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Figure 2.1
Isolated bars of underwater structure.
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Figure 2.2
Tension specimen.
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Figure 2.3
Bar in compression.
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Figure 2.4
One-dimensional stretching of a bar.
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Figure 2.5
Shear strain. (a) Motor mount. (b) Motor mount distorted in shear.
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Figure 2.6
Construction of a bonded-wire strain gage.
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Figure 2.7
The method of sections. (a) Equilibrium of entire body. (b, c) Equilibrium of sections created by
arbitrary cut through body.
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Figure 2.8
Bar in tension. (a) Bar BC. (b) Free body BA.
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Figure 2.9
Bar in compression. (a) Bar BC. (b) Free body BA.
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Figure 2.10
Shear between two bodies.
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Figure 2.11
Linear relationship between stress and strain.
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Figure 2.12
Linear (Hookean) spring.
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Figure 2.13
Plastic deformation incurred when proportional limit is exceeded.
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Figure 2.14
Schematic of typical stress–strain diagrams.
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Figure 2.15
Idealized stress–strain diagram for mild steel (ductile).
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Figure 2.16
Necking of a ductile material during tensile testing.
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Figure 2.17
Ductile material (a) experiencing necking and (b) after fail-
ure, and (c) brittle material after failure, in uniaxial tension test.
(http://www.hsc.csu.edu.au/engineering_studies/application/lift/3210/index.html. With permis-
sion.)
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Figure 2.18
Equilibrium of an infinitesimal element in one dimension: internal axial force N (x) balances applied
axial load q(x) and body force Bx .
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Figure 2.19
Steel ruler in (a) beam and (b) bar modes.
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Figure 2.20
Stresses on sections of axially loaded bar. (a) An axially loaded bar. (b) Section cut normal to the bar’s
longitudinal axis. (c) Section cut at an angle θ .
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Figure 2.21
Sectioning of a bar at an angle θ .
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Figure 2.22
Force method for statically indeterminate bar ABC : (a) subjected to applied force P; (b) experiencing
reactions and deformation; (c) with right support “removed”; and (d) subjected only to the support
reactions.
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Figure 2.23
Displacement method for a statically indeterminate bar ABC : (a) subjected to applied force P; (b)
experiencing reactions and deformation; (c) with “cuts” in sections AB and BC to produce node
FBDs.
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Figure 2.24
Stress distributions near concentrated force in a bar. (a) A bar of width b acted on by concentrated
load P; and calculated stress distributions on “cut” sections (b) b/4; (c) b/2; and (d) b from the load
application.
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Figure 2.25
Stress concentration factors for flat bars. (After M. M. Frocht, Factors of Stress Concentration Photoe-
lastically Determined, ASME Journal of Applied Mechanics 2:A67–A68 (1935).)
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Figure 2.26
Constitutive relationships and (a) strain energy for a spring and (b) strain energy density for an elastic
solid.

002x026.eps


	002x001.eps
	002x002.eps
	002x003.eps
	002x004.eps
	002x005.eps
	002x006.eps
	002x007.eps
	002x008.eps
	002x009.eps
	002x010.eps
	002x011.eps
	002x012.eps
	002x013.eps
	002x014.eps
	002x015.eps
	002x016.eps
	002x017.eps
	002x018.eps
	002x019.eps
	002x020.eps
	002x021.eps
	002x022.eps
	002x023.eps
	002x024.eps
	002x025.eps
	002x026.eps

