Chapter 2

2-1 A particle of mass m moves in the xy-plane and its position vector is given by
(1) = acos(wt)i +bsin(wt) |
where a, band are positive constants, and a>b. Show that
(a) the particle moves in an ellipse;
(b) the force acting on the particle is always directed toward the origin;
(c) the total work done by the force in moving the particle once around the ellipse is

Zero;

(d) the force is conservative.
Solution:

(a) F=xi+y =acos(wt)i +bsin(wr)]
SO x =acos(at), y = bsin(wt)

2 2
and (ij +(Xj = cos’ (o) +sin’ (ot) = 1
a b

which is an ellipse with semi-major and semi-minor axes of lengths a and b respectively.
(b) The force acting on the particle is

A AT
M T ar
. [acos(at)i +bsin(at)]]=-mo’F

dr’
The minus sign indicates that the force is always directed toward the origin.
(c) Since t goes from 0tot=2 / for a complete circuit around the ellipse, we have

2rdo 2rdo
W= _[ F-dr = j[—ma)z(a cosati +bsinwy)]-[-aw sinoti +bw cosoty |dt
0 0

1 8 2 2 ¥ 1 3 2 2 . 2zl
= mo (a” —b”)sinwt coswtdt = 5 mo (a”=b")sin" wt|;"” =0
0 2

(d) For this part, we write the force in the form (from part b):
F=-mo*F = —mo* (xi +y)).
Then
[ b k
VxF=|0l& J/1& J/&=0

—mo’x —-mo’y 0

Hence the force is conservative.

2-2 A constant force F acting on a particle of mass m changes the velocity from v to v in

time 7 . Prove that F=m(,-V)/t
Solution:
By Newton’s second law, we have
& - & F
i Ikl dt  m

For constant force we have on integrating



V=(F/mi+¢

where c is an integration constant (a vector). At t =0, v =v, sothat ¢ =v,, and
V= (F/m)t+7,

Att=7 v=v, sothat ¥, = (F/m)z +7,. Solving for F, we get
F=m@,-v)/t

Alternatively, we can rewrite Newton’s second law as
mdv = Fdt
Then since v=v, atr =oand v =v, att = 7, we have

| Far fmda, or  Fr=m,-7,)
4 *

Vi

2.3 Find the work done in moving an object along a path given by
F=3+2]-5k
and the applied force is F=2-]- k.
Solution:
Work done = F -7 = (21 = j—k)-(3{ +2j-5k)=6-2+5=9

2.4 (a) Show that
F= Qxy+z Y +x7]+ 3xz°k
is a conservative force field.
(b) Find the potential energy V.
(c) Find the work done in moving an object in this force field from (1,-2,1) to (3.1.4).
Solution:

~ A ~

i j k
(a) VxF=|08l& 2/1& J&/&=0
2xy+z°  x° 3xz’
Thus F is a conservative force field.
(b)
= W{* W’} V ~ N 2% S
F=-VV=c—ci-—j-——k=Qxy+z" )i +x"j+3xz7k
o & 124

from which we obtain
Nick=-Qxy+2z), VNIFd=-x, &V/&=-=3x
Integrate the first equation with respect to x keeping y and z constant:
V=-Ax’y+xz")+ g (y.2) (1)
where g,(y.z) is a function of y and z.

Similarly integrating the second equation with respect to y (keeping x and z constant)
and the third equation with respect to z (keeping x and y constant), we obtain

V=-xy+g,(x.2) )

Vi=—xz’ +gy(x.y) 3)
Equations (1), (2) and (3) yield a common V if we choose



g (y.2)=c, gz(X,Z)Z—XZ3+C, g3(X,y):—x2y+c
where c is an arbitrary constant, and it follows that
V=-(x*y+xz)+c
(c)

7 P, b
- 174 74 74
W=\)F-dr ==|VV-dr ==)[——dx+——dv+—d
;[ ¥ I r ;‘:[ X + y + S

[)
v =~y

n

(3.1.4)
‘(1,—11) = -202.

2.5 A particle of mass m moves along the x axis under the influence of a conservative
force field having potential V(x). If the particle is located at positions x and x at res-
pective time t and t , prove that if E is the total energy

]‘ dx
L=t = m/2 m
Solution:

By conservation of energy, we have

1 :
Em(dx /[dt)y +V(x)=E

from which we obtain (on considering the positive square root)

dt =~m/2[dx/\E-V(x)]

Hence by integration

2.6 A particle moves in a force field given by F =r*F.where £ is the position vector of
the particle. Show that the angular momentum of the particle is conserved.
Solution:
By Equation (48), we have
dZ _ 7{;@)
-
which states that if the external torque about a given point is zero, the angular momentum
of the system about the same point is conserved (a constant vector in time). Now
N =Fx F=Fx(F)=r*(Fxi)=0
Hence the angular momentum is conserved.

2.7 A particle of mass m moves along the path given by
x=x,+at’, y=bt’, Z=¢
where X , a, b and ¢ are constants. Find the following quantities at any time t: angular
momentum L, force F and torque N on the particle. Verify that they satisfy
dl . - -
E =frxF=N

Solution:
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(a) The angular momentum

L=Fxp=¢xmv=7 xm{dr/dr) (1)
- o~ v o 2 f 30 L .
where Fexit+y+zk=(x,+at y+bt'j+ ctk {(2)

Now
d o ~ s ~ PPN I
mdr [ di =m ;{*{{xa +ath)i +bt’ ] +ctk]= 2mati + 3mbt” j+mck  (3)
Substituting Egs.(2) and (3) inte Eq.(1) yields
: ~ ~ o

L jok
P= FV +at®  bE ct i: {—2mbc£3}f+ (mact® ~ mxoc}}
, 2mat  3mbt’ mc
+ (mabt* + 3mx bt’ Y
(b) The force

From Newton’s second law
32 2
E ol o (x, + at? ¥+ b8 ]+ ot
Fem—r=m—_7 X +af” ¥ +of” j+Cix
dl‘z d{‘ bl j

= 2mai + 6mbij + 0k

{c) The torque
A
NefxB=lx +a* b ci|=—~6mbot’i +2mact + (4mabt’ 6mx bi)k

2ma  Gmbi {}’
it is equal to the derivative of T with respect to t:
dT./ dt = —6mbet®f + 2mact + (dmabt® + 6mx b)k

2.9 Two astronauts A and B, initially at rest in free space, pull on cither end of a rope.
The maxinum force with which A can pull, F,, is larger than the maximum force
with which B can pull, 7,. Their masses are M, and M ;. the mass of the rope M,

is negligible. Find their motion if each pulls on the other as hard as he can.
Sobution:

As shown in Fig. 2.9, the forces exerted by the rope on the astronauts are 7, and F;

Ma M., Mg
e EranF T 2 T L L L LE L L L ot T el e
R f Fa Fa
P —d -
a Q,
A Qg
Fig. 2.9

By Newton’s third law, we have
Fj'=F, Fg'=Fy (D

by motion along the line of the rope is of interest, and the equation of the motion
o the rope is then simply given by :

?E - FA = lwravr {2)

Qnee the mass of the rone is negligible. we take A/, = 0, then Eq.(2) give
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F,-Fz;=0, or F,=F;
Thus, the total force on the rope is F, to the left and F to the right. But these forces are

2.4 A block of mass M, resting on a smooth table, is pulled by a string of mass m. If 2
" force F is applied to the string, what is the force that the siring transmitted to the
block?
Solution:

P
s F
M Gl Bt P P =
2

Fig. 2.0a Fig. 2.5ib
Figs. 2.002 and 2.7/ show the force diagrams. 7, is the force of the string on the
block, and F,' is the force of the block on the string, ,, is the acceleration of the block
and a, is the acceleration of the string. The equations of motion are
F, = Ma,, , F—F'= may
There are two constraints. First, by Newton’s third law we have
K=l
Second, if the string is inextensible, it accelerates at the same rate as the block:
o= 8p =0 .

Solving for the acceleration, we find that

B F
4= M+m
and the force on the block
Fi=F=—oF
V7T M em

The string does not transmit the full applied force to the block.

2.1% Two particles, of masses m, and m,, are connected by a rigid rod lying on a smooth
horizontal table. If an impulse I is applied at m, in the plane of the table and perpen-
dicular to the rod, find the initial velocities of m, and m,.

Solution:
The center of mass of the system moves in the direction of the impulse and so A and
Wy ¥

I a T

Ad— ls
,? 1 ™,
L

Fig. 2,107

B must also move in the same direction. The momentum of the system is m,v, < n,v,, and
the initial momentum of the system is zero. So the change m momentum 18
vy + v, =1 (1)
Now the moment of the impulse about B is equal to the gain of angular momentum of the
system about B:
la=mve {1}
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where a is the length of the rod. Solving Eq.(2) for v, we obtain
v, =1/m

Then from Eq.(1) we find that v, = 0.

2.11 A wheel of radius b is rolling along a muddy road with a speed v,. Particles of mud
attached to the wheel are being continuously thrown off from all points of the wheel.
If v,> > bg , where g is the gravitational acceleration, show that the maximum height
above the road attained by the mud will be
b+v?i2g+b*g/2v}.

Solution:
In Fig. 2.1{a, we see that
F=ibcosd— jbsing,  and
Fl=b, O=ox
The velocity of P relative to the center of the wheel is
¥, =df | dt = -Thosiné - jbacosé
The velocity of the center of the wheel relative to the
ground is 7v, . So the velocity of P relative to the
ground is
V=iv, +[~-1bosing - jbocosf], bo=v,

3 U N Fig.2,1¥a
=iv (1-sinf)— jv,cos8 =iv,_+ jv,

where v, =v (1-sind), v, =-v, c088
An object thrown upwards with speed v, will
reach a height of v,” / 2g above the point from which

it was thrown. Thus the maximum height h above the
ground that a piece of mud will attain is (Fig.2.1(b)

h=b+bsina +v,*/2g

2.2 g
v,“cos” &

=b+bsin{f — )+

2g
) v, cos’ 6

=b+bsing + ——

2g
To find the maximum value of h, we set dh/ d6 =0 and obtain

dh 5 v’ sind cosd 0
e Beosl ol _
a6 "

from which we find

sinf =bg/v*, (v, >bg)

and then cosf =V1-sin® @ = v, ' —b7g* /v }

Substituting these into Equation (1) vields



sinf =bg/v*, (v *>bg)

/ 5. 3 { 5 ;
and then cosf = Nl-sin’ @ = yv," - 5°g* /v?
Subshtuting these into Equation {Ti‘s ’fms{‘i@
bz
heb+ 2 —= v > bg.

2g 2&323

2.12 A block, of mass m, is free to slide on the inclined face of a smooth wedge, of mass
M and angle A. The wedge is itself free to slide on a smooth horizontal plane. Find
the acceleration of the block and the wedge.

Solution:

Fig. 2.17a shows the force diagrams. N is the normal reaction between the block and

/2 -
ﬁq kf‘f'/ —> CZ?

xm M’.?T

FEIII T ITI T IETIET T Vi Frrlgr s r ot d@llrs irlrtse

Fig. 2.1%a Fig. 2.12»
the wedge and it is perpendicular to wedge face; and N is the normal reaction between the
wedge and the plane. In Fig. 2.1%b, a,, down the face of the wedge, is the acceleration of
the block relative to the wedge; and a, is the acceleration of the wedge relative to the plane
The equation of motion for the wedge, when resolved horizontally and vertically, are
N sinAd = Ma, , Mg—- N, +N,cosd=0
and, for the block Ny sind = m(a, cos A—a,), mg— N, cos 4 = ma, sin A
We can sobve these 4 equations for the four unknowns: a,, 4,, ¥,, and ¥,. We find that

{m+ M)gsin4 mg sin A cos 4
S S, TR Tt
“= mein” A+ M © o omsinT A+ M

2.1% A wooden block, of mass M, is resting on a horizontal surface. The coefficient of
friction is f. One end of a spring, with spring constant k, is attached to the block; and
the other end to a solid wall. The spring is unstretched. A bullet of mass m hits the
block and embeds in it. Find the velocity of the bullet before impact in terms of the
maximum compression x of the spring amd M, k, g wad £

Solution:
Bv momenmm conservation, we have s.L x ~ 7 , 77/
mV+ M- -0=(M+ml, /

where V  is the velocity of the composite /’/r”f" TS e / Frrrrr Ty
system of the wooden block and the bullet,
Solving for V. |, we get

V.o=ml [ (m+ M) 1)

i Fig. 2.1%

We now apply the work-energy theorem
W= ACKEY+ AMPED

We now apply the work-energy theorem
W= AMEE Y+ A(PE)

to the corﬁposite system of m + M-
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(@) W= Fode=—] fOoms a)gde =~ f(m= ap) ox

where F = F, = (M + m)g, and x is the maximum sompression of the spring. (The dis-

tance moved by the composite svstem of m~M should b i
: ¥ v th yosite svstem M sho ¢ equal to the maximum ¢ S
sion of the spring.) . L

E ~ :i . 3— vy 2
(b) AKE) = = (m+ MYO* =S (m= M)V.* = 5 (om+ MYV.F

2
g 5 1 z
() A(PE) = -k

e

Substituting these into the work-energy theorem vields
1 |
—f(m+ M)ge=—=(m+ MY+ —ikx‘ 2)
Sotving Egs.(1) and (2) for V, we find that

(m+ MY kx?
B me T m+ M

2.14 Two massless springs S, and S,, with spring constanis k; and k; respectively, are ar-
ranged to support a weight A. In case I the springs are coupled in a series and in case
I they are in parallel. Determine the extensions of the individual springs in these two
cases as a result of the force of gravity on A. Determine also the equivalent spring
constant in the two cases.

Solution:
Case I Fig. 2.14 5 shows the force diagrams of the two springs in series. At equilib-

JEZI9I

rium, we have
;CZ
é Fy
=0y (A{o

I

Mg=F,  F=kx A
hence  x,=F,/ky= Mgk, g
Similatty ~ F, = kyx, k,
andso x,=F,/k =F, k=Mglk

The total extension is £ 7ing s
1 Mg ' 7
=x, +x, = Mog(—+—Y= —— W gss{essd
YEX X, g(ftx kz} K, k, o
i 11 N oAl
and e e 214 2
e k, kK | L-'%@’%5
8% I

Case Il. In this case the extensions of
the two springs should be the same:
X; =X, =X
At equilibrium, we have
o= kx F,=kx, and F +F, =Mg
from which we obtain
(ky+ky))r=Mg, or x=Mg/(k;+k,)= Mg/ k.,

5

where Koy =Fky+k, . Fig. 2.14C

2.15 Consider a rod of length L. The mass density (mass per unit length) of the rod, o,
varies as p= p, (s/ L), where p, is a constant and s is the distance from the end
marked 0. Find the center of mass of the rod.
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Solution:

The center of mass lies on the rod. Now let the x axis lie along the rod, with the ori-
gin at the left end of the rod. Then s = x and the mass in an element of length dx is dm =
odx = p,xdx/ L. The total mass M of the rod s

& 3"4’: §‘
M= j{fm’ = 30 pxdx/ L= p,L
The center of mass is at
i (ef 050 LEE _2 s
xXi UK = ]
M oL 7 L 3

2.1¢ A loaded spring gun, initially at rest on a horizontal frictionless surface, fires a marble
at an angle of elvation & . The mass of the gun is M, the mass of the marble is m, and
the muzzle velocity of the marble is v, . Find the final motion of the gun.

Solution: '
The final motion of the gun can be found easily by using conservation of momentum.

If air resistance is negligible, then there are no horizontal external forces acting on the sys-

tem (the gun and marble), and the x component of the equation of motion F = dP / d is

dpP,
G,,Wm

c,am\f
hence P, is conserved: P = Popna g /
; V CosB~ V

Since th@ system is initially at rest, so 2, ., = 0.

It is apparent that P, sinat 18 DOt Zer0. We now come v

to find out what it is. v, is the velocity of the marble Z

relative to the gun, not to the table. As shown in Fig.
2.1 &, the horizontal speed of the marble relative to the table is v, cos@ — V. .So we have

O=m(v,cosé —V,;)— MV,
my, cosf
m M

Fig. 2.1%

FTEE T TP P P

or Ve=

2.17 Two men of weights W and W are seated in the bow and stern of a boat of weight
W at a distance L from each other, Ignoring the water resistance, determine the direc-
tion and size of the displacement of the boat if the men change places.
Solution:

We consider the boat and the men in it as one system. .
The external forces acting on the boat are the four vertical ‘Q‘”" )
forees W], W,, W, and N, and they are balanced: e=clc

D E =N, +W,+W)=0

Let the x axis lie along the boat such that the coordi-
nate of W] is atx,, W atx, and ¥, at x,(Fig. 2.17 a). The
center of mass of the system, R, is at

R = (myx, +mx+mx, )/ (m +m+my) (1)

where my =W, /g, m=W/lg m =W,/ g

Now the men change places and, as a result, the boat is displaced to the right by a dis-
tance X (Fig. 2.18b). If our answer give a negatives value, -X, then the boat is displaced to
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the left. The new coordinate of W isat (L+ X +xy), W at (X +x), W, at (x, - L+ X).
In terms of the new coordinates, the center of mass of the system can be written as
m(L+ X +x)+mlx+X)+m(x,-L+X)
R = , )
m+my +m,
Since the total external force acting on the system is zero, the center of mass of the system
should remain unchanged as the men change places. Thus

R,, =R 3)
where R is given by Eq.(1) and R, is given by Eq.(2). Solving Eq.(3) for X we get
"y, = m
X m memiicsmantiu
m+my + m,

If m, > m,, then X > 0, and the boat will move to the right; if m, < m, then X <0, and the
boat will move to the left. If the men have equal weight, the boat will remain at rest.

2.12 A bar of mass m is placed on a plank of mass M, which rests on a smooth horizontal
plane. The coefficient of friction between the surfaces of the bar and the plank is £.
The plank is subject to a horizontal force F of the form F = ct, where ¢ is a constant.
Find (a) the moment of time t at which the plank starts sliding from under the bar.
(b) the acceleration of the bar and of the plank in the process of their motion.
Solution:
(8) Let the x axis lie along the horizontal plane, and
F is the friction force between the bar and the plank. (Fig.
2.15). The equations of motion for the bar and the plank
are, respectively:
ma=F,  MA=F-F, (D M - D

where a and A are accelerations of the bar and the plank Fig. 2.1%
respectively.

As the force F grows, so does the friction force. But the maximum value of the fric-
tion force is fing. Before this maximum value is reached, both bodies (the bar and the
plank) move as a single whole with equal accelerations. But as soon as the friction force
reaches the maximum value, the plank starts sliding from under the bar, i.e.

Aza
Substituting the values of a and A taken from Eq.(1) and taking into account that T = fmg
we oblain

(bt— fmg)/ M 2 fg Acedleraion
where the equal sign corresponds to the moment t =t .Hence A
t,=(m+M)fglb
(byHe<t,, then - ,)Pf f 3
a= A =bt/(m+M) o i
and if # > ¢, then v o S L
a = fg = consiant, A= {bt - fTmgyM Fig. 2.15x

2.17 A uniform straight rigid bar of mass m and length b is placed in a horizontal position
across the top of two identical cylindrical rollers. Axes of the two rollers are 2d apart.
If £ is the frictional coefficient between the cylinder surface and the bar, show that if
the bar is displaced a distance x from its central position, then the net horizontal force
on the bar is F = -fingx/d, and the bar will execute simple harmonic motion with a pe-
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rod of 27z d / fz .

Solution: Y
Fig. 2.1% is a force diagram for the system. O SR - . N

Displacement of the center of mass of the bar is FSE NEETEN

%, positive to the right, measured from the mid- Ny e "

way point between the rollers. Equations of mo- 1{'—“ d—s len & _;I

tion of the bar, in the component forms, are
mi=2F, = F-F,
mp=0=2 F, =N, + N, -mg ‘
where, as indicated in Fig. 2.20, N and N are normal forces and F and F are the friction
forces on the bar. N and N can be determined by using the rotation equilibrium condition:
2 T, (f0tal o forque) = 0
Taking torques about 0 ,we obtain

Fig. 2.19

3 | bees

N, Cd)y=mg(x+d), oF Ny =—me(l+x/d) 3

3

Then from Eq.{(2) we obtain
1
Nio=mg~-N,= Emg(la x/d) {4y
The friction forces can now be determined:

Fy=F, = fN,— fN, = fngx | d
Substituting this into Equation (1) we obtain

- I " )
x+;x:x+mcx::0, w,” = fg/d

which describes simple harmonic motion at angular frequency @. The period of oscillation
is

P=2nlm= 77&@72& .

2.20 A particle of mass m is attached to the end of a string and moves in a circle of radius r
on a horizontal table. The string passes through a frictionless hole in the table and the
other end is fixed initially.

(a) If the string is pulled so that the radius of the circular orbit decreases, how does
the angular velocity change if it is @ when r =7 ?

{b) What work is done when the particle is pulled slowly in from a radius r to a ra-
dius r /22

Solution:
(a) When the particle moves in circle of radius
r . the magnitude of its angular momentum is
L. = m;aﬁzfrf;*ﬁﬁ (v=ram,) -
As the radius of the circular orbit is reduced from !/ ég Fig. 2.20

r, 1o r, the angular frequency is correspondingly changed to » and the angular momen-
turn of the particle becomes
L=mrto
If the string is pulled very slowly, the angular momentum of the particle is conserved (adia-
batic invarience) and so we have
mrieo = mroza)o

o=|—| @
o \r/
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(b) By using the work-energy principle, we have
W= A(KE), {(A(PEY = 0 for our case)
Now
AKEY= imrza)z - Emr ‘p?
- 2 2 & [

where r =7, /2, and @ = (r, / ¥)* »,. Substituting these into the above equation, we find
3 .,
W= AKE)==> mrlw? .
Alternatively the work done on the particle is given by

{rf2 o
w=)"T.d

where T is the tension in the string which provides the centripetal force required for circu-
lar motion,

rd

. 2 2 2
T=F =mv’/r=mre’ =m0,
2

Substituting this into the work-integral we will find the same result given by work-energy
principle.

2.2{ A bead of mass m slides without friction on a vertical hoop of radius R. The bead
moves under a combination of gravity and spring attached to the bottom of the hoop.

For simplicity, we assume that the equilibrium length of the spring is zero, so that the

force due to the spring is -kr, where r is the instantaneous length of the spring, as

shown in Fig. 2.2 . The bead is released at the top of the hoop with negligible speed.

How fast is the bead moving at the bottom of the hoop?

Solution:

At the top of the hoop, the gravitational potential
energy of the bead is mg(ZR) and the potential energy
of the spring is £(2R)* /2 = 2kR*. Hence the initial
potential energy of the bead is

PE, = 2mgR + 2kR*
The potential energy at the bottom of the hoop is
PE; =0

The initial kinetic energy of the bead is zero, KE; = 0; The kinetic energy at the bottom d
is KEy= mv; /2.
Since all the forces are conservative, the mechanical energy is conserved and we
have
KE + PE, =KE, + PE,

or

-;—mvf +0=0+(2mgR + 2kR?)

v, =2JgR+ kR’ /m .

Solving for vy we get
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