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Chapter 2 Thermodynamics 

 

1. Mass of the atmosphere: 

From the definitions of pressure and weight, 
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2. Number of molecules per m
3 

The mass (in kg) of an average molecule will be 
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Now determine the air density: 
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Hence the number of molecules per unit volume 
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3. Molecular kinetic energy: 

For a diatomic molecule such as O2 we know that 
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4. Constant density atmosphere: 
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where H is the height of our atmosphere. Hence 
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5. Exponential model atmosphere: 
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6. Constant lapse rate model atmosphere: 
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Combining the hydrostatic equation and the gas law gives 
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Integrating from 0p  to p (a variable), corresponding to 0 to z, gives 
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7.  Mars atmosphere scale height: 

We need the gas constant for carbon dioxide, of molecular weight 44: 
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8. Layer mean temperatures: 
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So, at 30°, where the height is 5500 m, 
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A similar calculation gives a temperature of 270 K at 70°. 

 

9. Layer thickness: 

We start with the same equation as for the previous problem: 
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10. Average atmospheric temperature: 

When m1600012  ZZ , we know that 1.0/ 12 pp . Hence 
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11.  1 kg of air at 17 °C rises from 1000 to 750 hPa: 

(a) When the process is isothermal, T is constant, so that 
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Now, for constant T, the ideal gas equation tells us that fiif ppVV  . Hence 

  kJ2375.0ln2802871 W  

Because the process is isothermal, internal energy is unchanged. Hence, by 

conservation of energy, the heat added must be 23 kJ. 

(b) When the process is adiabatic, Δq = 0. Hence we may use Equation 2.46: 
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The work done will equal the decrease in internal energy; that is 

  kJ222582805.1004  TcW p  

 

12. Radiative heat loss: 

The total heat loss (per square metre) will be 

26 mJ1044.16060850 Q  

This heat is drawn from a mass of M which cools (at constant pressure) by T:  hence 

TcMQ p   

Now the mass of air (per square metre) in 30 hPa = 3000/9.8 = 306 kg/m
2
. Thus 
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When some heat is drawn from the ground we now have 
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13. Variations on the Poisson relation: 

Using Equation 2.45) plus the ideal gas equation, we see that 
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14. Depressurization: 

The process will be adiabatic, so we may use Equation 2.45: 
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15. Chinook: 

We may assume that the air warms at the dry adiabatic lapse rate, so 

    C5.265.12.48.9 T  

Hence final temperature = -10 C +26.5 C = 16.5 C. 

 

16. Virtual temperature: 

Using Equation 2.53 as our definition, 

      C8.348.307305015.061.0161.01  KTrTv  

 

17. Energy extracted from the oceans: 

Information required: oceans cover ~70% of the Earth’s surface; specific heat for 

liquid water, c = 4180 J/kg; density of water,  = 1000 kg/m
3
; RE = 6370 km. 
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  J105.11.0418047.0Energy 202
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18. Carnot equations: 

For an adiabatic expansion we may use the same approach as Exercise 2.11 (a), which 

will give us both Equations 2.56 and 2.57. 

For the two isothermal processes, the ideal gas equation tells us that 

DDCCBBAA VpVpVpVp  and  

And again for the two adiabatic processes we may use the Poisson-like relation 
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Combining the results obtained so far immediately gives Equation 2.59 

 

19. Temperature-dependent latent heat: 

Picking up the analysis following Equation 2.77 we see that 
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Integrating as before, from fixed conditions (0 C) to a variable T gives 
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Exponentiating both sides then gives 
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Suggested follow-on Exercise.  

Use the values for latent heat at 273 K and 373 K to determine L1 and L2; then use the 

resulting formula to calculate the s. v. p. at 20 C and 35 C, and compare your results 

with those from Exercise 2.22.  

Solution: -1-1

2

-1

1 KkgkJ5.2,kgkJ5.3182  LL : at 35 C, es = 56.09 hPa. 

 

20. Perspiration cooling: 

A reasonable value for the specific heat of the person is 3470 J/kg. Then 

Heat lost via evaporation LmL  
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Heat lost during cooling  TcM   

Equating these gives TcMLmL   
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In reality our core temperature does not vary this much, and it’s mainly our skin 

which needs to cool, so the ratio would be very much smaller. 

 

21. Isothermal compression of moist air: 

From Table 2.1, the s. v. p. at 20 C is 23.3712 hPa, so at 60% RH the actual vapour 

pressure will be 0.6   23.3712 = 14.02272 hPa. Under an isothermal compression this 

will increase to 5   14.02272 = 70.1136 hPa. Since this exceeds the s. v. p., the 

excess will condense: this equates to 70.1136 – 23.3712 = 46.7424 hPa. Now this is 

equal to two-thirds of the original amount of water vapour. (This conclusion could, of 

course, be reached by a more direct, ‘ratio’ argument.)  

To find the condensed mass we need to find the original mass of water vapour. The 

(mass) mixing ratio is given by 
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To find the dry mass in question we use the ideal gas equation: 
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So finally, the amount of water which condenses will be 
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22. Using Clausius-Clapeyron: 

At 20 C, where the tabulated value is 23.37 hPa, we calculate a value of 
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Similarly, at 35 C we calculate 58.17 hPa, compared with 56.24 hPa. 

Over liquid water at -20 C we calculate 1.2665 hPa, compared with 1.2539 hPa. 

Over ice at -20 C, we calculate 1.0326 hPa, where the tabulated value is 1.0317 hPa. 

 

23. Boiling point from Clausius-Clapeyron: 

At standard pressure, the C-C equation gives 
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Solving for T gives 367.7 K = 94.7 C. 

At Denver, assuming p = 850 hPa, we obtain 90.4 C. 

On Mt Everest, assuming p = 310 hPa, we obtain 67.4 C. 

 

24. Altitude dependence of boiling point: 

We need to combine the stated pressure relation with the C.-C. Equation: 
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Note that both are in agreement with Exercise 2.23. 

 

25. Neglected term in Equation 2.82: 

We need to consider the ratio of the neglected term to the retained term: 
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where we have taken a typical low to middle tropospheric value of T = 270 K for 

“arithmetical convenience”. 


