Chapter 02

2.1 | Obtain the expression for the electron density when the Fermi function is box-like.
Ans. | The carrier density is given by
Ep
n=[g(E)f(E)E = N, [(E-E,)"*dE = (2N /3)(E, - E,)"
E,
where we have used f(£)=1 for E.<E <Ep.
2.2 | Obtain the expression for the density-of-states for electrons in Si. Show that Eq. (2.10) is
valid if mg. is replaced by 6”*(mm?)"”.
Ans. 32
. L _ 8, 2m,, 1/2 —
The density of state function is given by N (E )dE = Py h—2 E"“dE | for Si g,~=6
T
3 (2 3/2
Therefore, N(EWE=—| "4 | E'"dE
-\ h
2.3 | Calculate the total number of states in silicon between E. and E. +kgT at 300 K.
Ans. | the required number of states may be obtained by evaluating the following integral :
E +kBT
¢ 1/2 2 2
() ar =2 T
EC
The number of states is therefore
3/2
g, (2my 2 3/2
== —=| =k, T
27’ ( n’ j 3 (kaT)
Putting g, = 6, m,e = (m,m,z)m, m; = 0.92 my and m; = 0.19 my, one obtains N = 1.9 x
102 m
2.4 | Assume that a semiconductor becomes degenerate when the Fermi level touches the band

edge. Assume also that Eq. (2.16) is valid. Calculate the donor density needed to make the
electron system in GaAs degenerate at 7= 300 K. Take m, = 0.067 my.




Ans

When Eq. 2.16 is valid, the donor density needed to make the electron system in GaAs
degenerate at T=300K will be equal to the density of state function and its value will be
4.13x10” m™

2.5

Calculate the maximum temperature of operation of a Si device doped with 10" donor

atoms/cm’. Use the expression for band gap given by Eq. (2.27).

Ans.

Using eq. 2.27, we get the band gap of Si at 300K as 1.12 eV.: For device operation the
semiconductor must be either n or p-type. This defines a maximum temperature of

operation of any device at which temperature the extrinsic carrier density equals the

intrinsic carrier density. Therefore, N, =n, =,\/N_N, exp(—Eg/ 2k,T ), This gives

max

Tmax=873K

2.6

Using the expression for temperature dependent band gap calculate the gap at 300 K and
1200 K. Take E4(0) = 1.17 eV, a=4.73 x 10™ eV/K, B = 636 K.

Ans.

The temperature dependent band gap is given by E, (T ): Ego—al 2 /(T + B), the band

gap at T=300K will be 1.1245 eV and at T=1200K, the band gap will be 0.799 eV.

2.7

Obtain the general expression for electron density given as n= N_.Fj,,(n) , where

© 1/2
o) = @JNm) [ = (Ep ~E.)/kgT .
oll+exp(x —n)]

Ans.

The general expression for electron density is given by Eq. (2.11). Using Eq. (2.13) for the Fermi
function, introducing the variables x=(E —E.)/kgT and n=(Ep — E.)/kgT , and noting the

expression for N¢, the required expression is easily obtained.

2.8

Show that when n << -1, F{,,(17) = exp(77) and the electron density is expressed by Eq.

(2.15) valid for nondegenerate semiconductors.

Ans.

Under the condition stated, 1+ exp(x —n)~exp(n — x). and je*)‘x”zdx =7 /2. One
0

obtains Eq. (2.16) valid for non-degenerate statistics.




2.9

When nn >>1, F/(n) = [4173/ 213Jn ]. Using this express Fermi energy in terms of

electron density.

Ans.

4773/2

3r

follows from the general expression Eq. (2.11), use the approximation f(E)=1. The

Under the stated condition, n= N, . To verify that this expression automatically

integration leads to (2/3)(E, —E,)’’* . After performing the algebra, the above

expression is easily obtained.

2.10

Obtain the expressions for the electron and hole densities when both the donors and

acceptors are present.

Ans.

. 3 . . . T
Consider N, acceptors and Np donors per cm’. Considering complete ionization, we can

writen —p = N3 — N; = Np — N,,. Again we know, np = n?, therefore, substituting

2

ni

—-, we have the quadratic equation n? — (N, — Ny)n — n? = 0, from the solution, we

(Np=Na)+ /(ND—NA)2+4ni2 n2
L
2

. Similarly, substituting n = - we get

p:

getn =

(Na—Np)+ /(ND—NA)2+4ni2
2

p:

2.11

Calculate the wavelength of emission for transition from 2s to 1s level of P impurity in Si.

The donor binding energy is 25 meV and the Bohr model is valid.

Ans.

According to Bohr’s Model, if donor binding energy is 25 meV, the ionization energy of
P in Siis 0.045 eV, the emission wavelength will be (1.24/0.045) pm, i.e., 27.55um

2.12

Calculate the Bohr radius for donor ions in Ge using m, = 0.12 my and &~16. Calculate
the approximate number of Ge atoms within the volume defined by the Bohr radius (age =

5.66 A). Does this number justify the use of effective mass in Eq. (2.28)?

Ans.

The Bohr radius for donor ions in Ge is given by r = n?e, % a,, where a, = 0.53A.




Considering n=1, we get r=70.66 A

2.13

Calculate the resistivity of intrinsic Ge at 300 K.

Ans.

1

—————, The intrinsic carrier concentration of Ge is 2.3
an; (un+up)

The resistivity is given by =

x10" cm?, electron mobility is 3900 cm’/V-sec and hole mobility is 1900 cm?/V-sec. So

the resistivity is given by 46.85 Q cm

2.14

The mobilities by two scattering processes vary with temperature 7" as AT and B/T. Prove

that the combined mobility will show a maximum when 7° = B/A.

Ans.

Let the mobility pu; o« AT and u, « B /T' According to Mathiessen’s rule, the over

Hil2

oty for maximum mobility , du/dT = 0, then one can easily prove
1 2

mobility u =

thatT? = B/A

2.15

The electrons in a semiconductor are scattered by impurities (um,= AT?) and by phonons
(upn = BT 29). Using Mathiessen rule show that the inverse mobility attains a minimum at

a certain temperature. Obtain the expression for the temperature giving minimum 1/p.

Ans.

Himp = AT/ and p,, = B T™25 | According to Mathiessen’s rule, the inverse mobility

5/2

becomesi = + %T‘“. Putting ;—T (i) = 0, one can obtain the expression for

B

3B
temperature as T* = —.

2.16

The current density for electrons in Si along the x direction is J, = neu.F,, where F is the
field along x = (100) direction, and ., = e<t>/m,,. Consider all the six valleys and show

that J, = ne’<t>F,/m., where m, is the conductivity effective mass.

Ans.

:uxxz e<T>/mxx ‘

Consider a valley with major axis along [100]




/m, 0 0

[u]= e<r> 0 1/m,, 0
0 0

sm,. = m;,m,,

1/m_

For valleys with major axis along [010]

1/m, 0 0

[,u]=e<r> 0 1/m, O

0 0 1/m,

Since all the six valleys have minima with same energy, the concentration in all the

n[lOO]

valleys are equal, i.e., = nl10] = (0] =n[100],etc=n0/ 6 , where ny is the total

electron concentration. Summing the contributions by each valley to the conductivity, one

may obtain its expression as

1(;1} 0
3\m, m,
[O'] =n,e’ <T> %(mil + W%J 0
0 o fls=
| 3\m;, m, )|

The conductivity tensor is thus isotropic and the current density along x direction is

J =ne2<T>Fx/mc,where 1/m, =l[i+ij

X
m; m,

2.17

Prove that the imputity scattering limited mobility follows the 7°” law.

Ans.

At low temperature, scattering of electrons by thermal vibration is weaker than the
scattering by ionized impurity. As an electron passes by an ionized donor, it is attracted
and thus deflected from its straight path. The potential energy of an electron at a distance

r from the donor ion is due to Coulomb attraction and its magnitude is given by




62
|PE| - 4re,e.r

If the kinetic energy of the electron approaching an donor ion is greater than its potential
energy at a distance r from the donor, then the electron will essentially continue without
feeling the potential energy and therefore without being deflected and we can say that it is
not scattered.On the other hand, if the kinetic energy of the electron is less than the the

potential energy at a distance r from the donor ion, then potential energy of the Coulomb

interaction will be so strong that the electronwill be deflected.

When the electron is just scattered, we can write KE = |PE(rCX.
where, r.is the critical

radius.But average kinetic energy is 3/2 kT, so that at r=r,

3

ST = \PE(r,) =

dre,e,r

2
e

r, =— . As T increases, the scattering radius decreases. The scattering cross section
6re e kT

4
we

— T,
(67e,e,kT)’ ”

S = mr}is given by S =
Thus the impurity scattering limited relaxation time is

1 1 7"
T. = oC oC
"™ Sv,N, T7?T"N, N,

2.18

Using kinetic theory for the electron gas prove D/u= kzT/e.




The diffusion current density can be written as | = qv! Z—:,

Therefore, we can write the diffusion coefficient D = vyl

etm

The mean free path, [ = v, 7, =~ D = (V,)%T = (V) ? —== (vth)zy%

Now, from kinetic theory gases, we know mv3, = kT

Therefore, we write, D = kT%

D kT
Rrinke

2.19 | Prove that T, is the mean time spent by an excess electron before being lost by
recombination.

Ans. | The variation of excess electron density with time is on(¢) = Anexp(—¢/7,). (1) . This
means that the density of electrons that does not suffer recombination after time ¢ is given
by the above equation. Similarly the density of electrons that do not suffer recombination
over time ¢+ Jt is given by Sn(t + ) = Anexp[—(t + &)/ 7,) = ()1 - (5t /7,)], (2)
where the approximation e * ~ 1 — x has been employed. The difference between (1) and
(2) denotes the density of electrons that suffer recombination between rand ¢+ &t , and
has a lifetime 7. To calculate the average lifetime we write
<t> =An '[ texp(—t/t,)(dt/7,)/ An. The integral may easily be evaluated and we get

0
(ty=1,.

2.20 | The field-dependent mobility is expressed as pu(F) = p,/ [1 +(F/ FC)]. How you would
obtain the expression for the saturation drift velocity?

Ans. | u(F)=p, /[I+(F/F)], iev,(F)=uF/[l+(F/F)], or v,(F)=u, /l/F +(1/F,))], if
F>F,, 1/F can be neglected, we get saturation drift velocity, as u,F,

2.21 | In the empirical expression for the drift velocity at high fields given in Example 2.11, find

out the values of low field mobility and saturation drift velocity for electrons in Si.




Ans.

B

In example 2.11, the drift velocity is given as v, =v, L !

F, FY | -
I+ —
FC

For low field,F<<F., so the drift velocity comes out as v;, which is equal to
1.07x107 cm/sec

In the similar way, the low fiels mobility will be v, / F

2.22

Under a high electric field, the electrons become “hot” with an effective temperature
T,>T;, Ty being the lattice temperature. The energy balance equation euF” = (3/2)ks(T, —
T1)/7. is used to determine the electron temperature. Prove that when the electric field is
along the <100> direction, the two conduction band valleys having longitudinal mass

along field direction will be colder than the remaining four valleys.

Ans.

Let the field be applied along z-direction, i.e, [001] direction. As seen, the corresponding
effective mass along the field direction is m; and the mobility is u*®' = er/m,. However
for the remaining four valleys the mass parallel to the field direction is m; and the mobility

is o Since m> my, electrons in valleys 1 and 2 will be less heated than the electrons in

valleys 3-6.

2.23

Calculate the value of the injected electron density which will raise the quasi Fermi level

0.01 eV above the conduction band edge of GaAs.

Ans.

2.24

We know the carrier density, n = N exp|[(E, — E,. )/kT ]

At T=300 K, for GaAs, N=4.7x10"7 /cm® Ez-Ec=0.01 eV, So n=6.9x10"" /cm®

The Fermi level is constant in a p-n junction under equilibrium. Using this, show that the




built-in potential in the junction is expressed by Eq. (2.77).

Ans. | The built in potential is actually the difference in the positions of the intrinsic levels in the
n and p region of the junction.
In the p region, the position of the Fermi level is given byEg, = E;, — kTln %, in the n
region , the position of the Fermi level is given byEr, = E;;, — kTIn %.
Since the Fermi level is constant throughout, Er,, = Ef,,, therefore, we have,
Eyp —Ein = lenN‘:l# = qV,; , where V; is the built in potential. Assuming complete
. : n? n? :
ionization, we can write ppo = Ny, yg = Np, g = p—‘ and p,o = n—‘, putting all these
po no
expressions we get the built in potential as given in Eq. (2.77)
2.25 | Obtain the expressions for the potential, field and junction capacitance of a linearly
graded p-n junction.
Let us consider a linearly graded junction where the doping concentration is a linear
function of x, i.e., N, —N , = ax, where a is the constant of proportionality.
From the solution of Poisson’s equation, we get the expression for the electric field as
2
E(x)= qzax +C, Where C is the constant of integration to be evaluated from the
gY
boundary condition. The boundary conditions are, at x=+W/2 , £(x) =0 and
x, =x, =W/2, where W is the depletion layer width. Solving we get
qa w?
E(x) = by x* - vl Integrating this relation of electric field, the built in potential will
85‘
be obtained as
r aw’
V= | &) d=2
" I 12¢,
2.26 | The depletion layer of a p-n junction acts as a parallel plate capacitor in which the —ve

(+ve) charges are assumed to be placed at X, (Xn0) : the edges of the depletion layer on

n) side. Net N, = 10" cm™ and Ny = 10" ¢cm” and x, = 0.1 pm. Calculate the
p p




depletion layer capacitance per unit area.[go = 8.84 x 10™"* Farads/m].

Ans. | The depletion layer capacitance per unit area at zero bias is given by
qes NaNp \1/2 NaNp ) NaNp
Co=(L240) " where Vo =0.026 x [n™432 for Si Vo =0.026 x In =432 =
2Vyg Ng+Np ng n;

0.877V,e, =11.8,C; =9.3 x 10 7cm™
2.27 | Give a sketch of variation of electron and hole densities in a forward biased p-n junction,

infinitely long in both sides.
Ans.

An::
............. Ap
Po || e
Nno
Ap
An \\
Pno
XpO Xno

The carrier distribution obeys the law :exp(-x/L), where L is the diffusion length.
2.28 | From the diode equation prove that the dynamic resistance of a forward biased p-n

junction diode is dV/dI = 26 ohm for forward current of 1 mA.
ADS. | From the diode equation we know, I = Iy(e?/*¥T — 1) . So KL a1, is

i~ q I+l

negligible, putting I = 1 mA, the dynamic resistance comes out as 26 Q.




2.29

Prove that in a p'-n junction, the forward bias current is predominantly due to holes

injected into the n-region.

Ans.

We know that the diode current is given by [/ =I{exp(%J—l} , Where

B

L L

P n

DppnO DnnpO + . . . . .
1, = Aq + . For p -n junction, p side is doped much more heavily than the
n side. So, the equilibrium electron concentration 7, in the p side can be neglected

D
compared to the equilibrium hole concentration p ,in the n side.So/, = Aq[%}

P
Therefore, the forward bias current is predominantly due to holes injected into the n-

region.

2.30

Prove that the stored charge in n-region due to injected holes is O, = I7,. Obtain the

expression for the small signal diffusion capacitance dQ, /dV .

Ans.

The total excess hole charge stored in the n-region is given by

0, =edAp I exp(—x/ L, )dx =eAL,Ap . Since the average lifetime of a hole in n-side is
0

7, the entire charge O, recombine in time 7 ,and this charge must be supplied in order
to maintain steady state. Thus steady state currentis /, =0, /7.

Further , using the relation Ap = pno[exp(eV/kBT) - l] = p,,exp(eV/k,T), we may write
Q,=1It,=edL,p,,exp(eV /k,T). The capacitance due to small changes in the stored

charge is C,..,, =d0,/dV =(e/k,T)It,.




Chapter 03

3.1

Find the wavelength range over which GaAlAs alloy can be used as a laser.

Ans

The laser material must have direct gap. The alloy is direct gap for x<0.45 and the band
gap is 1.985eV for x = 0.45. Since wavelength is A = 1.24/E3, the range of wavelength
(energy) is from 0.625 (1.985 eV) to 0.871 um (1.424eV).

3.2

For DH laser you need type I alignment. Find the maximum value of x for GaAlAs that

ensures that E,rinGaAlAs will be at least 0.2 eV below the Egx or Eg;.

Ans

E,—-E,= 1.900-+0.125x+0.143x>-1.424-1.247x=0.2. Solving the quadratic equation

0.276- 1.122x+0.143x” = 0, we obtain x = 0.132.
Again E, — E = 1.708+0.642x-1.424-1.247x = 0.2. This gives x = 0.1388 ~ 0.14.

3.3

Show that Ing spAlg4sAs 1s lattice matched to Ing53Gag47 As.

Ans

a(Ing53Gagp47 As.)=5.8688 A; a(InAs) = 6.0584, a(AlAs) = 5.6612. a(In; xAlkAs)= (1-x)
6.0584+ x 5.6612 = 5.8688. Solving x = 0.48.

3.4

Find the composition of In;_, GayAsyP., lattice matched to InP for emission at 1.3 and

1.55 pms.

Ans

The band gap for 1.3 pm is E, = 1.24/1.3 = 0.954 eV. Putting this in the expression for

2 . . _ _
E,(y)=1.35-0.72y+0.12y" and solving one obtains y = 0.64 and x = 0.29. The
COl’l'lpOSitiOIl 1S In0471Ga()429AS()464P0436.

For 1.55 pum the band gap is 0.8 eV. Proceeding similarly, the composition becomes

Ing 58Gag 42As0.9P 1.

3.5

Show that the conduction band offset in GaAs/AlGaAsheterojunction increases with x,
attains a maximum and then decreases. Use the 65:35 ratio for calculating the band

offsets.

Ans

From the expressions for the band gap AE . =1.247x. Therefore AE , will increase with x.

However for x> 0.45, the X valley in AlGaAs becomes the lowest conduction band

valley. The conduction band offset is now AE_, and it decreases with x.

3.6

Show that the heterostructure Al\Ga;<As/AlyGa;.yAs can show type II band alignment for

X<y.

Ans

deleted




