Chapter 2
Significance

Computer organization is essentially a study of the processor, memory hierarchy, I/O system and
bus and how these components work together to execute program instructions. It is perhaps not
necessarily for the IT student to understand the details here. However, it is essential that the IT
student be able to deal with the consequences of computer organization: being able to evaluate
processor performance, understanding the memory hierarchy, knowing about the interrupt
system, understanding concepts like computer’s word size, knowing what a pipeline is, etc. This
will allow the IT person to not only make informed decisions when buying or upgrading systems,
but many of these concepts will help the IT person understand the performance of the computer
system. This chapter covers several organization topics but it also introduces related topics.
After the lengthy discussion of the structure of the computer and the fetch-execute cycle, we visit
the CPU in some detail, followed by the memory hierarchy and then the 1/0 system. The section
on the 1/0 system discusses the peripheral devices and such concepts as human-computer
interaction (HCI) and plug-and-play. The last portion of this chapter more concretely illustrates
the components of the computer and how you can assemble them. The first lab in the lab manual
covers PC assembly.

Chapter outline

I. Introduction —the IPOS cycle
Il. Structure of the computer
a. Digital devices
b. The bus components
I1l. Sample program
a. Cversion
b. Assembly version
c. Brief glimpse of machine language version
IV. The fetch-execute process
a. CPU components: ALU, control unit, registers of note
b. 5-part fetch-execute cycle
c. Executing the program
d. Memory reads and memory writes
V. The CPU in detail
a. Microcode
b. System clock
c. Evaluating a processor’s performance
d. Benchmark programs
VI. Memory hierarchy
a. RAM, DRAM and ROM
b. SRAM and on-chip and off-chip caches
c. Virtual memory
VII. Input and output

a. Interactivity
b. HCI
i. Ergonomics and repetitive stress injuries
ii. Accessibility
ili. Wearables
iv. Virtual reality
c. Plug-and-play
VIIl. Computer hardware
IX. Computer assembly

Chapter in more detail

This chapter is divided into four sets of material. First up is the fetch-execute cycle. This is
described in the introduction and then the first three titled sections. The second of these titled
sections includes a short sample program that is then used in the third section for reference. It is
important that you step through the fetch-execute cycle to help the student truly understand what
is going on, but do not be surprised if your students are confused by much of the detail. The
program supplied in the text is a very simple one. Yet it may not illustrate all of the concepts
clearly, so another example is provided below with the in-class activities.

Section 4 continues the coverage of computer organization by focusing on the CPU. We
reinforce concepts covered in the previous sections and also discuss microcode, clock cycle
speed, and attributes of a computer that impact processor performance. It is a great misnomer
that clock cycle speed dictates the speed of the computer. It is important to emphasize this to the
students. As your students may be involved in recommending computer purchases for their
organization(s), they should understand the significance of this misnomer and how better to gage
the computer’s performance by looking at many characters (see page 33).

Section 5 covers the memory hierarchy which continues the coverage of computer organization.
Here, we see the primary forms of memory and the impact that they have on each other, for
instance, the significance of having on-chip and off-chip cache. We also introduce virtual
memory which is a topic that will arise again in chapter 4.

In section 6, we explore the various forms of input and output. This moves us away from the
lower level computer organization concepts into material that is probably easier for the student to
understand. The discussion of wearables and virtual reality, which wraps up coverage of HCI,
might go well with material covered later in the textbook such as the end of chapter 12 (which
deals with the Internet) or chapter 16.

The final section of this chapter steps the reader through the various components of a computer
and discusses how to assemble them. The lab maual’s first lab involves PC construction. You
may or may not have the hardware available to support this lab. If not, you should obtain the
various pieces of equipment so that you can at least pass them out to the class for them to
examine. Specifically, they should see a motherboard, CPU, banks of memory chips, and at least
one type of disk drive. If you can also show them an open system unit, that would be beneficial.

In-class activities

e Demonstrate the various components of the computer system by showing the students
actual components and passing them out to the class (if you have them available)
e Do a different fetch-execute example so that the students have two versions, the one in
the text and the one from class. Here is an example:
o C code:
X=n;
factorial=1;
while(x > 0) {
factorial=factorial*x;
X=x-1;
}
printf(“%d\n”, factorial);
o Assembly code:

Load n
Store x I[x=n
Load #1
Store factorial /[factorial = 1

Top: Load X /[top of the while loop, move x to AC
Jle Done /I if x <=0 jump to done
Multiply factorial /I AC = AC * factorial
Store factorial // factorial gets new value
Load x
Subt #1
Store x IIx=x-1
Jump Top

Done: Load factorial
Output 2049 /I printf statement

o Assume the program is loaded into location 1,000,000, n, x and factorial are
stored in locations 1,000,014, 1,000,015 and 1,000,016 respectively. Top is at
location 1,000,004 and Done is at location 1,000,012. The PC will start out as
1,000,000.

o We start with PC = 1,000,000 and fetch Load n, incrementing the PC to
1,000,001. We decode this instruction and execute it, causing the datum n (at
memory location 1,000,014) to be loaded into the accumulator.

o At 1,000,001, we fetch Store x and increment the PC. We decode this instruction
and execute it by sending the value in the AC, a write signal, and the address of x
(1,000,015) to memory. This stores the value from n into x.

o Skipping ahead two instructions, we fetch Load x and execute it placing the
current value of x in the accumulator.

o Next, we fetch Jle Done and increment the PC to 1,000,006. Here, we test the

accumulator. If the value is <= 0, we change the PC to the location Done (which

is memory location 1,000,012. So, when this instruction is done, the PC is either
1,000,006 or 1,000,012.

Assuming it is 1,000,006, we fetch Multiply factorial. This requires that we fetch
factorial from memory (location 1,000,016). Executing this instruction causes the
multiplier to multiply together the value in the AC and the value fetched from
memory (factorial), placing AC * factorial in the AC. The next instruction, when
executed, causes us to move this product back into the variable factorial in
memory (1,000,016).

