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Free Fall and Harmonic Oscillators

1. Find all the solutions of the first order differential equations. When an
initial condition is given, find the particular solution satisfying that condi-
tion.

a.
dy
dx

=
ex

2y
.

Using separation of variables, we have

2
∫

y dy =
∫

ex dx

y2(x) = ex + C.

This is an implicit solution.

b.
dy
dt

= y2(1 + t2), y(0) = 1.

Using separation of variables, we have∫ dy
y2 =

∫
(1 + t2) dt

−1
y

= t +
1
3

t3 + C.

The initial condition, y(0) = 1, implies C = −1, giving the solution

y(t) =
1

1− t− 1
3 t3

=
3

3− 3t− t3 .

c.
dy
dx

=

√
1− y2

x
.

Using separation of variables, we have∫ dy√
1− y2

=
∫ dx

x

sin−1 y = ln |x|+ C

y(x) = sin(ln |x|+ C)

d. xy′ = y(1− 2y), y(1) = 2.
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Using separation of variables and partial fraction decomposition,
we have ∫ dx

x
=

∫ dy
y(1− 2y)

ln |x|+ C =
∫ (1

y
+

2
1− 2y

)
dy

= ln
∣∣∣∣ y
1− 2y

∣∣∣∣
Exponentiating, ∣∣∣∣ y

1− 2y

∣∣∣∣ = eln |x|+C ≡ A|x|.

Using the initial condition, y(1) = 2, we find that A = 2
3 . For

solutions near y = 2 and x = 1, this gives

y
2y− 1

=
2
3

x

3y = 2x(2y− 1)

(3− 4x)y = −2x

y(x) =
2x

4x− 3
.

e. y′ − (sin x)y = sin x.

This is a linear first order differential equation. The integrating
factor is

µ(x) = exp
(
−
∫

sin x dx
)
= ecos x.

This gives

(ecos xy(x))′ = sin xecos x

ecos xy(x) =
∫

sin xecos x dx + C

= −ecos x + C

y(x) = Cecos x − 1.

f. xy′ − 2y = x2, y(1) = 1.

This is a linear first order differential equation. The integrating
factor is

µ(x) = exp
(
−2

∫ dx
x

)
= e−2 ln x =

1
x2 .

This gives (
1
x2 y(x)

)′
=

1
x

y(x) = x2(ln |x|+ C).

The initial condition, y(1) = 1, gives C = 1, or

y(x) = x2(ln |x|+ 1).
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g.
ds
dt

+ 2s = st2, s(0) = 1.

This is a linear first order differential equation, however it is also
separable. Rewriting the problem in separable form, we have

ds
dt

= s(t2 − 2)∫ ds
s

=
∫
(t2 − 2) dt

ln |s| =
1
3

t3 − 2t + C.

Using the initial condition, s(0) = 1, C = 0. The solution satisfying
this initial condition is then

s(t) = e
1
3 t3−2t.

h. x′ − 2x = te2t.
This is a linear first order differential equation. The integrating
factor is µ(t) = e−2t. This gives

(xe−2t)′ = t

xe−2t =
1
2

t2 + C

x(t) =

(
1
2

t2 + C
)

e2t.

i.
dy
dx

+ y = sin x, y(0) = 0.

D I

ex sin x

ex − cos x

ex − sin x

+

−

Figure 2.1: Tabular Method for Problem
1i for computing

∫
ex sin x dx.

This is a linear first order differential equation. The integrating
factor is µ(x) = ex. This gives

(y(x)ex)′ = ex sin x

y(x)ex =
∫

ex sin x dx + C

=
1
2

ex(sin x− cos x) + C.

y(x) =
1
2
(sin x− cos x) + Ce−x.

The initial condition gives C = 1
2 . Thus,

y(x) =
1
2
(sin x− cos x + e−x).

j.
dy
dx
− 3

x
y = x3, y(1) = 4.

The integrating factor is

µ(x) = exp
(
−3

∫ dx
x

)
= e−3 ln x = x−3.

This gives

(x−3y(x))′ = 1

x−3y(x) = x + C

y(x) = x3(x + C).
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For y(1) = 4, C = 3. Thus, y(x) = x4 + 3x3.

2. Find all the solutions of the second order differential equations. When
an initial condition is given, find the particular solution satisfying that con-
dition.

a. y′′ − 9y′ + 20y = 0.

This is a second order, constant coefficient differential equation.
The characteristic equation is 0 = r2 − 9r + 20 = (r − 4)(r − 5).
Thus, the roots are r = 4, 5 and the general solution is

y(x) = c1e4x + c2e5x.

b. y′′ − 3y′ + 4y = 0, y(0) = 0, y′(0) = 1.

The characteristic equation is 0 = r2 − 3r + 4. The roots are found
as r = 3±

√
7i

2 and the general solution is

y(x) = e3x/2

[
c1 cos

(√
7

2
x

)
+ c2 sin

(√
7

2
x

)]
.

The initial conditions are y(0) = 0, y′(0) = 1. The first condition
gives c1 = 0. Thus, y(x) = c2e3x/2 sin

(√
7

2 x
)

. Noting that

y′(x) = c2e3x/2

[
3
2

sin

(√
7

2
x

)
+

√
7

2
cos

(√
7

2
x

)]
,

we have y′(0) =
√

7
2 c2 = 1. This gives c2 = 2√

7
and the particular

solution is given as

y(x) =
2
√

7
7

e3x/2 sin

(√
7

2
x

)
.

c. x2y′′ + 5xy′ + 4y = 0, x > 0.

This is a second order, constant coefficient differential equation.
This is a Cauchy-Euler type of differential equation. The character-
istic equation is 0 = r(r− 1) + 5r + 4 = r2 + 4r + 4. It has one real
root r = −2. The general solution is y(x) = x−2(c1 + c2 ln |x|).

d. x2y′′ − 2xy′ + 3y = 0, x > 0.

This is a Cauchy-Euler type of differential equation. The character-
istic equation is 0 = r(r− 1)− 2r + 3 = r2 − 3r + 3. It has complex
conjugate roots r = 3

2 ±
√

3
2 i. The general solution is

y(x) = x3/2

[
c1 cos

(√
3

2
ln |x|

)
+ c2 sin

(√
3

2
ln |x|

)]
.

3. Consider the differential equation

dy
dx

=
x
y
− x

1 + y
.
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a. Find the 1-parameter family of solutions (general solution) of this
equation.

First, we note that this equation is separable,

dy
dx

=
x
y
− x

1 + y
=

x
y(1 + y)

.

Separating variables, we find∫
(y + y2) dy =

∫
x dx

1
2

y2 +
1
3

y3 =
1
2

x2 + C,

or 3y2 + 2y3 = 3x2 + k.

b. Find the solution of this equation satisfying the initial condition
y(0) = 1. Is this a member of the 1-parameter family?

Inserting x = 0 into the implicit solution, we find k = 5. Yes,
3y2 + 2y3 = 3x2 + 5 is a member of the 1-parameter family.

4. The initial value problem

dy
dx

=
y2 + xy

x2 , y(1) = 1

does not fall into the class of problems considered in this chapter. However,
if one substitutes y(x) = xz(x) into the differential equation, one obtains an
equation for z(x) that can be solved. Use this substitution to solve the initial
value problem for y(x).

Let y(x) = xz(x). Then, y′ = z + xz′. From the original equation, we have
y′ = z2 + z. Equating these expressions, we obtain xz′ = z2. This is separable
and can be solved, ∫ dz

z2 =
∫ dx

x

−1
z

= ln |x|+ C,

z(x) =
−1

ln |x|+ C
.

This gives,

y(x) = xz(x) =
−x

ln |x|+ C
.

Using the initial condition, C = −1, the particular solution becomes

y(x) =
x

1− ln |x| .

5. Consider the nonhomogeneous differential equation x′′− 3x′+ 2x = 6e3t.

a. Find the general solution of the homogenous equation.

The characteristic equation is 0 = r2 − 3r + 2 = (r − 1)(r − 2).
The roots are r = 1, 2. This gives the solution of the homogeneous
equation as

xh(t) = c1et + c2e2t.
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b. Find a particular solution using the Method of Undetermined Co-
efficients by guessing xp(t) = Ae3t.

We seek the particular solution satisfying x′′p − 3x′p + 2xp = 6e3t.
We guess xp(t) = Ae3t. Inserting this into the differential equation,
(9A− 9A + 2A)e3t = 6e3t, or A = 3. Therefore, xp(t) = 3e3t.

c. Use your answers in the previous parts to write the general solu-
tion for this problem.

The general solution is

x(t) = xh(t) + xp(t) = c1et + c2e2t + 3e3t.

6. Find the general solution of the given equation by the method given.

a. y′′ − 3y′ + 2y = 10. Method of Undetermined Coefficients.

The solution to the homogeneous problem is of the same form as
in the last problem, yh(x) = c1ex + c2e2x. We obtain the particular
solution of the nonhomogeneous problem from the guess yp(x) =
A. Inserting this guess, we obtain A = 5. This gives the general
solution as y(x) = c1ex + c2e2x + 5.

b. y′′ + y′ = 3x2. Variation of Parameters.

We first solve the homogeneous problem, y′′h + y′h = 0. The charac-
teristic equation is 0 = r2 + r = r(r + 1). The roots are r = 0,−1,
giving yh(x) = c1 + c2e−x.

D I

−3x2 ex

−6x ex

−6 ex

0 ex

+

−

+

Figure 2.2: Tabular Method for Problem
6b for computing −3

∫
x2ex dx.

In order to apply the Method of Variation of Parameters, we seek
a solution of the form

yp(x) = c1(x) + c2(x)e−x.

The unknown coefficients satisfy

c′1 + c′2e−x = 0

−c′2e−x = 3x2.

Solving the second equation for c2,

c2 = −
∫

3x2ex dx = (−3x2 + 6x− 6)ex + k2.

Using the second equation for c′2 in the first equation, c1 can be
found as

c1 =
∫

3x2 dx = x3 + k1.

Inserting these results into the form for yp(x),

yp(x) = c1(x) + c2(x)e−x

= (x3 + k1) + (−3x2 + 6x− 6)ex + k2)e−x

= k1 + k2e−x + x3 − 3x2 + 6x− 6.
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k1 and k2 can be anything. Setting them to zero gives one solution
yp(x) = x3 − 3x2 + 6x− 6. Note that leaving the k’s arbitrary takes
care of the homogeneous part of the solution. In fact, the constant
term can be absorbed into k1, giving the general solution to the
original problem as

y(x) = k1 + k2e−x + x3 − 3x2 + 6x.

7. Find the general solution of each differential equation. When an initial
condition is given, find the particular solution satisfying that condition.

a. y′′ − 3y′ + 2y = 20e−2x, y(0) = 0, y′(0) = 6.

The solution to the homogeneous problem is yh(x) = c1ex + c2e2x.
The particular solution is found using the guess yp(x) = Ae−2x.
Inserting this guess into the equation gives A = 5

3 . So, the general
solution is

y(x) = c1ex + c2e2x +
5
3

e−2x.

Inserting the initial conditions, we have

0 = c1 + c2 +
5
3

,

6 = c1 + 2c2 −
10
3

.

Solving these equations, we obtain c1 = − 38
3 , c2 = 11. Thus, the

solution to the initial value problem is

y(x) = −38
3

ex + 11e2x +
5
3

e−2x.

b. y′′ + y = 2 sin 3x.

The solution to the homogeneous problem is yh(x) = c1 cos x +

c2 sin x. We guess a particular solution of the form yp(x) = A sin 3x
since there is no first derivative term. Then, A = 5. The general
solution is then y(x) = c1 cos x + c2 sin x + 5 sin 3x.

c. y′′ + y = 1 + 2 cos x.

The solution to the homogeneous problem is yh(x) = c1 cos x +

c2 sin x. In this problem the forcing term, 1 + 2 cos x, involves a so-
lution to the homogeneous problem. Therefore, we need to use a
modification of the Method of Undetermined Coefficients by mak-
ing the guess yp(x) = A + Bx sin x. Computing the derivatives,

y′p(x) = B sin x + Bx cos x,

y′′p(x) = 2B cos x− Bx sin x.

Then,
y′′ + y = A + 2B cos x = 1 + 2 cos x.

This gives A = B = 1. As a result, the general solution is

y(x) = c1 cos x + c2 sin x + 1 + x sin x.
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d. x2y′′ − 2xy′ + 2y = 3x2 − x, x > 0.

This is a Cauchy-Euler type of differential equation. The charac-
teristic equation is

0 = r(r− 1)− 2r + 2 = r2 − 3r + 2 = (r− 1)(r− 2).

The roots are r = 1, 2. Thus, the solution to the homogeneous prob-
lem is

yh(x) = c1x + c2x2.

There are two ways this could be solved. We will first use the
Method of Variation of Parameters and then use a modification of
the Method of Undetermined Coefficients since the forcing terms
are solutions of the homogeneous problem.

Variation of Parameters

We assume
yp(x) = c1(x)x + c2(x)x2.

The unknown coefficients satisfy

c′1x + c′2x2 = 0

c′1 + 2c′2x =
3x2 − x

x2 .

Multiplying the second equation by x, the system becomes

c′1x + c′2x2 = 0

c′1x + 2c′2x2 = 3x− 1.

Eliminating c′1 from the new system, we have c′2 = 3
x −

1
x2 . Inte-

grating, we find c2 = 3 ln |x|+ 1
x . This gives

c′1 = −c′2x = −3 +
1
x

.

Therefore, c1 = −3x + ln |x|.
Using these results, we find

yp(x) = c1(x)x + c2(x)x2

= (−3x + ln |x|)x + (3 ln |x|+ 1
x
)x2

= −3x2 + x ln |x|+ 3x2 ln |x|+ x.

The first and last terms are solution of the homogeneous problem,
so we can take

yp(x) = x ln |x|+ 3x2 ln |x|

and write the general solution as

y(x) = c1x + c2x2 + x ln |x|+ 3x2 ln |x|.
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Undetermined Coefficients

The solution using the Method of Variation of Parameters suggests
an approach to the modified Method of Undetermined Coefficients
for Cauchy-Euler equations. We can prove this in general. Con-
sider the problem

ax2y′′ + bxy′ + cy = Cxp,

where xp is a solution to the homogeneous problem. Then,

ap(p− 1) + bp + c = 0.

We assume a particular solution of the form yp(x) = Axp ln |x|.
Inserting this guess into the differential equation, we obtain

(ap(p− 1) + bp + c)Axp ln |x|+ (2ap− a + b)Axp = Cxp.

Since, ap(p− 1) + bp+ c = 0, we can solve for A if 2ap− a+ b 6= 0,

A =
C

2ap− a + b
.

Now, consider the problem at hand. There are two forcing terms
and due to linearity, we can make the guess yp(x) = (Ax+ Bx2) ln |x|.
According to the theory just developed, we have (for a = 1, b = −2,
and C = −1, 3 with p = 1, 2, respectively)

A =
−1

2(1)(1)− 1 + (−2)
= 1,

B =
3

2(1)(2)− 1 + (−2)
= 3.

So, yp(x) = (x + 3x2) ln |x|. This is the same solution as we had
obtained using Variation of Parameters.

8. Verify that the given function is a solution and use Reduction of Order
to find a second linearly independent solution.

a. x2y′′ − 2xy′ − 4y = 0, y1(x) = x4.

Verification is simple,

x2y′′ − 2xy′ − 4y = x2(12x2)− 2x(4x3)− 4x4 = 0.

For Reduction of Order, we let y2(x) = v(x)y1(x) and determine
v(x). First, compute the derivatives,

y2 = x4v,

y′2 = 4x3v + x4v′,

y′′2 = 12x2v + 8x3v′ + x4v′′.

Inserting these into the differential equation, we find

6x5v′ + x6v′′ = 0.



34 mathematical methods for physicists

This is a separable equation for v′(x). Defining z(x) = v′(x), we
obtain a first order, separable equation,

6x5z + x6z′ = 0.

Solving for z, we have

z = exp
[
−6

∫ dx
x

]
= e−6 ln |x| = x−6, x > 0.

A further integration gives v(x) = − 1
5 x−5.

Finally, we see that y2(x) = x4v(x) = x−1 (up to a multiplicative
constant).

b. xy′′ − y′ + 4x3y = 0, y1(x) = sin(x2).

Let y2 = v sin(x2). The derivatives are given by

y′2 = v′ sin(x2) + 2xv cos(x2),

y′′2 = v′′ sin(x2) + 4xv′ cos(x2)− 4x2v sin(x2) + 2v cos(x2).

Inserting these into the differential equation, we find

(x sin(x2))v′′ + (4x2 cos(x2)− sin(x2))v′ = 0.

Let z = v′. Then,

(x sin(x2))z′ + (4x2 cos(x2)− sin(x2))z = 0.

This is a separable first order differential equation.

z′

z
=

4x2 cos(x2)− sin(x2)

x sin(x2)

ln z =
∫ ( 1

x
− 4x cot(x2)

)
dx

= ln |x| − 2 ln | sin(x2)|
z = x(sin(x2))−2

Since z = v′, one further integration gives v(x),

v(x) =
∫

x(sin(x2))−2 dx =
1
2

∫
csc2 u du = −1

2
cot2(x2).

So, up to a multiplicative constant, we have

y2(x) = sin(x2)v(x) = sin(x2)
cos(x2)

sin(x2)
= cos(x2).

9. Use the Method of Variation of Parameters to determine the general
solution for the following problems.

a. y′′ + y = tan x.
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The linearly independent solutions of the homogeneous problem are
y(x) = cos x, sin x. So, we consider yp(x) = c1(x) cos x + c2(x) sin x.
The coefficients satisfy the equations

c′1 cos x + c′2 sin x = 0,

−c′1 sin x + c′2 cos x = tan x.

Multiplying the first equation by sin x, the second by cos x, and adding
the equations, we find c′2 = sin x. Thus, c2(x) = − cos x.

Substituting this result into the first equation, we have c′1 = − tan x sin x.
So,

c1(x) = −
∫

tan x sin x dx

= −
∫ sin2 x

cos x
dx

= −
∫ 1− cos2 x

cos x
dx

= −
∫
(sec x− cos x) dx

= − ln | sec x + tan x|+ sin x.

Thus,

yp(x) = c1(x) cos x + c2(x) sin x

= (− ln | sec x + tan x|+ sin x) cos x− cos x sin x

= − ln | sec x + tan x|.

Therefore, the general solution is

y(x) = c1 cos x + c2 sin x− ln | sec x + tan x|.

b. y′′ − 4y′ + 4y = 6xe2x.

The homogeneous equation is a constant coefficient equation, y′′ −
4y′ + 4y = 0. The characteristic equation is r2 − 4r + 4 = (r− 2)2 = 0.
There is one root, r = 2, therefore the general solution of the homoge-
neous problem is

yh(x) = (c1 + c2x)e2x.

We seek a particular solution of the form

yp(x) = c1(x)e2x + c2(x)xe2x.

The coefficients satisfy the system of equations

c′1e2x + c′2xe2x = 0,

2c′1e2x + c′2(1 + 2x)e2x = 6xe2x.
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This system of equations can be solved for c′1 and c′2 using Cramer’s
Rule (from next chapter):

c′1 =

∣∣∣∣∣ 0 xe2x

6xe2x (1 + 2x)e2x

∣∣∣∣∣∣∣∣∣∣ e2x xe2x

2e2x (1 + 2x)e2x

∣∣∣∣∣
=

−6x2e4x

(1 + 2x)e4x − 2xe4x = −6x2,

c′2 =

∣∣∣∣∣ e2x 0
2e2x 6xe2x

∣∣∣∣∣∣∣∣∣∣ e2x xe2x

2e2x (1 + 2x)e2x

∣∣∣∣∣
=

6xe4x

(1 + 2x)e4x − 2xe4x = 6x.

Integrating these results, gives c1 = −2x3 and c2 = 3x2. Therefore,

yp(x) = −2x3e2x + (3x2)xe2x = x3e2x

and the general solution is

y(x) = (c1 + c2x)e2x + x3e2x.

10. Instead of assuming that c′1y1 + c′2y2 = 0 in the derivation of the solu-
tion using Variation of Parameters, assume that c′1y1 + c′2y2 = h(x) for an
arbitrary function h(x) and show that one gets the same particular solution.

We begin with the nonhomogeneous equation

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x).

The solution of the homogeneous equation can be written in terms of two
linearly independent solutions,

yh(x) = c1y1(x) + c2y2(x).

Let the particular solution be

yp(x) = c1(x)y1(x) + c2(x)y2(x).

The first derivative is given by

y′p(x) = c1(x)y′1(x) + c2(x)y′2(x) + c′1(x)y1(x) + c′2(x)y2(x).

At this point we assume that c′1(x)y1(x) + c′2(x)y2(x) = h(x), where h(x)
is an arbitrary function. This gives

y′p(x) = c1(x)y′1(x) + c2(x)y′2(x) + h(x)

y′′p(x) = c1(x)y′′1 (x) + c2(x)y′′2 (x) + c′1(x)y′1(x) + c′2(x)y′2(x) + h′(x).

Now, we insert these expressions into the differential equation and use
the fact that y1(x) and y2(x) are solutions to the homogeneous problem.
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Then, we have

f (x) = a(x)y′′p(x) + b(x)y′p(x) + c(x)yp(x)

= a
[
c1y′′1 + c2y′′2 + c′1y′1 + c′2y′2 + h′

]
+b
[
c1y′1 + c2y′2 + h

]
+ c [c1y1 + c2y2] .

= c1
[
ay′′1 + by′1 + cy1

]
+ c2

[
ay′′2 + by′2 + cy2

]
+a
[
c′1y′1 + c′2y′2 + h′

]
+ b [h]

= a
[
c′1y′1 + c′2y′2 + h′

]
+ bh.

Thus, we have the equations

c′1y1 + c′2y2 = h,

c′1y′1 + c′2y′2 =
f − bh

a
− h′.

This system of equations can be solved for c′1 and c′2 using Cramer’s Rule
(from the next chapter):

c′1 =

∣∣∣∣∣ h y2
f−bh

a − h′ y′2

∣∣∣∣∣∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣
=

hy′2 − ( f−bh
a − h′)y2

y1y′2 − y′1y2

= − f y2

aW
+

bhy2

aW
+

(hy2)
′

aW

c′2 =

∣∣∣∣∣ y1 h
y′1

f−bh
a − h′

∣∣∣∣∣∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣
=

y1(
f−bh

a − h′)− y′1h
y1y′2 − y′1y2

=
f y1

aW
− bhy1

aW
− (hy1)

′

aW

yp(x) = y1(x)
∫ x (

− f y2

aW
+

bhy2

aW
+

(hy2)
′

aW

)
dξ

+y2(x)
∫ x ( f y1

aW
− bhy1

aW
− (hy1)

′

aW

)
dξ

= y2(x)
∫ x f (ξ)y1(ξ)

a(ξ)W(ξ)
dξ − y1(x)

∫ x f (ξ)y2(ξ)

a(ξ)W(ξ)
dξ + H(x),

where

H(x) = y1(x)
∫ x ( bhy2

aW
+

(hy2)
′

aW

)
dξ − y2(x)

∫ x ( bhy1

aW
+

(hy1)
′

aW

)
dξ.

H(x) depends on the arbitrary function h(x) and, more importantly, is
independent of f (x). Therefore, when f (x) = 0, yp(x) = H(x) is a linear
combination of y1(x) and y2(x), H(x) = k1y1(x) + k2y2(x). So, we can ab-
sorb H(x) into the homogeneous equation and we obtain the same solution
as we had for the derivation of the Method of Variation of Parameters.

y(x) = c1y1(x) + c2y2(x) + y2(x)
∫ x f (ξ)y1(ξ)

a(ξ)W(ξ)
dξ − y1(x)

∫ x f (ξ)y2(ξ)

a(ξ)W(ξ)
dξ.
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11. Find the solution of each initial value problem using the appropriate
initial value Green’s function.

For these problems we determine the initial value Green’s function

G(x, ξ) =
y1(ξ)y2(x)− y1(x)y2(ξ)

a(ξ)W(ξ)

and then find the solution of the initial value problem using the integral
form

y(x) = yh(x) +
∫ x

0
G(x, ξ) f (ξ) dξ,

where y1(x), y2(x), and yh(x) are solutions of the homogeneous equation
satisfying

y1(0) = 0, y2(0) 6= 0, y′1(0) 6= 0, y′2(0) = 0, yh(0) = y0, y′h(0) = v0.

a. y′′ − 3y′ + 2y = 20e−2x, y(0) = 0, y′(0) = 6.
First one finds y1(x) and y2(x). The general solution to the homoge-
neous problem, y′′ − 3y′ + 2y = 0, is yh(x) = c1ex + c2e2x. Requiring
y1(0) = 0 and y′2(0) = 0, we obtain

y1(x) = ex − e2x and y2(x) = e2x − 2ex.

The Wronskian is given by

W(y1, y2) = y1y′2 − y′1y2

= (ex − e2x)(2e2x − 2ex)− (ex − 2e2x)(e2x − 2ex)

= −e3x.

and a(x) = 1.
We also need the solution of the homogeneous problem, yh(x), which
satisfies the given initial conditions, y(0) = 0, y′(0) = 6. The first
condition gives yh(x) = c1(ex − e2x). For the second condition, we
have

y′h(0) = c1(e0 − 2e2(0)) = 6.

Therefore, c1 = −6 and yh(x) = 6(e2x − ex).
We construct the Green’s function,

G(x, ξ) =
y1(ξ)y2(x)− y1(x)y2(ξ)

a(ξ)W(ξ)

= .
(eξ − e2ξ)(e2x − 2ex)− (ex − e2x)(e2ξ − 2eξ)

−e3x

= e2(x−ξ) − ex−ξ .

Finally, we obtain the particular solution through integration:

yp(x) =
∫ x

0
G(x, ξ) f (ξ) dξ

=
∫ x

0
[e2(x−ξ) − ex−ξ ](20e−2ξ) dξ

= 20
∫ x

0
(e2xe−4ξ − exe−3ξ) dξ

=
5
3

e−2x + 5e2x − 20
3

ex.
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The solution to the original problem is

y(x) = 6(e2x − ex) + 5e2x − 20
3

ex +
5
3

e−2x

= 11e2x − 38
3

ex +
5
3

e−2x.

b. y′′ + y = 2 sin 3x, y(0) = 5, y′(0) = 0.

First one finds y1(x) and y2(x). The general solution to the homoge-
neous problem, y′′ + y = 0, is yh(x) = c1 cos x + c2 sin x. Requiring
y1(0) = 0 and y′2(0) = 0, we obtain y1(x) = cos x and y2(x) = sin x.
The Wronskian is given by

W(y1, y2) = y1y′2 − y′1y2 = −1

and a(x) = 1.

We also need yh(x) to satisfy the initial conditions, y(0) = 5, y′(0) = 0.
The solution is easily found as yh(x) = 5 cos x.

We construct the Green’s function,

G(x, ξ) =
y1(ξ)y2(x)− y1(x)y2(ξ)

a(ξ)W(ξ)

= cos ξ sin x− cos x sin ξ = sin(x− ξ).

Finally, we obtain the particular solution through integration:

yp(x) =
∫ x

0
G(x, ξ) f (ξ) dξ

=
∫ x

0
[cos ξ sin x− cos x sin ξ](2 sin 3ξ) dξ

= 2
∫ x

0
[cos ξ sin x− cos x sin ξ][3 sin ξ − 4 sin3 ξ] dξ

= (3 sin2 x− 2 sin4 x) sin x− 2 sin3 x cos2 x

= sin3 x.

The solution to the original problem is y(x) = 5 cos x + sin3 x.

c. y′′ + y = 1 + 2 cos x, y(0) = 2, y′(0) = 0.

This problem is similar to the last problem. The Green’s function is

G(x, ξ) = cos ξ sin x− cos x sin ξ = sin(x− ξ).

The particular solution is then

yp(x) =
∫ x

0
G(x, ξ) f (ξ) dξ

=
∫ x

0
[cos ξ sin x− cos x sin ξ](1 + 2 cos ξ) dξ

=
∫ x

0
[cos ξ sin x− cos x sin ξ] dξ

+2
∫ x

0
[cos2 ξ sin x− cos x sin ξ cos ξ] dξ
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=

[
sin ξ sin x + cos ξ cos x + (ξ +

sin 2ξ

2
) sin x + cos2 ξ cos x

]x

0

= (1 + x sin x + sin2 x cos x + cos3 x)− 2 cos x

= 1 + x sin x− cos x.

The solution to the homogeneous problem [y′′+ y = 0, y(0) = 2, y′(0) =
0] is given by yh(x) = 2 cos x. This gives the solution of the nonhomo-
geneous initial value problem as y(x) = 1 + cos x + x sin x.

d. x2y′′ − 2xy′ + 2y = 3x2 − x, y(1) = π, y′(1) = 0.

We first determine the solution of the Cauchy-Euler equation, x2y′′h −
2xy′h + 2yh = 0. The characteristic equation is

0 = r(r− 1)− 2r + 2 = r2 − 3r + 2 = (r− 2)(r− 1).

Thus, yh(x) = c1x + c2x2. We need yh(x) to satisfy the given initial
conditions, y(1) = π, y′(1) = 0. Therefore,

π = c1 + c2

0 = c1 + 2c2.

Subtracting equations, we find c2 = −π = −c1/2. So,

yh(x) = π(2x− x2).

The solution y1(x) = x2 − x satisfies y1(1) = 0. For y′2(1) = 0, we
consider y2(x) = c1x + c2x2. Then, y′2(x) = c1 + 2c2x and this gives
y′2(1) = c1 + 2c2 = 0. Choosing c2 = 1 and c1 = −2, we obtain
y2(x) = x2 − 2x.

The Wronskian is given by

W(y1, y2) = y1y′2 − y′1y2

= (x2 − x)(2x− 2)− (2x− 1)(x2 − 2x)

= x2.

and a(x) = x2.

We construct the Green’s function,

G(x, ξ) =
y1(ξ)y2(x)− y1(x)y2(ξ)

a(ξ)W(ξ)

=
(ξ2 − ξ)(x2 − 2x)− (x2 − x)(ξ2 − 2ξ)

ξ4 .

=
ξx2 − xξ2

ξ4 =
x(x− ξ)

ξ3

Finally, we obtain the particular solution through integration:

yp(x) =
∫ x

1
G(x, ξ) f (ξ) dξ

=
∫ x

1

[
x(x− ξ)

ξ3

]
(3ξ2 − ξ) dξ
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= x2
∫ x

1

(
3
ξ
− 1

ξ2

)
dξ − x

∫ x

1

(
3− 1

ξ

)
dξ

=

[(
3 ln |ξ|+ 1

ξ

)
x2 − (3ξ − ln |ξ|) x

]x

1

= 4x− 4x2 + (3x2 + x) ln |x|.

The solution to the original problem is

y(x) = π(2x− x2) + 4(x− x2) + (3x2 + x) ln |x|.

12. Use the initial value Green’s function for x′′ + x = f (t), x(0) = 4,
x′(0) = 0, to solve the following problems.

As noted in Problem 11b, the initial value Green’s function is given by

G(t, τ) = cos τ sin t− cos t sin τ.

The corresponding solution of the homogeneous problem is yh(t) = 4 cos t.
For the problems below we only need to find the particular solutions.

a. x′′ + x = 5t2.

yp(t) =
∫ t

0
G(t, τ) f (τ) dτ

=
∫ t

0
(cos τ sin t− cos t sin τ)(5τ2) dτ

= 5[(τ2 sin τ − 2 sin τ + 2τ cos τ) sin t]t0
−[(−τ2 cos τ + 2 cos τ + 2τ sin τ) cos t]t0

= 10 cos t− 10 + 5t2.

The solution is y(t) = 14 cos t− 10 + 5t2.

b. x′′ + x = 2 tan t.

yp(t) =
∫ t

0
G(t, τ) f (τ) dτ

=
∫ t

0
(cos τ sin t− cos t sin τ)(2 tan τ) dτ

= 2
∫ t

0

(
sin τ sin t− sin2 τ

cos τ
cos t

)
dτ

= 2
∫ t

0
(sin τ sin t− (sec τ − cos τ) cos t) dτ

= 2 [− cos τ sin t− (ln | sec τ + tan τ| − sin τ) cos t]t0
= −2 ln | sec t + tan t| cos t + 2 sin t

The solution to the nonhomogeneous initial value problem is
y(t) = 4 cos t + 2 sin t− 2 cos t ln | sec t− tan t|.
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13. For the problem y′′ − k2y = f (x), y(0) = 0, y′(0) = 1,
The general solution to the homogeneous problem, y′′ − k2y = 0, is

yh(x) = c1ekx + c2e−kx. The solution satisfying the given initial conditions
has to satisfy

c1 + c2 = 0, k(c1 − c2) = 1.

Therefore c1 = −c2 = 1/2k. So, yh(x) = 1
2k (e

kx − e−kx) = 1
k sinh kx.

a. Find the initial value Green’s function.

The linearly independent solutions needed for construction of the
Green’s function are y1(x) = sinh kx and y2(x) = cosh kx. The
Wronskian of these solutions is given by

W(y1, y2) = y1y′2 − y′1y2

= (sinh kx)(k sinh kx)− (k cosh kx)(cosh kx)

= k(sinh2 kx− cosh2 kx) = −k.

This gives the Green’s function as

G(x, ξ) =
y1(ξ)y2(x)− y1(x)y2(ξ)

a(ξ)W(ξ)

=
(sinh kξ)(cosh kx)− (sinh kx)(cosh kξ)

−k
=

sinh k(x− ξ)

k
.

b. Use the Green’s function to solve y′′ − y = e−x.

For this problem, k = 1 and yh(x) = sinh x. The particular solution
is

yp(x) =
∫ x

0
G(x, ξ) f (ξ) dξ

=
∫ x

0
sinh(x− ξ)e−ξ dξ

=
1
2

∫ x

0
(e(x−ξ) − e(ξ−x))e−ξ dξ

=
1
2

∫ x

0
(e(x−2ξ) − e−x) dξ

=
1
2

(
e(x−2ξ)

−2
− ξe−x)

)x

0

=
1
2

(
e−x

−2
− xe−x +

ex

2

)
=

1
2

sinh x− 1
2

xe−x.

Then, the general solution is y(x) = 3
2 −

1
2 xe−x.

c. Use the Green’s function to solve y′′ − 4y = e2x.

For this problem, k = 2 and yh(x) = 1
2 sinh 2x. The particular solu-

tion is

yp(x) =
∫ x

0
G(x, ξ) f (ξ) dξ
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=
1
2

∫ x

0
sinh 2(x− ξ)e2ξ dξ

=
1
4

∫ x

0
(e2(x−ξ) − e2(ξ−x))e2ξ dξ

=
1
4

∫ x

0
(e2x − e4ξ−2x) dξ

=
1
4

(
ξe2x − e4ξ−2x

4

)x

0

=
1
4

(
xe2x − e2x

4
+

e−2x

4

)
=

1
4

xe2x − 1
8

sinh 2x.

Then, the general solution is y(x) = 1
4 xe2x + 3

8 sinh 2x.

14. Find and use the initial value Green’s function to solve

x2y′′ + 3xy′ − 15y = x4ex,

y(1) = 1, y′(1) = 0.
We first need the solution of x2y′′h + 3xy′h − 15yh = 0. The characteristic

equation is

0 = r(r− 1) + 3r− 15 = r2 + 2r− 15 = (r + 5)(r− 3).

Thus, yh(x) = c1x3 + c2x−5. We need yh(x) to satisfy the given initial condi-
tions, y(1) = 1 and y′(1) = 0. Therefore,

1 = c1 + c2

0 = 3c1 − 5c2.

Since c2 = 3
5 c1,

1 = c1 + c2 =
8
5

c1,

or c1 = 5
8 and c2 = 3

8 . So,

yh(x) =
5
8

x3 +
3
8

x−5.

Next, we construct the Green’s function. The solution y1(x) = x3 − x−5

satisfies y1(1) = 0. For y′2(1) = 0, we consider y2(x) = c1x3 + c2x−5. Then,
y′2(x) = 3c1x2 − 5c2x−6 and this gives y′2(x) = 3c1 − 5c2 = 0 Choosing
c2 = 3 and c1 = 5, we obtain y2(x) = 5x3 + 3x−5.

The Wronskian is given by

W(y1, y2) = y1y′2 − y′1y2

= (x3 − x−5)(15x2 − 15x−6)− (3x2 + 5x−6)(5x3 + 3x−5)

= −64x−3.

and a(x) = x2.
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The Green’s function can now be found. We have

G(x, ξ) =
y1(ξ)y2(x)− y1(x)y2(ξ)

a(ξ)W(ξ)

=
(ξ3 − ξ−5)(5x3 + 3x−5)− (x3 − x−5)(5ξ3 + 3ξ−5)

ξ2(−64ξ−3)
.

=
1
8

(
x3

ξ4 −
ξ4

x5

)
.

D I

ξ8 eξ

8ξ7 eξ

56ξ6 eξ

336ξ5 eξ

1680ξ4 eξ

6720ξ3 eξ

20160ξ2 eξ

40320ξ eξ

40320 eξ

0 eξ

+

−

+

−

+

−

+

−

+

Figure 2.3: Tabular Method for the inte-
gral

∫
ξ8eξ dξ in Problem 14.

Finally, we obtain the particular solution through integration:

yp(x) =
∫ x

1
G(x, ξ) f (ξ) dξ

=
1
8

∫ x

1

(
x3

ξ4 −
ξ4

x5

)
ξ4eξ dξ

=
1
8

∫ x

1

(
x3 − ξ8

x5

)
eξ dξ

=
1
8

x3eξ
∣∣∣x
1
− 1

8x5

∫ x

1
ξ8eξ dξ.

From Table 2.3 we have∫ x

1
ξ8eξ dξ = (40320− 40320ξ + 20160ξ2 − 6720ξ3

+1680ξ4 − 336ξ5 + 56ξ6 − 8ξ7 + ξ8)eξ
∣∣∣x
1

= (40320− 40320x + 20160x2 − 6720x3

+1680x4 − 336x5 + 56x6 − 8x7 + x8)ex − 14833e.

Then, yp(x)

=
1
8

x3eξ
∣∣∣x
1
− 1

8x5

∫ x

1
ξ8eξ dξ

=
1
8

x3(ex − e)− 1
8x5 [(40320− 40320x + 20160x2 − 6720x3

+1680x4 − 336x5 + 56x6 − 8x7 + x8)ex − 14833e]

=
14833e

8x5 − e
8

x3 + (−5040x−5 + 5040x−4 − 2520x−3 + 840x−2

−210x−1 + 42− 7x + x2)ex.

The solution to the original problem is

y(x) =
5
8

x3 +
3
8

x−5 + yp(x)

=
3 + 14833e

8x5 +
5− e

8
x3 + (−5040x−5 + 5040x−4 − 2520x−3

+840x−2 − 210x−1 + 42− 7x + x2)ex.

15. A ball is thrown upward with an initial velocity of 49 m/s from 539 m
high. How high does the ball get, and how long does in take before it hits
the ground? [Use results from the simple free fall problem, y′′ = −g.]
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Starting with y(t) = −4.9t2 + 49t + 539 m, one can compute the time to
reach maximum height (v = 0)

0 =
dy
dt

= −9.8t + 49,

or t = 5.0 s. The height at this time is y(5.0) = 760 m.
The time in flight is twice the time it takes to reach maximum height.

Thus, the ball returns in 10 s.

16. Consider the case of free fall with a damping force proportional to the
velocity, fD = ±kv with k = 0.1 kg/s.

a. Using the correct sign, consider a 50 kg mass falling from rest at a
height of 100 m. Find the velocity as a function of time. Does the
mass reach terminal velocity?

We start with v̇ = −g − αv, where α = k
m > 0. This equation is

separable, leading to∫ dv
g + αv

= −t + C,

1
α

ln |g + αv| = −t + C,

g + αv = Ae−αt, A = eC,

Using the initial condition v(0) = 0, we find A = g. This gives the
solution

v(t) = − g
α
(1− e−αt).

As t→ ∞, v→ − g
α .

Using the numbers in the problem, we have

v(t) = −(98m/s)(1− e−0.002t)

and vterm = −98 m/s.

b. Let the mass be thrown upward from the ground with an initial
speed of 50 m/s. Find the velocity as a function of time as it travels
upward and then falls to the ground. How high does the mass get?
What is its speed when it returns to the ground?

As with the first part of the problem, we start with v̇ = −g− αv,
where α = k

m > 0. After integrating, we found

g + αv = Ae−αt.

In this case we have v(0) = v0. Thus, A = g+ αv0 and we can solve
for the velocity as a function of time,

v(t) = − g
α
+
( g

α
+ v0

)
e−αt.

Further integration gives the position as a function of time,

y(t) = y0 −
g
α
− 1

α
(

g
α
+ v0)e−αt.



46 mathematical methods for physicists

For y(0) = 0, y0 = g+αv0
α2 and

y(t) =
g + αv0

α2 (1− e−αt)− gt
α

.

The maximum height occurs for v(t) = 0. Solving for T, we find

− g
α
+
( g

α
+ v0

)
e−αT = 0,( g

α
+ v0

)
e−αT =

g
α

,

eαT =

(
1 +

αv0

g

)
,

T =
1
α

ln
(

1 +
αv0

g

)
.

Inserting this into y(t), we have

y(T) =
v0

α
− g

α2 ln
(

1 +
αv0

g

)
.

Using the values in the problem, we can determine the time to the
maximum as T = 5.076 s leading to a height y(5.076) = 127 m.

We also need the time it takes to return to the ground. Thus, we
seek y(τ) = 0. This equation is transcendental and one needs tech-
nology to solve for this. The value obtained is τ = 10.17 s. The
speed at this time is then v(10.17) = −49.7 m/s.

17. A piece of a satellite falls to the ground from a height of 10,000 m.
Ignoring air resistance, find the height as a function of time. [Hint: For free
fall from large distances,

ḧ = − GM
(R + h)2 .

Multiplying both sides by ḣ, show that

d
dt

(
1
2

ḣ2
)
=

d
dt

(
GM

R + h

)
.

Integrate and solve for ḣ. Further integrating gives h(t).]
We begin with

ḧ = − GM
(R + h)2

and multiply both sides by ḣ,

ḧḣ = − GM
(R + h)2 ḣ

d
dt

(
1
2

ḣ2
)

=
d
dt

(
GM

R + h

)
.

We can integrate and solve for ḣ.

1
2

ḣ2(t)− 1
2�
��ḣ2(0)=0 =

GM
R + h

.
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ḣ = −
√

2GM
R + h

.

Here we note that the velocity is negative for falling bodies.
This equation is separable and can be integrated.∫ √

R + h dh = −
√

2GM
∫

dt

2
3
(R + h)3/2 = −

√
2GMt + C.

At t = 0, h(0) = h0 = 10, 000 m. So, C = 2
3 (R + h0)

3/2. Thus,

2
3
(R + h)3/2 =

2
3
(R + h0)

3/2 −
√

2GMt,

or

h(t) =
[
(R + h0)

3/2 − 3
2

√
2GMt

]2/3
− R,

18. The problem of growth and decay is stated as follows: The rate of
change of a quantity is proportional to the quantity. The differential equa-
tion for such a problem is

dy
dt

= ±ky.

The solution of this growth and decay problem is y(t) = y0e±kt. Use this
solution to answer the following questions if 40 percent of a radioactive
substance disappears in 100 years.

Before answering the questions, one can find the decay constant. Since
60% is left after 100 years, 0.6y0 = y0e−100k. Therefore, k = − ln 0.6

100 = .0051.

a. What is the half-life of the substance?

The half-life is the time, τ, for which 50% of the initial substance
decays. Thus, 0.5y0 = y0e−kτ . Therefore, −kτ = ln 0.5, or

τ = − ln 0.5
k

=
ln2
k

= 136 yr.

b. After how many years will 90% be gone?

For 90% gone, there is 10% left. Therefore, we need to solve 0.1y0 =

y0e−kt for t. The result is t = − ln 0.1
k = 451 yr.

19. A spring fixed at its upper end is stretched 6 inches by a 10-pound
weight attached at its lower end. The spring-mass system is suspended in
a viscous medium so that the system is subjected to a damping force of
5 dx

dt lbs. Describe the motion of the system if the weight is drawn down an
additional 4 inches and released. What would happen if you changed the
coefficient “5” to “4”? [You may need to consult your introductory physics
text.]

The key equation governing the oscillation of the mass on the spring is

mẍ + bẋ + kx = 0.
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We need to determine the constants in the equation.
First, we note that adding the block to the spring allows one to determine

the spring constant from the equilibrium equation

mg = kx.

In this problem one needs to be careful with units. The mass is not 10-
pounds. That is mg. So,

k =
mg
x

=
10lb
0.5 f t

= 20lb/ft.

The mass is given by m = mg
g . In these units the mass is in slugs and

g = 32.2 m/s2. [Note that if one takes g = 32 m/s2, then the qualitative
answer will be off for the first part of the problem.] So, m = 0.311 slugs.

When the damping force is 5 dx
dt lbs, we have

b2 − 4km = 52 − 4(20)(.311) > 0.

Therefore, the system is overdamped and the mass’s motion will decay
monotonically to zero.

When the damping force is 4 dx
dt lbs, we have

b2 − 4km = 42 − 4(20)(.311) < 0.

Therefore, the system is underdamped and the mass will oscillate with a
decreasing amplitude.

20. Consider an LRC circuit with L = 1.00 H, R = 1.00 × 102 Ω, C =

1.00 × 10−4 F, and V = 1.00 × 103 V. Suppose that no charge is present
and no current is flowing at time t = 0 when a battery of voltage V is
inserted. Find the current and the charge on the capacitor as functions of
time. Describe how the system behaves over time.

In this problem we need to solve the equation

Lq̈ + Rq̇ +
1
C

q = V(t).

The given values lead to the initial value problem

q̈ + 100q̇ + 10000q = 1000, q(0) = q̇(0) = 0.

The solution of the homogeneous problem: The roots of the characteristic
equation are

r =
−100±

√
104 − 4× 104

2
= −50± 50

√
3i.

Therefore, the solution is given by

qh(t) = (c1 cos 50
√

3t + c2 sin 50
√

3t)e−50t.
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The particular solution is relatively simple using the Method of Undeter-
mined Coefficients. Let qp(t) = A. Then, we find yp(t) = 0.10. This gives
the general solution to the original problem as

q(t) = (c1 cos 50
√

3t + c2 sin 50
√

3t)e−50t +
1
10

.

Requiring q(0) = 0, gives C1 = −0.1 C. Noting that

q̇(t) = 50
[√

3(c2 cos 50
√

3t− c1 sin 50
√

3t)− (c1 cos 50
√

3t + c2 sin 50
√

3t)
]

e−50t.

and
q̇(0) = 50(

√
3(c2)− (c1)) = 0,

we find c2 = c1/sqrt3 = −
√

3/30.

Figure 2.4: Plots of the charge and the
current as functions of time for Problem
20.

So,

q(t) =
1
10
− (

1
10

cos 50
√

3t +
√

3
10

sin 50
√

3t)e−50t.

I(t) =
20
√

3
3

e−50t sin 50
√

3t.

In Figure 2.4 we show the behavior of these solutions. We see that as t→ ∞,
q(t)→ 0.1 C and i(t)→ 0 A.

21. Consider the problem of forced oscillations as described in Section 2.7.2.

a. Derive the general solution in Equation (2.77).

The problem is given by ẍ + ω2
0x = F0

m cos ωt. In the text we solved
the ω 6= ω0 case. So, we consider the problem

ẍ + ω2
0x =

F0

m
cos ω0t.

The solution to the homogeneous problem was found as

xh(t) = c1 cos ω0t + c2 sin ω0t.

Because the driving term is a solution of the homogeneous prob-
lem, we need to use the Modified Method of Undetermined Coef-
ficients. The guess xp(t) and its derivatives are given by

xp(t) = t(A cos ω0t + B sin ω0t),

ẋp(t) = (A cos ω0t + B sin ω0t) + ω0t(−A sin ω0t + B cos ω0t),

ẍp(t) = 2ω0(−A sin ω0t + B cos ω0t)−ω2
0t(A cos ω0t + B sin ω0t).

Then,

ẍp + ω2
0xp = 2ω0(−A sin ω0t + B cos ω0t) =

F0

m
cos ωt.

From this result we see that A = 0 and B = F0
2mω0

. Therefore, the
solution for this case is

x(t) = c1 cos ω0t + c2 sin ω0t +
F0

2mω0
t sin ω0t.
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b. Plot the solutions in Equation (2.77) for the following cases: Let
c1 = 0.5, c2 = 0, F0 = 1.0 N, and m = 1.0 kg for t ∈ [0, 100].

i. ω0 = 2.0 rad/s, ω = 0.1 rad/s.

ii. ω0 = 2.0 rad/s, ω = 0.5 rad/s.

iii. ω0 = 2.0 rad/s, ω = 1.5 rad/s.

iv. ω0 = 2.0 rad/s, ω = 2.2 rad/s.

v. ω0 = 1.0 rad/s, ω = 1.2 rad/s.

vi. ω0 = 1.5 rad/s, ω = 1.5 rad/s.

In this problem we plot the solution

x(t) = 0.5 cos ω0t +


1

(ω2
0 −ω2)

cos ωt, ω 6= ω0,

1
2ω0

t sin ω0t, ω = ω0.

For the different cases we plot the solutions in Figures 2.5-2.10

Figure 2.5: Plot from Problem 21b [i.]
ω0 = 2 rad/s, ω = 0.1 rad/s.

Figure 2.6: Plot from Problem 21b [ii.]
ω0 = 2 rad/s, ω = 0.5 rad/s.

Figure 2.7: Plot from Problem 21b [iii.]
ω0 = 2 rad/s, ω = 1.5 rad/s.

c. Derive the form in Equation (2.78).

We consider the case that ω 6= ω0, and choose initial conditions
such that c1 = −F0/(m(ω2

0 −ω2)), c2 = 0.

x(t) =
F0

m(ω2
0 −ω2)

cos ωt− F0

m(ω2
0 −ω2)

cos ω0t

=
F0

m(ω2
0 −ω2)

(cos ωt− cos ω0t)
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Figure 2.8: Plot from Problem 21b [iv.]
ω0 = 2 rad/s, ω = 2.2 rad/s.

Figure 2.9: Plot from Problem 21b [v.]
ω0 = 1 rad/s, ω = 1.2 rad/s.

=
F0

m(ω2
0 −ω2)

[
cos

(
(ω0 + ω)t

2
− (ω0 −ω)t

2

)
− cos

(
(ω0 −ω)t

2
+

(ω0 + ω)t
2

)]
=

2F0

m(ω2
0 −ω2)

sin
(ω0 −ω)t

2
sin

(ω0 + ω)t
2

.

d. Confirm that the solution in Equation (2.78) is the same as the
solution in Equation (2.77) for F0 = 2.0 N, m = 10.0 kg, ω0 = 1.5
rad/s, and ω = 1.25 rad/s, by plotting both solutions for t ∈
[0, 100].

Using these values, the functions obtained are

x(t) = 0.581 sin(0.125t) sin(1.375t) and x(t) = 0.290(cos(1.25t)− cos(1.5t)).

These solutions are the same and plots of these solutions give the
plot as in Figure ??.

22. A certain model of the motion of a light plastic ball tossed into the air
is given by

mx′′ + cx′ + mg = 0, x(0) = 0, x′(0) = v0.

Here m is the mass of the ball, g=9.8 m/s2 is the acceleration due to gravity
and c is a measure of the damping. Since there is no x term, we can write
this as a first order equation for the velocity v(t) = x′(t) :

mv′ + cv + mg = 0.

Figure 2.10: Plot from Problem 21b [vi.]
ω0 = 1.5 rad/s, ω = 1.5 rad/s.
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Figure 2.11: Plot from Problem 21d.

??

This problem was essentially solved in Problem 16 with α = c
m > 0.

However, care needs to be exercised in this problem since the ball moves
upward and then downward. The resistive force is fd = −cv, where c > 0.
When the ball is traveling upward, v > 0 and fd < 0. When the ball is
traveling downward, v < 0 and fd > 0. Therefore, the resistive force acts in
the correct direction.

a. Find the general solution for the velocity v(t) of the linear first
order differential equation above.

v(t) = − g
α
+
( g

α
+ v0

)
e−αt.

b. Use the solution of part a to find the general solution for the posi-
tion x(t).

x(t) =
g + αv0

α2 (1− e−αt)− gt
α

.

c. Find an expression to determine how long it takes for the ball to
reach it’s maximum height?

T =
1
α

ln
(

1 +
αv0

g

)
.

d. Assume that α = c/m = 5 s−1. For v0 = 5, 10, 15, 20 m/s, plot the
solution, x(t), versus the time.

The solutions are shown in Figure 2.12.

e. From your plots and the expression in part c, determine the rise
time. Do these answers agree?

The rise times are
v0(m/s) T(s)

5 0.2534
10 0.3617
15 0.4316
20 0.4833

.

The values trise = T are confirmed in Figure 2.12.
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Figure 2.12: Plot of Position vs. Time for
the plastic ball in Problem 22 for α = 5
s−1 and v0 = 5, 10, 15, 20 m/s.

f. What can you say about the time it takes for the ball to fall as
compared to the rise time?

From the plots we see that the fall time is longer than the rise time.
These can be determined using the total flight time. The total flight
time is found by numerically solving x(t) = 0 for t f inal . Then, we
compute t f all = t f inal − trise using the previous values for the rise
time. The values of these times are indicated below.

v0(m/s) t f inal(s) trise(s) t f all(s)
5 0.6874 0.2534 0.4340

10 1.2176 0.3617 0.8559
15 1.7303 0.4316 1.2987
20 2.2408 0.4833 1.7575

.

Figure 2.13: Plot from Problem 23a.

23. Use i) Euler’s Method and ii) the Midpoint Method to determine the
given value of y for the following problems.

For each problem the Euler and Midpoint Methods were executed and
the results plotted in the Figures 2.13-2.15 with circles designating Euler’s
Method and diamonds the Midpoint Method. Plots of the exact solutions
are given by the solid curves. The sought values for each problem are pro-
vided below.

a.
dy
dx

= 2y, y(0) = 2. Find y(1) with h = 0.1.

y(x) = 2e2x,
yexact = 14.78, yEuler = 12.38, yMidpoint = 14.61.

b.
dy
dx

= x− y, y(0) = 1. Find y(2) with h = 0.2.

y(x) = x− 1 + 2e−x,
yexact = 1.271, yEuler = 1.215, yMidpoint = 1.275. Figure 2.14: Plot from Problem 23b.
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c.
dy
dx

= x
√

1− y2, y(1) = 0. Find y(2) with h = 0.2.

y(x) = sin
(

x2−1
2

)
,

yexact = 0.998, yEuler = 1.061, yMidpoint = 0.978.

Figure 2.15: Plot from Problem 23c.

24. Numerically solve the nonlinear pendulum problem using the Euler-
Cromer method for a pendulum with length L = 0.5 m using initial angles
of θ0 = 10o, and θ0 = 70o. In each case run the routines long enough and
with an appropriate h such that you can determine the period in each case.
Compare your results with the linear pendulum period.

As shown in the Figure 2.16 there is little difference for 10o. The period
of the linear pendulum for this problem gives T = 1.4192 s. From the plots
in Figure 2.17 we find five cycles at t = 7.096 s for the linear pendulum and
t = 7.815 s for the linear pendulum. This gives T = 1.4192 s for the linear
pendulum and t = 1.563 s for the linear pendulum.

Figure 2.16: Plot comparing the nonlin-
ear and linear pendulum for θ0 = 10o in
Problem 24.
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Figure 2.17: Plot comparing the nonlin-
ear and linear pendulum for θ0 = 70o in
Problem 24.
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25. For the Baumgartner sky dive we had obtained the results for his posi-
tion as a function of time. There are other questions that could be asked.

a. Find the velocity as a function of time for the model developed in
the text.
See Figure 2.18.

b. Find the velocity as a function of altitude for the model developed
in the text.
See Figure 2.18.
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c. What maximum speed is obtained in the model? At what time and
position?

The maximum speed is about 390 m/s at an altitude of 27 km and
time of 52 s.

d. Does the model indicate that terminal velocity was reached?

No, it does not.

e. What speed is predicted for the point at which the parachute
opened?

It is roughly 64.01 m/s at 238.8 s, or 1585 m.

f. How do these numbers compare with reported data?

The data was released in February, 2013 at http://www.redbullsratos.
com/science/scientific-data-review/. The maximum vertical
speed was reported as 1,357.6 kmh. The jump altitude was ad-
justed as 38,969.4 m and he experienced free fall 36,402.6 m. He
reached up to 560 kmh before the parachute opened. At 34s, he
was traveling 1115 kmh at 33,446 m. Maximum speed was reached
at 50 s, with speed 1,357,6 kmh at 27,833 m.
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Velocity vs Altitude Figure 2.18: The velocity as a function of
time and altitude in Problem 25.

26. Consider the flight of a golf ball with mass 46 g and a diameter of 42.7
mm. Assume it is projected at 30

o with a speed of 36 m/s and no spin.
We begin with the equations

dvx

dt
= −α(CDvx + CLvz)(v2

x + v2
z)

1/2,

dvz

dt
= −g− α(CDvz − CLvx)(v2

x + v2
z)

1/2.

a. Ignoring air resistance, analytically find the path of the ball and
determine the range, maximum height, and time of flight for it to
land at the height that the ball had started.

In this case,

dvx

dt
= 0,

dvz

dt
= −g.

http://www.redbullsratos.com/science/scientific-data-review/
http://www.redbullsratos.com/science/scientific-data-review/
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Integrating this system yields the projectile motion equations en-
countered in introductory physics. vx = vx0, vz = vz0 − gt,

x(t) = x0 + vx0t, z(t) = z0 + vz0t− 1
2

gt2.

The maximum height occurs for vz(t) = 0 which occurs when
t = vz0

g . This gives a height, H = z(t)− z0, of

H = vz0

(
vz0

g

)
− 1

2
g
(

vz0

g

)2

=
v2

z0
2g

.

The time of flight is twice this time, t f = 2vz0
g and the range is

given by

R = vx0(
2vz0

g
) =

2vx0vz0

g
=

v2
0 sin(2θ)

g
.

For the numbers in the problem, we have R = 115 m, H = 16.5 m,
and t f = 3.673 s.

b. Now consider a drag force fD = 1
2 CDρπr2v2, with CD = 0.42 and

ρ = 1.21 kg/m3. Determine the range, maximum height, and time
of flight for the ball to land at the height that it had started.

Figure 2.19: The flight of the golf ball in
Problem 26.
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Flight with drag needs to be solved numerically. In Figure 2.19

are plots for this problem and the previous part of the problem.
Reading from the plot we have R = 115 m and H = 16.5 m.

t f = 3.673 s.

c. Plot the Reynolds number as a function of time. [Take the kine-
matic viscosity of air, ν = 1.47× 10−5.]
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Figure 2.20: The plot of the Reynolds
number as a function of time for the
flight of the golf ball in Problem 26.

d. Based on the plot in part c, create a model to incorporate the
change in Reynolds number and repeat part b. Compare the re-
sults from parts a, b, and d.

The Reynolds number is too high to make any difference.

Change Part 26d. 27. Consider the flight of a tennis ball with mass 57 g and a diameter of
66.0 mm. Assume the ball is served 6.40 m from the net at a speed of 50.0
m/s down the center line from a height of 2.8 m. It needs to just clear the
net (0.914 m).



free fall and harmonic oscillators 57

a. Ignoring air resistance and spin, analytically find the path of the
ball assuming it just clears the net. Determine the angle to clear
the net and the time of flight.

6.40m
0.914m

2.18m

Figure 2.21: In Problem 2.27 a ball is
served 6.40 meters from the net from a
height of 2.8 m.

The path of the ball just clearing the net is shown in Figure 2.21.
In order to find the angle and time for the ball to clear the net,
we use the projectile motion equations from the last problem with
vx0 = v0 cos θ and vz0 = v0 sin θ :

x(t) = x0 + (v0 cos θ)t, z(t) = z0 + (v0 sin θ)t− 1
2

gt2.

For the ball to barely clear the net, we set x(t) = 6.40 m and z(t) =
0.914 m. Then,

6.40 = (50 cos θ)t

0.914 = 2.8 + (50 sin θ)t− 1
2

gt2.

A solution gives t = 0.1330 s and θ = −0.27408 rad.

b. Find the angle to clear the net assuming the tennis ball is given a
topspin with ω = 50 rad/s.

We turn to the system of equations for two dimensional motion
incorporating both drag and lift. These are given by

dvx

dt
= −α(CDvx + CLvz)(v2

x + v2
z)

1/2,

dvz

dt
= −g− α(CDvz − CLvx)(v2

x + v2
z)

1/2.

For this part we set CD = 0. One can obtain CL from ω using

CL =
1

2 + v
vspin

,

where vspin = rω. However, v =
√

v2
x0 + (vy0 − gt)2 varies from 50

to 50.5 m/s over the short time the ball is in the air. Then,

CL =
1

2 + v
rω

varies from 0.0310 to 0.0307 for this range of speeds. So, taking
CL = −0.031 for top spin, we numerically solve the system.

In Figures 2.22-2.23 we indicate the paths for topspin and bottom
spin for an angle θ = −0.27408. Numerically changing the initial
angle one can have the ball with spin just clear the net. For the
topspin in this part of the problem, we find θ = −0.2702 radians.

c. Repeat part b assuming the tennis ball is given a bottom spin with
ω = 50 rad/s.

The only change from part b is letting CL = 0.031. For the bottom
spin in this part of the problem, we find θ = −0.2778 radians. This
is shown in the plots in Figure 2.23.
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Figure 2.22: The flight of the tennis ball
in Problem 27 as it clears the net for
CD = 0.
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Figure 2.23: The (zoomed in) flight of the
tennis ball in Problem 27 as it clears the
net for CD = 0.
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d. Repeat parts a, b, and c with a drag force, taking CD = 0.55.

In Figures 2.24-2.25 we indicate the paths for topspin and bottom
spin for an angle θ = −0.27408 and CD = 0.55. This angle no
longer works without spin. Numerically changing the initial angle
one can have the ball with drag just clear the net.

For the topspin in the problem, we find θ = −0.2692 radians. For
no spin in the part of the problem, we find θ = −0.2728 radians.
For the bottom spin in the problem, we find θ = −0.2766 radians.

Figure 2.24: The flight of the tennis ball
in Problem 27 as it clears the net for
CD = 0.55.
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28. In Example 2.32 a(t) was determined for a curved universe with non-
relativistic matter for Ω0 > 1. Derive the parametric equations for Ω0 < 1,

a =
Ω0

2(1−Ω0)
(cosh η − 1),

t =
Ω0

2H0(1−Ω0)3/2 (sinh η − η) ,

for η ≥ 0.
We begin with the Friedman equation in the form

ȧ = ±H0

√
Ω0

a
+ (1−Ω0).

Let α = 1−Ω0
Ω0

. We will see that only the positive sign applies in this case, so
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Figure 2.25: The (zoomed in) flight of the
tennis ball in Problem 27 as it clears the
net for CD = 0.55

the equation becomes

ȧ = H0

√
Ω0

a

√
1 + αa.

This differential equation is separable and can be integrated with a hy-
perbolic function substitution. We let

αa = sinh2 u, α du = 2 sinh u cosh u du.

Then, we have

H0
√

Ω0 dt =

√
a√

1 + αa

=
sinh u(2 sinh u cosh u du)

α
√

α cosh u

= 2α−3/2 sinh2 u du

= α−3/2[cosh 2u− 1].

Integrating,

H0
√

Ω0t + C =
1
2

sinh u− u.

For t = 0, a(0) = 0, therefore u(0) = 0.
Defining η = 2u, we have the parametric form for t :

t =
1

2H0
√

Ω0α3/2
(sinh η − η)

=
ω0

2H0(1−Ω0)3/2 (sinh η − η).

the parametric form for a can be obtained from the original hyperbolic
substitution:

a =
1
α

sinh2 η

2

=
ω0

2(1−Ω0)
(cosh η − 1).

In Figure 2.30 we give both the exact and the numerical solution for Ω0 =

0.8, 1.1.

29. Find numerical solutions for other models of the universe.

0 20 40 60 80 100
0

5

10

15

20

25

30

t

a

Figure 2.26: A plot of a(t) vs t for a flat
universe with nonrelativistic matter only
in Problem 2.29a.

a. A flat universe with nonrelativistic matter only with Ωm,0 = 1.
In Figure 2.26 we show the numerical solution for this problem.
The exact solution to this problem was found as

a(t) =

(
t

2
3 H0

)2/3

.
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b. A curved universe with radiation only with curvature of different
types.

In Figure 2.27 we show the numerical solution for this problem.
The exact solution can also be determined.

We insert ΩΛ,0 = 0 = Ωm,0 and Ωr,0 = Ω0, into the Friedmann
equation, (

ȧ
a

)2
= H2

0

[
Ωr,0

a4 +
Ωm,0

a3 + ΩΛ,0 +
1−Ω0

a2

]
.

and obtain

ȧ = ±H0

√
Ω0

a2 + 1−Ω0.
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Figure 2.27: A plot of a(t) vs t for a
curved universe with radiation only in
Problem 2.29b.

This equation is separable and can be integrated,

H0t = ±
∫ a da√

Ω0 + (1−Ω0)a2
.

For the case Ω0 < 1, we have (ȧ > 0)

H0t =
1√
Ω0

∫ a da√
1 + αa2

,

=
1

α
√

Ω0

√
1 + αa2 + C,

where α = 1−Ω0
Ω0

> 0. For a(0) = 0,

H0t =
1

1−Ω0

[√
1 + αa2 − 1

]
.

For the case Ω0 > 1, we have the possibility that ȧ changes sign.
Thus, we have

amax =

√
Ω0

Ω0 − 1

and for a < amax,

H0t =
1√
Ω0

∫ a

0

a da√
1− a2

a2
max

,

=
a2

max√
Ω0

[
1−

√
1− a2

a2
max

]

=
1√

Ω0 − 1
[amax−

√
a2

max − a2].
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Figure 2.28: A plot of a(t) vs t for a flat
universe with nonrelativistic matter and
radiation in Problem 2.29c.

c. A flat universe with nonrelativistic matter and radiation with sev-
eral values of Ωm,0 and Ωr,0 + Ωm,0 = 1.

In Figure 2.28 we show the numerical solution for this problem
with the exact solution superimposed. The exact solution can be
found in Ryden’s book, Introduction to Cosmology (2003).
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We begin with the Friedmann equation in the form(
ȧ
a

)2
= H2

0

[
Ωr,0

a4 +
Ωm,0

a3 + ΩΛ,0 +
1−Ω0

a2

]
.

For this problem we have ΩΛ,0 = 0 and Ω0 = 1. Therefore,(
ȧ
a

)2
= H2

0

[
Ωr,0

a4 +
Ωm,0

a3

]
.

Defining α =
Ωr,0
Ωm,0

, we have

(
ȧ
a

)2
= H2

0
Ωr,0

a4

[
1 +

a
α

]
.

Since the differential equation is separable, we write

H0 dt =
a da√

Ωr,0

√
1 + a

α

, u = 1 +
a
α

,

=
α2√
Ωr,0

u− 1√
u

du.

Integrating with the condition a(0) = 0, we have

H0t =
α2√
Ωr,0

∫ 1+a/α

1

u− 1√
u

du.

=
α2√
Ωr,0

[
2
3

(
1 +

a
α

)3/2
− 2

(
1 +

a
α

)1/2
+

4
3

]
=

4α2

3
√

Ωr,0

[
1 +

(
1 +

a
α

)1/2 ( a
2α
− 1
)]

.

d. Look up the current values of Ωr,0, Ωm,0, ΩΛ,0, and κ. Use these
values to predict future values of a(t).

In Figure 2.29 we show the numerical solution for Ω0 = 1, Ωr,0 =

8.4× 10−5, Ωm,0 = 0.30, and ΩΛ,0 = Ω0 − (Ωr,0 + Ωm,0).
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Figure 2.29: A plot of a(t) vs t for the nu-
merical solution for Ω0 = 1, Ωr,0 = 8.4×
10−5, Ωm,0 = 0.30 in Problem 2.29d.

e. Investigate other types of universes of your choice, but different
from the previous problems and examples.

In Figure 2.30 we show the numerical solution for a simple case
of nonrelativistic matter plus curvature. The solutions were pre-
sented in the text with the Ω0 < 1 case derived in the Problem 28.
In Figure 2.30 we also show the exact solution superimposed.
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Figure 2.30: A plot of a(t) vs t for a flat
universe with nonrelativistic matter and
curvature for Problem 2.29d.

30. Consider the system

x′ = −4x− y,

y′ = x− 2y.

a. Determine the second order differential equation satisfied by x(t).
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Differentiate the first equation with respect to t and then replace
y′ = x− 2y and y = −x′ − 4x to find

x′′ = −4x′ − y′

= −4x′ − (x− 2y)

= −4x′ − (x− 2(−x′ − 4x))

= −6x′ − 9x.

Therefore, x′′ + 6x′ + 9 = 0.

b. Solve the differential equation for x(t).

The characteristic equation is r2 + 6r + 9 = 0, whose solution is
r = −3. This has the general solution

x(t) = (c1 + c2t)e−3t.

c. Using this solution, find y(t).

Using the first equation of the system, we find y(t) as

y(t) = −x′ − 4x

= −(c2 − 3(c1 + c2t))e−3t − 4(c1 + c2t)e−3t

= (−c1 − c2 − c2t)e−3t.

So, y(t) = (−c1 − c2 − c2t)e−3t.

d. Verify your solutions for x(t) and y(t).

Insert x(t) = (c1 + c2t)e−3t and y(t) = (−c1− c2− c2t)e−3t into the
system of differential equations. Then we have

x′ = (c2 − 3(c1 + c2t))e−3t

= (3c1 − 3c2t + c2)e−3t.

−4x− y = −4(c1 + c2t)e−3t − (−c1 − c2 − c2t)e−3t

= (3c1 − 3c2t + c2)e−3t.

y′ = (2c2 − 3(−c1 − c2 − c2t))e−3t

= (3c1 + 2c2 + 3c2t)e−3t.

−x− 2y = −(c1 + c2t)e−3t − 2(−c1 − c2 − c2t)e−3t

= (3c1 + 2c2 + 3c2t)e−3t.

e. Find a particular solution to the system given the initial conditions
x(0) = 1 and y(0) = 0.

From x(t) = (c1 + c2t)e−3t, x(0) = c1 = 1.

From y(t) = (−c1 − c2 − c2t)e−3t,

y(0) = −c1 − c2 = −1− c2 = 0.

Therefore, c2 = −1. Thus, the particular solution to the system is
x(t) = (1− t)e−3t and y(t) = te−3t.
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31. Consider the following systems. Determine the families of orbits for
each system and sketch several orbits in the phase plane and classify them
by their type (stable node, etc.).

a.

x′ = 3x,

y′ = −2y.

This is an uncoupled systems and is easily solved: x(t) = c1e3t,
y(t) = c2e−2t. For initial conditions in which c1 = 0, solutions tend
to the origin, otherwise they tend to infinity. Thus, this system has
an unstable saddle as seen in Figure 2.31.

One could also obtain a family solution curves

dy
dx

=
y′

x′
= −2

3
y
x

.

Integrating this separable first order equation,∫ dy
y

= −2
3

∫ dx
x

,

ln |y| = −2
3

ln |x|+ C,

we find y = A
x2/3 . Sketching these curves also leads to a saddle.

Figure 2.31: The direction field for the
system in Problem 31a.

b.

x′ = −y,

y′ = −5x.

Differentiating the first equation, x′′ = −y′ = 5x. The roots of the
characteristic equation are r = ±

√
5. Thus, the solution for x is

x(t) = c1e
√

5t + c2e−
√

5t.

Inserting this solution for x(t) back into the system, gives

y(t) = −
√

5c1e
√

5t − c2e−
√

5t.

Based upon the solutions, or that the roots are r = ±
√

5, we see
that this system has an unstable saddle. This can also be seen in
Figure 2.32

Figure 2.32: The direction field for the
system in Problem 31b.

One could also obtain a family solution curves

dy
dx

=
y′

x′
= 5

x
y

.

Integrating this separable first order equation,∫
y dy = 5

∫
x dx,

y2 + C = 5x2,

(2.1)



64 mathematical methods for physicists

we find 5x2 − y2 = C. This is a family of hyperbolae for real C,
showing that the equilibrium point is a saddle point.

c.

x′ = 2y,

y′ = −3x.

Differentiating the first equation, x′′ = 2y′ = −6x. The roots of the
characteristic equation r2 + 6 = 0, are r = ±i

√
6. Thus, the solution

for x is
x(t) = c1 cos

√
6t + c2 sin

√
6t.

Inserting this solution into the system of differential equations,
gives

y(t) =
√

5
2

(
c2 cos

√
6t− c1 sin

√
6t
)

.

Thus, this system has solutions that follow elliptical paths.

One could also obtain a family solution curves

dy
dx

=
y′

x′
= −3

2
x
y

.

Integrating this separable first order equation, we find 3x2 + 2y2 =

C. This is a family of ellipses for C > 0 showing that the equilib-
rium point is a center as seen in Figure 2.33.

Figure 2.33: The direction field for the
system in Problem 31c.

d.

x′ = x− y,

y′ = y.

The second equation can be solved directly. y(t) = c1et. Inserting
this into the first equation,

x′ − x = −c1et.

This can be solved using the integrating factor µ = e−t. Then,
(e−tx)′ = −c1. Thus,

x(t) = (c2 − c1t)et.

In Figure 2.34 the direction field for this system is shown. This
system is similar to Example 2.43, which has a line of unstable
equilbria.

Figure 2.34: The direction field for the
system in Problem 31d.

e.

x′ = 2x + 3y,

y′ = −3x + 2y.
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Differentiating the first equation,

x′′ = 2x′ + 3y′ = 2x′ + 3(−3x + 2y)

= 2x′ − 9x + 2(x′ − 2x)

= 4x′ − 13x

So, we need to solve x′′ − 4x′ + 13x = 0. The roots of the charac-
teristic equation are r = 2± 3i. So,

x(t) = (c1 cos 3t + c2 sin 3t)e2t.

Inserting this into the system, we find

y(t) = (c2 cos 3t− c1 sin 3t)e2t.

Figure 2.35: The direction field for the
system in Problem 31e.

The direction field plot in Figure 2.35 as well as the solution indi-
cate that the orbits are spirals.

This problem could also be approached in polar coordinates. Recall
that

r′ =
xx′ + yy′

r
,

θ′ =
xy′ − yx′

r2 .

The radial equation is obtained by multiplying the first equation
by x, the second equation by y,

xx′ = 2x2 + 3xy,

yy′ = −3xy + 2y2,

and then adding these expressions to obtain

rr′ = xx′ + yy′ = 2(x2 + y2) = 2r2.

Similarly, the equation for θ is obtained by multiplying the first
equation by y, the second equation by x,

xy′ = −3x2 + 2xy,

yx′ = 2xy + 3y2,

and subtracting, to find

r2θ′ = xy′yx′ = −3(x2 + y2) = −3r2.

As a result we have the system in polar as r′ = 2r and θ′ = −3.

The second equation indicates that the spirals move in a clockwise
direction as time increases. The radial equation indicates that the
spiral is exponentially growing since the solution is r = r0e2t. This
is consistent with the previous analysis of the problem.
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32. Use the transformations relating polar and Cartesian coordinates to
prove that

dθ

dt
=

1
r2

[
x

dy
dt
− y

dx
dt

]
.

We begin with tan θ = y
x . Differentiating this expression with respect to

time,

sec2 θ θ′ =
y′x− yx′

x2 .

Note that

sec2 θ = 1 + tan2 θ =
x2 + y2

x2 .

This gives

θ′ =
y′x− yx′

x2

(
x2

x2 + y2

)
=

y′x− yx′

r2 .

33. Consider the system of equations in Example 2.46.

a. Derive the polar form of the system.

The system of equation under consideration is

x′ = −y + x(1− x2 − y2)

y′ = x + y(1− x2 − y2).

We compute the forms

xx′ + yy′ = −xy + x2(1− x2 − y2) + (xy + y2(1− x2 − y2))

= (x2 + y2)(1− x2 − y2).

xy′ − yx′ = x2 + xy(1− x2 − y2)− (−y2 + xy(1− x2 − y2))

= (x2 + y2).

These reduce to

rr′ = r2(1− r2),

r2θ′ = r2,

or

r′ = r(1− r2),

θ′ = 1,

b. Solve the radial equation, r′ = r(1 − r2), for the initial values
r(0) = 0, 0.5, 1.0, 2.0.

Next, we solve the radial problem. Note that r(t) = 0, 1 are equi-
librium solutions (r′ = 0.) So, we consider solutions with r(0) =

r0 6= 0, 1.

The equation is separable, leading to

t + C =
∫ dr

r(1− r2)
.
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The integration is done using a partial fraction decomposition. Let

1
r(1− r2)

=
A
r
+

B
1− r

+
C

1 + r
=

A(1− r2) + Br(1 + r) + Cr(1− r)
r(1− r2)

.

Solving for the constants, we find A = 1, B = −C = 1
2 .

Finishing the integration,

t + C = ln r +
1
2

ln(1 + r)− 1
2

ln |1− r|

= ln
r√
|1− r2|

Aet =
r√
|1− r2|

A2e2t =
r2

|1− r2| .

Solving for r2(t), we find that for 0 < r < 1,

r2(t) =
1

1 + Ce−2t ,

and for r > 1,

r2(t) =
1

1− Ce−2t .

Using the initial conditions, one can obtain C in terms of r0. We
find that for 0 < r < 1,

r(t) =
1√

1 + ( 1
r2

0
− 1)e−2t

=
r0√

r2
0 + (1− r2

0)e
−2t

,

and for r > 1,

r(t) =
1√

1− (1− 1
r2

0
)e−2t

=
r0√

r2
0 − (r2

0 − 1)e−2t
.

Figure 2.36: Solutions for the initial con-
ditions in Problem 33.

Solutions for the initial values r(0) = 0.5, 1.0, 2.0 are shown in the
figure.

c. Based upon these solutions, plot and describe the behavior of all
solutions to the original system in Cartesian coordinates.

Typical solutions are shown in Figure 2.36. These indicate that
the origin, r = 0, is unstable and the unit circle, r = 1, is stable.
The unit circle is a stable limit cycle with nearby orbits spiraling in
towards the orbit.


