
Further applications

in one dimension
2

2.1 Unsteady diffusion

2.1.1 Eigenvalues and eigenvectors of the projection matrix

Confirm the eigenvalues and eigenvectors of the matrix P are given in (2.1.34) and
(2.1.35).

Solution:

We are asked to show that

P · u(m) = λm u(m). (1)

In index notation,

Pij u
(m)
j = λm u

(m)
i . (2)

For simplicity, we omit the superscript (m).

For i = 1, we obtain

(1 − 2α)u1 + αu2 = λm u1. (3)

Substituting the alleged eigenvalues and eigenvectors, we obtain

(1 − 2α) sin
(m

N + 1
π
)

+ α sin
(2m

N + 1
π
)

=
[
1 − 4α sin2

(m

N + 1

π

2

)]
sin

(m

N + 1
π
)
. (4)

Simplifying, we obtain

1 − 2α+ 2α cos
(m

N + 1
π
)

= 1 − 4α sin2
(m

N + 1

π

2

)
(5)

or

cos
(m

N + 1
π
)

= 1 − 2 sin2
(m

N + 1

π

2

)
, (6)

which is an identity.

13

14 Finite and Spectral Element Methods Using MATLAB

For i = 2, . . . , N − 1, we obtain

α sin
((i− 1)m

N + 1
π
)

+ (1 − 2α) sin
(im

N + 1
π
)

+ α sin
((i+ 1)m

N + 1
π
)

=
[
1 − 4α sin2

(m

N + 1

π

2

)]
sin

(im

N + 1
π
)
. (7)

Now using the identity

sinA+ sinB = 2 sin
A+B

2
cos

A−B

2
, (8)

we obtain

sin
((i− 1)m

N + 1
π
)

+ sin
((i+ 1)m

N + 1
π
)

= 2 sin
(im

N + 1
π
)

cos
(m

N + 1
π
)
. (9)

Substituting this expression into (7) and simplifying, we obtain

2α sin
(im

N + 1
π
)

cos
(m

N + 1
π
)

+ (1 − 2α) sin
(im

N + 1
π
)

=
[
1 − 4α sin2

(m

N + 1

π

2

)]
sin

(im

N + 1
π
)
. (10)

Simplifying, we obtain

2α cos
(m

N + 1
π
)

+ 1 − 2α = 1 − 4α sin2
(m

N + 1

π

2

)
(11)

or

cos
(m

N + 1
π
)

= 1 − 2 sin2
(m

N + 1

π

2

)
, (12)

which is an identity.

For i = N , we obtain

αuN−1 + (1 − 2α)uN = λm uN . (13)

Substituting the alleged eigenvalues and eigenvectors, we obtain

α sin
((N − 1)m

N + 1
π
)

+ (1 − 2α) sin
(Nm

N + 1
π
)

=
[
1 − 4α sin2

(m

N + 1

π

2

)]
sin

(Nm

N + 1
π
)
, (14)

which simplifies to

sin
((N − 1)m

N + 1
π
)

= 2
[
1 − 2 sin2

(m

N + 1

π

2

)]
sin

(Nm

N + 1
π
)

(15)

2.1 Unsteady diffusion 15

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x

f

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

f

Figure 2.1.2-1 Graphics output of the finite element code udl with mass lumping
and time step corresponding to diffusion numbers α = 0.5 (left) and 0.503 (right).
Theoretical analysis shows that the threshold for numerical stability is α = 0.5.

or

sin
((N − 1)m

N + 1
π
)

= 2 cos
(m

N + 1
π
)

sin
(Nm

N + 1
π
)
. (16)

Next, we note that

sin
((N − 1)m

N + 1
π
)

= sin
((N + 1 − 2)m

N + 1
π
)

= sin
(2m

N + 1
π
)

(17)

and

sin
(Nm

N + 1
π
)

= sin
((N + 1 − 1)m

N + 1
π
]

= sin
(m

N + 1
π
)
. (18)

Substituting (17) and (18) into (16), we obtain an identity.

2.1.2 Code with mass lumping

FSELIB function udl sys lump, not listed in the text, implements mass lumping.
Run the code udl with the function udl sys lump and discuss the onset of numerical
instability with reference to the theoretical predictions.

Solution:

The finite element solution for 10 evenly spaced elements of size h = 0.1, κ = 1, and
time step ∆t = 0.0050 and 0.00503, corresponding to diffusion numbers α = 0.5
and 0.503, is shown in Figure 2.1.2-1. A graph is generated every 100 time steps.

The analysis in the text predicts that the threshold for numerical stability is
α = 0.5. Consistent with the theoretical prediction, the first numerical solution

16 Finite and Spectral Element Methods Using MATLAB

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x

f

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x

f

Figure 2.1.3-1 Graphics output generated by the finite element code udl with the
Crank-Nicolson method for a time step corresponding to diffusion numbers α =
0.5 and 1.0. Theoretical analysis shows that the method is unconditionally stable.

shown in Figure 2.1.2-1 smoothly tends to the steady-steady solution, whereas the
second solution develops an unphysical numerical oscillation dominated by a saw-
tooth wave in spite of the smallness of the time step.

2.1.3 Code for the Crank-Nicolson method

Run the code udl with the Crank–Nicolson method and confirm that the algorithm
is stable regardless of the size of the time step.

Solution:

The solution for 10 evenly spaced elements of size h = 0.1, κ = 1, and time steps
∆t = 0.0050 and 0.00503, corresponding to diffusion numbers α = 0.5 and 0.503 is
shown in Figure 2.1.3-1. A graph is generated every 100 time steps. Consistent with
the theoretical predictions regarding numerical stability, the numerical solution is
stable for any size of the time step.

2.1.4 Consistency analysis and hyperdiffusivity

A consistency analysis is carried out working backwards from an algebraic difference
equation to a modified differential equation (MDE). If the MDE reduces to the
governing partial differential equation as the time step and element size tend to
zero independently, then the algebraic difference equation is consistent.

To carry out the consistency analysis of the difference equation (2.1.23), we
express all discrete variables in terms of the value at the ith node at time level n.

2.1 Unsteady diffusion 17

Omitting the hats for simplicity, we obtain, for example,

ϕn+1
i = ϕn

i +
(∂ϕ
∂t

)n

i
∆t+

1

2

(∂2ϕ
∂t2

)n

i
∆t2 + · · · (1)

and

ϕn
i+1 = ϕn

i +
(∂ϕ
∂x

)n

i
∆x+

1

2

(∂2ϕ
∂x2

)n

i
∆x2 + · · · . (2)

Substituting these expressions into equation (2.1.23) and simplifying, we obtain

(∂ϕ
∂t

)n

i
∆t+

1

2

(∂2ϕ
∂t2

)n

i
∆t2 + · · ·

= α
(∂2ϕ
∂x2

)n

i
∆x2 +

α

12

(∂4ϕ
∂x4

)n

i
∆x4 + · · · , (3)

which can be rearranged into

(∂ϕ
∂t

)n

i
= κ

(∂2ϕ
∂x2

)n

i
− 1

2

(∂2ϕ
∂t2

)n

i
∆t+

κ

12
∆x2

(∂4ϕ
∂x4

)n

i
+ · · · . (4)

Because as ∆t → 0 and ∆x → 0 independently the modified differential equation
(3) reduces to the unsteady diffusion equation, the numerical method is consistent.

The underlying continuous function, ϕ, satisfies the unsteady heat conduction
equation in the absence of a source,

∂ϕ

∂t
= κ

∂2ϕ

∂x2
. (5)

Differentiating with respect to time, we find that the solution also satisfies the
high-order equation

∂2ϕ

∂t2
= κ2

∂4ϕ

∂x4
. (6)

Using this equation to eliminate the second derivative with respect to t on the
right-hand side of (2.1.56), and rearranging, we obtain

(∂ϕ
∂t

)n

i
= κ

(∂2ϕ
∂x2

)n

i
− κ4

(∂4ϕ
∂x4

)n

i
+ · · · , (7)

where the coefficient

κ4 ≡ 1

2
κ∆x2 (

1

6
− α) =

1

2
κ (

1

6
∆x2 − κ∆t) (8)

is called the hyperdiffusivity. Derive the hyperdiffusivity of the consistent formula-
tion expressed by (2.1.38).

18 Finite and Spectral Element Methods Using MATLAB

Solution:

The consistent formulation is based on the difference equation

1

6
ϕn+1
i−1 +

2

3
ϕn+1
i +

1

6
ϕn+1
i+1 (9)

= (
1

6
+ α)ϕn

i−1 + (
2

3
− 2α)ϕn

i + (
1

6
+ α)ϕn

i+1.

Expanding the left-hand side in a Taylor series about fn+1
i and judiciously rear-

ranging the right-hand side, we obtain

ϕn+1
i +

1

6

(∂2ϕ
∂x2

)n+1

i
∆x2 +

1

72

(∂4ϕ
∂x4

)n+1

i
∆x4 + · · · (10)

= αϕn
i−1 + (1 − 2α)ϕn

i + αϕn
i+1 +

(1

6
ϕn
i−1 −

1

3
ϕn
i +

1

6
ϕn
i+1

)
.

Expanding the terms inside the large parentheses on the right-hand side in a Taylor
series about ϕn

i , we obtain

ϕn+1
i +

1

6

(∂2ϕ
∂x2

)n+1

i
∆x2 +

1

72

(∂4ϕ
∂x4

)n+1

i
∆x4 + · · · (11)

= αϕn
i−1 + (1 − 2α)ϕn

i + αϕn
i+1 +

1

6

(∂2ϕ
∂x2

)n

i
∆x2 +

1

72

(∂4ϕ
∂x4

)n

i
∆x4 + · · · .

Expanding the derivatives on the left-hand side in a Taylor series about ϕn
i and

simplifying, we obtain

ϕn+1
i +

1

6

(∂3ϕ

∂x2∂t

)n

i
∆x2 ∆t+ · · · = αϕn

i−1 + (1 − 2α)ϕn
i + αϕn

i+1. (12)

Recalling that ϕ satisfies (6), we obtain

ϕn+1
i = α fni−1 + (1 − 2α)ϕn

i + αϕn
i+1 −

1

6

(∂4ϕ
∂x4

)n

i
κ∆x2 ∆t+ · · · . (13)

Using (2.1.60), we find that the hyperdiffusivity of the consistent formulation is

κ4 =
1

2
κ (

1

6
∆x2 − κ∆t) +

1

6
κ∆x2 =

1

2
κ (

1

2
∆x2 − κ∆t). (14)

2.2 Convection

2.2.1 Quadratic elements

Display the structure of the global advection matrix for linear convection with the
quadratic elements discussed in Section 1.5.

2.3 Convection–diffusion 19

Solution:

Using (1.5.30), we find that the global advection matrix is given by

N ≡ 1

6
U




−3 4 −1 0 0 . . . 0 0 0 0
−4 0 4 0 0 . . . 0 0 0 0

1 −4 0 4 −1 . . . 0 0 0 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0 1 −4 0 4 −1
0 0 0 0 0 −4 0 −4
0 0 0 0 0 1 −4 3




. (1)

2.2.2 Dispersion with mass lumping

Show that the second fraction on the right-hand sides of (2.2.28)–(2.2.32) is replaced
by unity in the lumped mass approximation.

Solution:

This follows readily by substituting (2.2.24) into the mass-lumped equation

dfi
dt

+
U

2h
(fi+1 − fi−1) = 0. (1)

2.3 Convection–diffusion

2.3.1 Convection dominated transport

(a) Run the FSELIB code scdl with the Robin boundary condition at the left end
of the solution domain, parameter values L = 1.0, k = 1.0, hT = 1.0, f∞ = 0.0,
fL = 0.0, ρ = 1.0, cp = 1.0, U = 100, and NE = 2, 4, 8, 16, 32, and 64, evenly spaced
elements. Discuss the behavior of the numerical solution.

(b) Repeat (a) with 16 elements and investigate the effect of element clustering near
the right end of the computation domain where sharp gradients may arise.

Solution:

(a) This is a straightforward exercise.

(b) This is a straightforward exercise.

20 Finite and Spectral Element Methods Using MATLAB

2.3.2 Neumann boundary condition

Repeat Problem 2.3.1(a, b) with the Neumann boundary condition at the left end.

Solution:

This is a straightforward exercise.

2.4 Beam bending

2.4.1 Principal moment of inertia

Present expressions for the principal moment of inertia of three beams with cross-
sectional shapes of your choice.

Solution:

For a beam with a rectangular cross-section with side lengths 2a and 2b, I = 4ab3/3.
For a beam with a circular cross-section of radius a, I = πa4/4. For a beam with
an elliptical cross-section with axis a and b, I = πba3/4.

2.5 Finite element methods for beam bending

2.5.1 Element stiffness matrix

Confirm that the determinant of the element stiffness matrix shown in equation
(2.5.33) is zero, which indicates that the matrix is singular.

Solution:

We observe that the sum of the first and third columns is zero. The sum of the first
and third rows is also zero.

2.5.2 Two-element cantilever beam

Consider the two-element discretization of a cantilever beam subject to nodal load,
as shown in Figure 2.5.6. The length of the first element is αL, where α is a
dimensionless coefficient taking values in the interval (0, 1). Compile a 6 × 6 linear
system arising from the finite element formulation in terms of E, I, L, α, F2, F3,
Q(0), and M(0), before, and after the implementation of the boundary conditions
(2.5.36).

Solution:

In this case, h1 = αL and h2 = (1 − α)L. The assembled stiffness matrix takes the

2.5 Finite element methods for beam bending 21

form

K =




H
(1)
11 H

(1)
12 H

(l)
13 H

(1)
14 0 0

H
(1)
21 H

(1)
22 H

(l)
23 H

(1)
24 0 0

H
(1)
31 H

(1)
32 H

(1)
33 +H

(2)
11 H

(1)
34 +H

(2)
12 H

(2)
13 H

(2)
14

H
(1)
41 H

(1)
42 H

(1)
43 +H

(2)
21 H

(1)
44 +H

(2)
22 H

(2)
23 H

(2)
24

0 0 H
(2)
31 H

(2)
32 H

(2)
33 +H

(3)
11 H

(2)
34 +H

(3)
12

0 0 H
(2)
41 H

(2)
42 H

(2)
43 +H

(3)
21 H

(2)
44 +H

(3)
22



. (1)

The six-dimensional vector of nodal deflections and slopes is

u ≡




v1
v′1
v2
v′2
v3
v′3



. (2)

The vector b on the right-hand side of the linear system (2.5.17) is given by

b =




−Q(0)
M(0)
−F2

0
−F3

0



. (3)

To implement the boundary conditions, we replace the first two equations in the
linear system by v1 = 0 and v′1 = 0.

2.5.3 Code beam

Consider a cantilever beam where the load is zero at all nodes, except at the last
node located at the free end. Modify accordingly the FSELIB code beam and run
the modified code for several discretization levels. Compare and discuss the finite
element solutions.

Solution:

This requires a straightforward modification of the first for loop in the code beam,
so that Fg(i) = 0 for i = 1, . . . , ng − 1, and Fg(ng) = 1.

22 Finite and Spectral Element Methods Using MATLAB

2.6 Beam buckling

2.6.1 Element stiffness matrix

Confirm that the determinant of the geometric element stiffness matrix displayed
in (2.6.10) is zero, indicating that the matrix is singular.

Solution:

We observe that the sum of the first and third column is zero. The sum of the first
and third row is also zero.

2.6.2 Buckling of a simply supported beam

Derive analytical expressions for the eigenvalues and eigensolutions of (2.6.21) for
a beam that is simply supported at both ends.

Solution:

For a beam of length L that is simply supported at both ends,

v(x) = A sin(nπx/L), (1)

where A is an unspecified amplitude and n is an integer. Substituting this expression
into (2.6.21), we find that

EI
(nπ
L

)4

− P
(nπ
L

)2

= 0, (2)

which yields the critical loads (2.6.29).

2.6.3 Buckling of a beam with different types of support

A beam that is simply supported at both ends is said to have a pin-pin support.
Other types of support are the fixed-pin support, the fixed-fixed support, and the
fixed-free support. Solving (2.6.21) by elementary analytical methods, we find that
the eigenvalues are given by

P̂n =
(nπ
α

)2

, (1)

where n is an integer and the coefficient α depends on the boundary conditions.
For the pin-pin support, α = 1, as discussed in the text.

(a) Show that, for a beam with a fixed-pin support, α = 0.7 for n = 1. Derive and
solve the one-element eigenvalue problem.

(b) Show that, for a beam with a fixed-fixed support, α = 0.5. Derive and solve the
one-element eigenvalue problem.

2.6 Beam buckling 23

(c) Show that, for a beam with a fixed-free support, α = 2 for n = 1; Derive and
solve the one-element eigenvalue problem.

Solution:

(a) The boundary conditions require that

v = 0,
dv

dx
= 0, at x = 0, (2)

and

v = 0,
d2v

dx2
= 0, at x = L. (3)

The beam deflection is described by the equation

v = A
(

sin kx− kx−B (cos kx− 1)
)
. (4)

This expression satisfies the boundary conditions (1). To also satisfy the boundary
conditions (2), we compute

v(L) = A (sin kL− kL−B cos kL+B),

v′′(L) = Ak2 (− sin kL+B cos kL), (5)

where a prime denotes a derivative with respect to x. These will be zero if

B = kL, tan kL = kL. (6)

The smallest root of the second equation is kL = 1.4303π. Substituting (3) into
the governing equation (2.6.21), we find

EIk4 − Pk2 = 0 (7)

or

P̂ = (kL)2. (8)

For the smallest root, n = 1,

P̂1 = (1.4303π)2 =
(π

0.7

)2

. (9)

(b) The boundary conditions require that

v = 0,
dv

dx
= 0, at x = 0, L. (10)

The deflection in this case is described by

u(x) = A
(

cos
2nπx

L
− 1

)
. (11)

24 Finite and Spectral Element Methods Using MATLAB

Substituting this expression into (2.6.21), we derive the desired result.

(c) The boundary conditions require that

v = 0,
dv

dx
= 0, at x = 0, (12)

and

d2v

dx2
= 0, Q = −P dv

dx
− EI

d3v

dx3
= 0, at x = L. (13)

The beam deflection is described by the equation

v = A (cos kx− 1). (14)

This expression satisfies the boundary conditions (11). To also satisfy the boundary
condition (12), we require that

v′′(L) = −A cos kL = 0, (15)

and

Q(L) = (−P A k + EIA k3) sin kL = 0. (16)

These are satisfied if

k = (n− 1

2
)π, P̂ = k2L2, (17)

where n is an integer. For n = 1, we find that k = π/2 and α = 2.

