P = M , then the statement is trivial, so assume
that P �= M .

Suppose P lies on the perpendicular bisector of AB. Then line
←−→
PM is

the perpendicular bisector of AB. Note that AM = BM , µ(∠PMA) =
µ(∠PMB) = 90◦, and PM = PM . Thus �PAM ∼= �PBM by SAS
so that PA = PB by CPCTC.

Suppose PA = PB. Note that AM = BM , and ∠PAM ∼= ∠PBM by
the Isosceles Triangle Theorem. Thus�PAM ∼= �PBM by SAS so that
∠PMA ∼= ∠PMB by CPCTC. Since µ(∠PMA)+µ(∠PMB) = 180◦ by
the Supplement Postulate, µ(∠PMA) = µ(∠PMB) = 90◦. Therefore

line
←−→
PM is the perpendicular bisector of AB. In particular, P lies on

the perpendicular bisector of AB.

6. Let �ABC and �DEF be triangles such that AB ∼= DE, BC ∼= EF ,
and CA ∼= FD. We must show that �ABC ∼= �DEF .

By the Angle Construction Postulate and the Ruler Postulate, there

exists a point A′ on the opposite side of
←→
BC from A, such that ∠A′BC ∼=

∠DEF and A′B = DE. Then �A′BC ∼= �DEF by SAS so that A′C =
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DF by CPCTC. It suffices to show that ∠ABC ∼= ∠A′BC, since this
will imply ∠ABC ∼= ∠DEF so that �ABC ∼= �DEF by SAS.

B

A

C

E

D

F
M

A
�

Since AB = DE and A′B = DE, we have AB = A′B so that B lies on
the perpendicular bisector of AA′ by Theorem 48. A similar argument

shows that C lies on the perpendicular bisector of AA′. Thus line
←→
BC

is the perpendicular bisector of AA′, so
←→
BC cuts AA′ at the midpoint

M of AA′. If M = B, then ∠ABC ∼= ∠A′BC since they are both right
angles. If M �= B, �ABM ∼= �A′BM by SAS since AM = A′M ,
µ(∠AMB) = µ(∠A′MB) = 90◦, and BM = BM . Hence ∠ABM ∼=
∠A′BM by CPCTC.

Case 1: M ∈ −−→
BC. Then ∠ABC = ∠ABM and ∠A′BC = ∠A′BM so

that ∠ABC ∼= ∠A′BC by substitution.

Case 2: M − B − C. Then µ(∠ABC) + µ(∠ABM) = 180◦ and
µ(∠A′BC) + µ(∠A′BM) = 180◦ by the Supplement Postulate. Thus
µ(∠ABC) = 180◦ − µ(∠ABM) = 180◦ − µ(∠A′BM) = µ(∠A′BC) so
that ∠ABC ∼= ∠A′BC.

7. Let A,B, and C be non-collinear points, and let P be a point in the
interior of ∠BAC. Let D and E be the feet of the perpendiculars from

P to
←→
AB and

←→
AC, respectively. We must show that P lies on the angle

bisector of ∠BAC if and only if PD = PE.

Suppose P lies on the angle bisector of ∠BAC. Then µ(∠PAD) =
µ(∠PAE) by definition. Since we also have µ(∠PDA) = µ(∠PEA) =
90◦ and PA = PA, �PAD ∼= �PAE by AAS so that PD = PE by
CPCTC.

Suppose PD = PE. Since µ(∠PDA) = µ(∠PEA) = 90◦ and PA =
PA, we have �PAD ∼= �PAE by the Hypotenuse-Leg Theorem. Thus

µ(∠PAD) = µ(∠PAE) by CPCTC so that
−→
AP is the angle bisector

of ∠BAC by definition. In particular, P lies on the angle bisector of
∠BAC.
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2.3 The Alternate Interior Angles Theorem and the Angle Sum
Theorem

1. Let l and l′ be distinct lines cut by a transversal t at point B on l
and point B′ on l′. Choose points A,A′, C, C ′, and B′′ as in Definition
52. By the Vertical Angles Theorem, ∠A′B′B′′ ∼= ∠C ′B′B. Thus by
the Alternate Interior Angles Theorem, l ‖ l′ if and only if ∠ABB′ ∼=
∠C ′B′B if and only if ∠A′B′B′′ ∼= ∠ABB′. Congruence of the other
pairs of corresponding angles follows by a similar argument.

2. Let l and l′ be distinct lines cut by a transversal t at point B on l
and point B′ on l′. Choose points A,A′, C, and C ′ as in Definition 52.
By the Supplement Postulate, ∠A′B′B and ∠C ′B′B are supplemen-
tary. Thus by the Alternate Interior Angles Theorem, l ‖ l′ if and only
if ∠ABB′ ∼= ∠C ′B′B if and only if ∠A′B′B and ∠ABB′ are supple-
mentary. Congruence of the other pairs of non-alternate interior angles
follows by a similar argument.

3. Let �ABC be a triangle and D a point on
←→
BC such that B − C −D.

We must prove that µ(∠ACD) = µ(∠BAC) + µ(∠ABC).

By the Angle Sum Theorem, µ(∠BAC)+µ(∠ABC)+µ(∠ACB) = 180◦.
By the Supplement Postulate, µ(∠ACD) + µ(∠ACB) = 180◦. Thus
µ(∠ACD) = 180◦ − µ(∠ACB) = µ(∠BAC) + µ(∠ABC).
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4. Let �ABCD be a parallelogram. Then
←→
AB ‖ ←→

CD and
←→
AD ‖ ←→

BC by
definition.

(a) By the Alternate Interior Angles Theorem, ∠CAB ∼= ∠ACD and
∠ACB ∼= ∠CAD. Since AC = CA, �ABC ∼= �CDA by ASA. The
proof for �ABD ∼= �CDB is similar.

(b) Since �ABC ∼= �CDA, AB ∼= CD and BC ∼= DA by CPCTC.

(c) Since �ABD ∼= �CDB, ∠DAB ∼= �BCD by CPCTC. Since
�ABC ∼= �CDA, ∠ABC ∼= �CDA by CPCTC.

(d) Let M be the point where AC and BD intersect each other.
By part (b), AB ∼= CD. By the Alternate Interior Angles Theorem,
∠MAB ∼= MCD and ∠MBA ∼= MDC. Thus �ABM ∼= �CDM by
ASA. Therefore AM = CM and BM = DM by CPCTC, i.e., the diag-
onals AC and BD bisect each other.

5. Let l,m, and n be lines. Suppose that l ‖ m and m ‖ n, but l ∦ n. By
negating the definition of parallels, l �= n and l∩n �= ∅. Since l∩n �= ∅,
there exists a point P ∈ l ∩ n. If P ∈ m, then l = m and m = n so that
l = n; if P /∈ m, then l = n by the Euclidean Parallel Postulate. In both
cases, we have l = n, which contradicts our previous assumption that
l ∦ n.

2.4 Similar Triangles

1. Given two triangles, assume first that they are similar. Then two pairs
of corresponding angles are congruent by definition. For the converse,
assume that two pairs of corresponding angles are congruent. Since the
angle sum of every triangle is 180◦, the third pair of corresponding angles
are also congruent. Thus the two triangles are similar by definition.

2. Let �ABC and �DEF be triangles such that ∠CAB ∼= ∠FDE and
AB
AC = DE

DF . We must show that �ABC ∼ �DEF .

Case 1: AB = DE. Then AC = DF by algebra. Thus �ABC ∼= �DEF
by SAS so that �ABC ∼ �DEF .

Case 2: AB �= DE. Without loss of generality, assume that AB > DE.
By the Ruler Postulate, there exists a point B′ on AB such that AB′ =
DE. By the Euclidean Parallel Postulate, there exists a line l through B′

and parallel to
←→
BC. By Pasch’s Axiom, l cuts AC at some point C ′. By

the Corresponding Angles Theorem, ∠ABC ∼= ∠AB′C ′ and ∠ACB ∼=
∠AC ′B′. Thus �ABC ∼ �AB′C ′ by AA.

K23010_SM_Cover.indd   12 08/10/14   2:55 PM



Instructor’s Solution Manual 9

By the Similar Triangles Theorem, AB
AB′ = AC

AC′ so that AB
AC = AB′

AC′ by

algebra. Since AB
AC = DE

DF , we have AB′

AC′ = DE
DF . Since AB′ = DE, we

have AC ′ = DF . Thus �AB′C ′ ∼= �DEF by SAS. Since �ABC ∼
�AB′C ′, we conclude that �ABC ∼ �DEF .

Chapter 3: Introduction to Transformations, Isometries, and
Similarities

3.1 Transformations

1. α is bijective (both injective and surjective).

β is neither injective nor surjective.

γ is not injective but is surjective.

δ is bijective (both injective and surjective).

ε is neither injective nor surjective.

η is bijective (both injective and surjective).

ρ is injective but not surjective.

σ is bijective (both injective and surjective).

τ is bijective (both injective and surjective).

2. Let α and β be bijective transformations. Given points P and Q, as-
sume (α ◦ β) (P ) = (α ◦ β) (Q). Then α (β (P )) = α (β (Q)) . Since α is
injective, β (P ) = β (Q) . Since β is injective, P = Q. Therefore α ◦ β is
injective. Given a point R, there is a point Q such that β (Q) = R since
β is surjective, and there is a point P such that α (P ) = Q since α is
surjective. Therefore (α ◦ β) (P ) = α (β (P )) = α (Q) = R and α ◦ β is
surjective.

3. Let α be a transformation. Given a point P , note that (α ◦ ι) (P ) =
α (ι (P )) = α (P ) so that α ◦ ι = ι. Similarly, (ι ◦ α) (P ) = ι (α (P )) =
α (P ) so that ι ◦ α = ι. Therefore α ◦ ι = ι ◦ α = ι.
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