
Chapter 2

Resistance and Strain

2.1 Introduction and Objectives

The primary purpose of this exercise is to determine the relationship between the
relative change in resistance of a fine wire and the relative change in its length. This
concept is the fundamental principle by which nearly all strain gages operate. A strain
gage (see Figure 2.1) basically consists of a metallic pattern bonded to an insulating
backing. This can be attached to a surface to provide a method to measure strains
induced by loading. The concepts of stress, strain, and the way in which structures
are loaded will be explained further in your solid mechanics course. The important
thing to remember in this exercise is that when a wire is stretched (strained), its
resistance changes.

These objectives will be accomplished by stretching a wire and measuring its
resistance at various lengths. In the process of performing this experiment you will
learn to use a digital multimeter to measure resistance in a wire. You will examine
your experimental results by plotting the relative change in resistance versus the
relative change in length. From this information you will determine the “gage factor”
for this wire. You will also determine the uncertainties in your measurements and
relate them to your results.

As stated above, the goal of this lab is to relate a change in resistance to a change
in length. This is done through a quantity known as the local gage factor, Gl, which
is defined as the ratio of the relative resistance change to the relative length change,

Gl =
dR/R

dL/L
. (2.1)

The denominator in the above equation is quickly recognized from solid mechanics
to be the longitudinal (axial) strain, or εL. You will notice that the above expression
relates differential changes in resistance and length. That is, it describes a local gage
factor, only valid over a very small (local) range of strain in the neighborhood of
interest. We shall see later that local gage factor is very much a function of how
much the wire is strained.
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Figure 2.1: A strain gage (from Measurements Group Bulletin 309D).

Of much greater use is a quantity known as the engineering gage factor, defined
to be

Ge =
∆R/R

∆L/L
. (2.2)

It can be seen that this expression is based on small, but finite changes in resistance
and length. The local gage factor can be thought of as the instantaneous slope of
a plot of ∆R/R vs. ∆L/L, whereas the engineering gage factor would be the slope
based on the total resistance change through out the region of interest. It is nearly
impossible to measure local changes in length and resistance. Thus, the engineering
gage factor is typically the quantity of interest in strain applications, and is what we
will measure in this exercise. For a more detailed explanation, see the Supplemental
Information section at the end of this handout.

2.2 Instrumentation

In this exercise you will use the following instruments:

• Hewlett Packard 3468A Multimeter (resolution: 1 µΩ in the ohm range)

• Starrett dial indicator (resolution: 0.0005 in.)

• A metal meter stick (resolution: 0.5 mm)

• A wire stretcher for wires approximately 1 m in length
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2.3 Measurements

First and foremost - a safety note. It is imperative that you wear safety (or your own)
glasses when stretching the wire. It can break and snap back into your face.

In this lab, you are to mount a length of wire between the two clamps of the tension
device and load it using the screw mechanism. First, cut a piece of wire approximately
4 feet long from the spool. Figure 2.2 shows a schematic of the clamping mechanism.

Post Set Screw

Wire
To other clamp

Figure 2.2: Clamping of wire in mechanism.

With the top of the clamp removed, loop the wire once about the end post before
directing it to the other clamp. Then replace the top of the clamp and tighten the
set screw to prevent slipping. Do likewise with the other clamp. Wire slippage can
occur when tension is applied, resulting in an indication of displacement without an
expected increase in resistance. When the wire is mounted correctly, it should be
straight, not sagging, and the tension end with the brass thumb wheel should have
about 1/2 inch of travel available.

Connect the multimeter to the wire for 4-wire resistance measurement as follows:

1. Using one pair of banana-alligator test leads, connect the HI and LO pair of
terminals of the multimeter under INPUT to the wire under tension near the
clamps, one at each end.

2. Using a second pair of test leads, connect the HI and LO terminals under Ω-
Sense to the wire under tension just inside of the two leads of Step (1).

3. Place the multimeter into the 4-wire resistance mode by pressing the ”4 WIRE”
button (4 Ω should be appear on the LCD display). Also depress with the
AUTO/MAN button to put the meter in the manual mode (M RNG should be
appear on the display). This will yield a resistance reading resolution of 10 mΩ.
The KOHM range should be displayed. If not, depress the up arrow button to
obtain its indication. Finally, depress the blue button, then the INT TRIG
button to set the multimeter in the auto zero mode. If the auto zero mode is
NOT set, then AZ OFF will appear on the display (no indication means it’s set
correctly). The indicated reading should be approximately 150 Ω to 200 Ω. If a
negative resistance is indicated, you can switch the two inner wires to make it
positive. Allow a couple of minutes for the meter to warm up before you start
taking actual data.
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For a brief explanation of resistance measurement methods, see the Supplemental
Information section.

Slowly tension the wire by turning the brass thumb wheel until the resistance starts
to increase (watch the least and second least significant digits for some consistent
increase). This shall be your zero point. Record the reading on the dial gage and the
resistance. (The dial indicator scale goes from 0 to 50, corresponding to 0.000 in. to
0.050 in. of travel). Measure the initial length of wire between the measuring points,
the leads of Step (2), using the metal meter stick.

At increments of approximately 0.01 inches (increments of 10 on the dial indicator),
record the elongation (in.) and the resistance (Ω) until the wire has been stretched
about 0.20 in. The resistance changes approximately 0.1 Ω for every 0.01 in. of
stretch. Return to a couple of data points and repeat those measurements to see if
they have changed at all. Now, try repeating the experiment all the way out to failure
of the wire. This should take on the order of 0.50 in. of travel. Try taking around
20 data points, with larger intervals at the beginning, becoming smaller as you get
closer to the wire snapping.

When you are finished, turn off the multimeter, bring the dial indicator back to the
zero starting point, disconnect the test leads from the wire and the multimeter, and
remove your wire.

2.4 What to Report

Outside the lab after all of your data is collected, plot the relative resistance change
vs. the relative length change, for both the first case and the case when you stretched
the wire to failure. Estimate the uncertainties of ∆R/R and of ∆L/L, following the
procedures that you learned in freshman physics or those detailed in the class notes.
Calculate the engineering gage factors for both cases. Are the values the same?
Explain this in the context of your measurement uncertainties. Try approximating
some local gage factors by calculating slopes over a few data points in your data
sets, especially at lower strains. What can you say about the relation between these
local gage factors and the extent to which the wire was strained at that point? Plot
the local gage factor versus the strain to illustrate this. Compare the local with the
engineering gage factors from the two cases, always being aware of the uncertainties
involved.

Perform a least-squares linear regression analysis of the relative resistance change
versus strain. Determine the correlation coefficient and the percent confidence associ-
ated with that correlation coefficient. How does the slope of the best fit line compare
with some of the gage factors you calculated earlier?

All of your important experimental results and answers to the posed questions
must be presented as a technical memo. Your answers to the posed questions should
be contained in the explanation of your results and not listed item-for-item.
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2.5 Supplemental Information

2.5.1 The Strain Gage

So how exactly does straining a wire change its resistance? From your elementary
physics class, you might remember that the resistance of a conductor depends on its
resistivity, ρ, its length, L, and its cross sectional area, A. For a wire of circular cross
section, the resistance R can be written as

R = ρ
L

πr2
, (2.3)

where r is the radius of the wire. Differentiating the above expression and cleaning up
some terms, the following result for the relative resistance change can be determined
by

dR

R
= (1 + 2ν)εL +

dρ

ρ
. (2.4)

In the above relation εL is the longitudinal strain and ν is Poisson’s ratio (the ratio
of transverse to longitudinal strains), both of which you’ll learn more about in solid
mechanics. Poisson’s ratio is a material property that relates an axial strain to a
radial strain (in the case of a wire). In other words, as you strain a wire by pulling it,
its diameter will decrease. The extent to which it will decrease is found from Poisson’s
ratio. In the above expression, it can be seen that the relative resistance change is
clearly dependent on the strain in the wire.

Equation 2.4 can be rewritten in terms of the engineering gage factor

Ge = 1 + 2ν + [
∆ρ

ρ
· 1

εL

]. (2.5)

For most metals ν ≈ 0.3 and the value of the last term in brackets representing the
strain-induced changes in the resistivity (a piezoresistive effect) is around 0.4. Thus,
the value of the engineering gage factor is typically around 2 or higher (sometimes up
to 3 or 4).

Now, electrical currents and resistance are concepts related to free electrons mov-
ing about within a conductor. By making some arguments using atomic physics and
materials science, the relative resistance change can be rewritten to eliminate Pois-
son’s ratio from the above expression as

dR

R
= 2εL +

dv0

v0

− dλ

λ
− dN0

N0

. (2.6)

In this equation, v0 is the average number of electrons in the material in motion
between ions, λ is the average distance traveled by an electron between collisions,
and N0 is the total number of conduction electrons. It would appear that things have
just taken a turn for the worse. However, getting rid of Poisson’s ratio has a nice
result: it means that the differential resistance change (and thus the gage factor) is
not a function of the material properties of the conductor. This is good, because

14



material properties in a metal will change with strain as the material transitions from
the elastic to the plastic regime on a stress-strain curve.

All that is left is to recognize that gage factor is dependent on the strain in the
wire (εL) and any strain-induced changes at the atomic level of the number of free
electrons present, their distance between collisions, and their velocity. Unfortunately,
this means that gage factor will only be constant when the sum of these changes is
either zero or is directly proportional to the strain producing the changes, which is
seldom the case.

All is not lost, however. There are some materials in which the gage factor does
not vary too much with strain, and therefore can be used for strain gage applications.
Hopefully, this supplement provided you just a small understanding of why resistance
changes with length change (the fundamental operating principle of strain gages),
and also gave some clue as to why the gage factor is not constant over all levels of
strain.

2.5.2 Resistance Measurement Methods

There are two ways to measure the resistance using a multimeter: the 2-wire method
and the 4-wire method. The 2-wire method is straightforward. Simply connect two
test leads to two points on the wire, between which is the desired resistance. The mul-
timeter outputs a known current through the test leads and then measures the total
voltage drop across the resistor and the test leads. This is no problem provided that
the desired resistance is much larger than the resistances of the test leads. However,
for this laboratory exercise, this is not the case .

The 4-wire method requires the use of two additional test leads. Two of the leads
carry a known current to the resistance to be measured and then back to the meter,
while the other two leads measure the resulting voltage drop across the resistance.
Internally the meter determines (using Ohm’s law) and then displays the measured
resistance. This method obviously is more accurate and is the one that you will we
use in this exercise.
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