
Chapter 2

Unique Factorization

2.1 Exercises

1. (a) 32 · 54, (b) 5625 is a square

2. (a) 26 · 33, (b) 1728 is a cube

3. Use Theorem 2.2 with a = b. Since p | a · a, we have p | a or p | a. This
means that p | a.

4. Since p2 | ab, it follows that p2 occurs in the prime factorization of ab. Let
pi be the power of p in the factorization of a and let pj be the power of p
in the prime factorization of b. Then pi+j is the power of p in the prime
factorization of ab, so i+ j ≥ 2. Since gcd(a, b) = 1, either i = 0 or j = 0.
Therefore, either i ≥ 2 or j ≥ 2, which means that either p2 | a or p2 | b.
Another solution: Since p | ab, either p | a or p | b. Let’s assume that
p | a. Since gcd(a, b) = 1, we have gcd(p2, b) = 1. By Proposition 1.13
(with (a, b, c) = (p2, b, a)), we must have p2 | a.

5. (a) Write a = 2a23a3 · · · and b = 2b23b3 · · · . By Proposition 2.6, nap ≤ nbp
for each p, so ap ≤ bp for each p. Use Proposition 2.6 again to get a | b.
(b) Write a = 2a23a3 · · · and b = 2b23b3 · · · . Proposition 2.6 says that
map ≤ nbp for each p. Since m ≥ n, ap ≤ bp for each p. Use Proposition
2.6 again to get a | b.
(c) Let a = 4, b = 2,m = 1, n = 2.

6. (a) and (b) Write

a = 2a23a35a5 · · · and b = 2b23b35b5 · · · .

Then an = 2na23na35na5 · · · and bn = 2nb23nb35nb5 · · · . Let dp =
min(ap, bp). Then ndp = min(nap, nbp). Proposition 2.7 says that

gcd(an, bn) = 2nd23nd35nd5 · · · =
(
2d23d35d5 · · ·

)n
= gcd(a, b)n.
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7. Let d = gcd(a, c). Then d | c, so d | a+ b. Since d | a, we have d | b.

8. Let d = gcd(a, b). By Proposition 1.3, d | ax+ by = 1. Therefore, d = 1.

9. The answer is 3: If we have 4 consecutive integers, one of them is divisible
by 4. An example of 3 consecutive squarefree integers is 1, 2, 3.

10. The answer is 8: If we have 9 consecutive odd integers, one of them is
divisible by 9. This can be seen as follows: Let the consecutive odd
integers be n+2j for 0 ≤ j ≤ 8. Write n = 18q+r with 0 ≤ r < 18. Since
n is odd and 18j is even, r must be odd. Write r = 2k+ 1 with 0 ≤ k ≤ 8.
If 0 ≤ k ≤ 4, then

n+ 2(4− k) = (18q + 2k + 1) + 2(4− k) = 18q + 9,

which is a multiple of 9. If 5 ≤ k ≤ 8, then

n+ 2(13− k) = (18q + 2k + 1) + 2(13− k) = 18q + 27,

which is a multiple of 9.
It is possible to have 8 consecutive odd squarefree integers: 29, 31, 33, 35,
37, 39, 41, 43. Note that we couldn’t start at 11, because then the 8th
number would be 25, which is not squarefree.

11. Let n = 2n23n3 · · · . Then r = n2 and m = 3n3 · · · .

12. (a) and (b) Let d = gcd(an, b), for some n ≥ 1. If q is a prime dividing d,
then q | a and q | b, so q | gcd(a, b) = p. Therefore, the only prime factor
of d is p, so d = pj for some j. Since p | a2 and p | b, we have j ≥ 1.
Suppose j > n. Then pj | an implies that p2 | a (look at the power of p
in a). But pj | b, and j > n ≥ 1, so p2 | b. Therefore, p2 | gcd(a, b) = p,
which is a contradiction. Therefore, 1 ≤ j ≤ n. Each of these is possible:
Let a = p and b = pj with j ≤ n. Then gcd(an, b) = gcd(pn, pj) = pj . To
summarize, gcd(an, b) = pj for some j with 1 ≤ j ≤ n.

13. Since gcd(a, p2) = p, the power of p in the prime factorization of a is p1.
Since gcd(b, p3) = p2, the power of p in the prime factorization of b is p2.
(a) The power of p in the prime factorization of ab is p3, so gcd(ab, p4) = p3.
(b) Let d = gcd(a+ b, p4). Then d is a power of p. Since p | a and p | b, we
have p | a+ b. Suppose p2 | a+ b. Since p2 | b, we have p2 | (a+ b)− b = a,
which is a contradiction. Therefore, d = p.

2.2 Projects

1. (a) If a and b are elements in H, then a = 1 + 4k1, b = 1 + 4k2. Then

ab = (1 + 4k1)(1 + 4k2) = 1 + 4(k1 + k2) + 16k1k2 = 1 + 4k ∈ H

Therefore, H is closed under multiplication.
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Numbers of the form 3 + 4k are not closed under multiplication: (3 +
4k1)(3 + 3k2) = 1 + 4m for some integer m.
(For example, 7 · 11 = 77 = 1 + 4 · 19.)

(b) The first ten Hilbert numbers are 1, 5, 9, 13, 17, 21, 25, 29, 33, 37.

(c) The first ten Hilbert primes are 5, 9, 13, 17, 21, 28, 33, 37, 41, 49. The
first Hilbert prime that is not a prime number is 9.

(d) Let p = 3 + 4k1 and q = 3 + 4k2 be prime numbers. Then m = pq =
1 + 4k is a Hilbert number. As an integer, m can be factored in exactly
one way as a product of primes, namely m = pq. If it were possible to
factor m as the product of two Hilbert numbers, this would give rise to
a factorization (in the integers) of m different from m = pq. Since this is
impossible, m is a Hilbert prime.

(e) If p is a prime of the form 4k + 1, then it can’t have a non-trivial
factorization so it’s a Hilbert prime. Now assume that p is a Hilbert prime
that is not a prime. Write p = q1q2 . . . qn, as the prime factorization of
p. Then none of the qi can be Hilbert numbers since p cannot factor as
a product of Hilbert numbers. Furthermore, n must be even since the
product of an odd number of integers of the form 4k + 3 is not a Hilbert
number. Using this, write p = (q1q2)(q3q4) . . . (qn−1qn). Each pair of
products is in H. Therefore, if p is a Hilbert prime, n = 2.

(f) 441 = 9 · 49 = 21 · 21.

(g) Answers will vary. Here are two possibilities.
4389 = 21 · 209 = 33 · 133 = 57 · 77
33649 = 77 · 437 = 133 · 253 = 161 · 209

(h) We begin the sieve by writing only the integers that are of the form
1 + 4k. (We’ve only written these up to 93.)

1 5 9 13 17 21 25 29
33 37 41 45 49 53 57 61
65 69 73 77 81 85 89 93

Ignore 1, put a circle around 5 and then cross out every fifth number.

1 5© 9 13 17 21 25// 29

33 37 41 45// 49 53 57 61

65// 69 73 77 81 85// 89 93

Now put a circle around 9 (the first number after 5 that has not been
crossed out) and cross out every ninth number that’s in our array.

1 5© 9© 13 17 21 25// 29

33 37 41 45// 49 53 57 61

65// 69 73 77 81// 85 89 93
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Continue in this manner, circling the first number that is not crossed out
and then crossing out multiples of that number. The final result for the
first 32 integers of the form 1 + 4k is

1 5© 9© 13© 17© 21© 25// 29©
33© 37© 41© 45// 49© 53© 57© 61©
65// 69© 73© 77© 81// 85// 89© 93©

2. (a) [15, 21] = 105, [30, 40] = 120, [5, 47] = 235

(b) gcd(15, 60) = 15, [15, 60] = 60

(c) If d = gcd(a, b), there are integers k1 and k2 with

a = k1d and b = k2d.

Since a | [a, b] and b | [a, b], there are integers k3 and k4 with

[a, b] = k3a and [a, b] = k4b.

Therefore

[a, b] = k3a = k3(k1d) = (k3k1)d = k gcd(a, b).

So, (a, b) | [a, b].
(d) Using the notation from (c), gcd(a, b) = [a, b] if and only if k1k3 =
k2k4 = 1. Since each ki is a positive integer, k1 = k2 = k3 = k4 = 1. This
means that

gcd(a, b) = a, gcd(a, b) = b, [a, b] = a, [a, b] = b,

which forces a = b.

(e) (i) [p, q] = pq, (ii) [pq, p2r] = p2qr, (iii) [pq, 2q2r3] = 2pq2r3

(f) Let a = 2a23a3 · · · and b = 2b23b3 · · · be the prime factorizations of
a and b. Let cp = max(ap, bp) and let [a, b] = n. For n to be divisible
by both a and b, each prime p that occurs in the factorization of n must
occur to a power at least as big as ap and bp. This means that the smallest
positive integer that that is divisible by both a and b (i.e. [a, b]) is

2c23c35c5 · · · .

(g) Let a = 2a23a3 · · · and b = 2b23b3 · · · be the prime factorizations of a
and b. Let dp = min(ap, bp) and cp = max(ap, bp). We have already seen
that

gcd(a, b) = 2d23d35d5 · · · and that [a, b] = 2c23c35c5 · · · .
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Therefore, the exponent of a prime p in [a, b] · gcd(a, b) is min(ap, bp) +
max(ap, bp) = ap + bp, which is the same as the exponent of p in ab. Since
this is true for each prime, [a, b] · gcd(a, b) = ab.

(h) Since gcd(3, 6, 8) = 1 and [3, 6, 8] = 24, their product is 24, which is
not equal to 3 · 6 · 8.

(i) Let
a = 2a23a3 · · · , b = 2b23b3 · · · and c = 2c23c3 · · · .

Since a | c, ap ≤ cp for all primes p and because b | c, bp ≤ cp for all primes
p. Therefore max(ap, bp) ≤ cp for all primes p. Let [a, b] = 2m23m3 · · · ,
so mp = max(ap, bp) for all p. Since max(ap, bp) ≤ cp, we see that mp ≤ cp
and therefore, [a, b] | c.
Here is an alternate proof.

The division algorithm says that

c = q[a, b] + r where 0 ≤ r < [a, b].

Also, a | [a, b] and a | c, so [a, b] = as1 and c = as2 for integers s1, s2.
So, as2 = aqs1 + r and a(q2 − qq1) = r. So, a|r. Similarly, b|r. Since
0 ≤ r < [a, b], we must have r = 0 from the definition of [a, b]. This means
that c = q[a, b], so [a, b] | c.
(j) We write the solutions as ordered pairs, (a, b).

(p2, 1), (1, p2), (p2, p2), (p2, p), (p, p2).

(k) Let a = papqaq and b = pbpqbq . If [a, b] = p2q, then max(ap, bp) = 2 and
max(aq, bq) = 1. If ap = 2, there are three choices for bp. If bp = 2 there
are only two more choices for ap since we’ve already considered ap = bp.
This gives five possible pairs. Similarly if aq =1, there are two choices for
bq and if bq = 1 there is only one more choice for aq. This gives a total of
5 · 3 = 15 possibilities.

(l) If a = 2a23a3 · · · and b = 2b23b3 · · · and [a, b] = n, then np =
max(ap, bp). If np = ap, there are np + 1 choices for ap. If np = bp,
we have np more choices for ap since the possibility that ap = bp was
already counted. This gives 2np+ 1 choices for each prime p and the total
number of solutions is

(2n2 + 1) (2n3 + 1) (2n5 + 1) · · ·
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