
 Chapter 02 

2.1 Obtain the expression for the electron density when the Fermi function is box-like. 

Ans. The carrier density is given by 
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where we have used 1)( Ef  for Ec<E < EF . 

2.2 Obtain the expression for the density-of-states for electrons in Si. Show that Eq. (2.10) is 

valid if mde is replaced by 62/3(mlmt
2)1/3. 

Ans. 
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2.3 Calculate the total number of states in silicon between Ec and Ec +kBT at 300 K.  

Ans. the required number of states may be obtained by evaluating the following integral :  
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The number of states is therefore  
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Putting gv = 6,   3/12
tld mmem  , ml = 0.92 m0 and mt = 0.19 m0, one obtains N = 1.9 x 

1025 m-3. 

 

2.4 Assume that a semiconductor becomes degenerate when the Fermi level touches the band 

edge. Assume also that Eq. (2.16) is valid. Calculate the donor density needed to make the 

electron system in GaAs degenerate at T = 300 K.  Take me = 0.067 m0. 



Ans When Eq. 2.16 is valid, the donor density needed to make the electron system in GaAs 

degenerate at T=300K will be equal to the density of state function and its value will be 

4.13×1022 m-3 

2.5 Calculate the maximum temperature of operation of a Si device doped with 1016 donor 

atoms/cm3. Use the expression for band gap given by Eq. (2.27). 

Ans. Using eq. 2.27, we get the band gap of Si at 300K as 1.12 eV.:  For device operation the 

semiconductor must be either n or p-type. This defines a maximum temperature of 

operation of any device at which temperature the extrinsic carrier density equals the 

intrinsic carrier density. Therefore,  max2/exp TkENNnN BgvciD  , This gives 

Tmax=873K 

2.6 Using the expression for temperature dependent band gap calculate the gap at 300 K and 

1200 K. Take Eg(0) = 1.17 eV, α= 4.73 x 10-4 eV/K, β = 636 K. 

Ans. The temperature dependent band gap is given by   )/(2
0   TTETE gg , the band 

gap at T=300K will be 1.1245 eV and at T=1200K, the band gap will be 0.799 eV. 

2.7 Obtain the general expression for electron density given as , where 

, . 

Ans. The general expression for electron density is given by Eq. (2.11). Using Eq. (2.13) for the Fermi 

function, introducing the variables TkEEx Bc /)(  and TkEE BcF /)(  , and noting the 

expression for NC,  the required expression is easily obtained. 

2.8 Show that when ,1 )exp()(2/1  F  and the electron density is expressed by Eq. 

(2.15) valid for nondegenerate semiconductors. 

Ans. 
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obtains Eq. (2.16) valid for non-degenerate statistics. 
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2.9 When 1 ,  ]3/4[)( 2/3
2/1  F . Using this express Fermi energy in terms of 

electron density.  

Ans. 
Under the stated condition, 



3
4 2/3

CNn  . To verify that this expression automatically 

follows from the general expression Eq. (2.11), use the approximation 1)( Ef . The 

integration leads to 2/3))(3/2( cF EE  . After performing the algebra, the above 

expression is easily obtained. 

2.10 Obtain the expressions for the electron and hole densities when both the donors and 

acceptors are present. 

Ans. Consider NA acceptors and ND donors per cm3. Considering complete ionization, we can 

write ݊ − ݌ = ܰ஽ା − ஺ܰ
ି ≈ ܰ஽ − ஺ܰ. Again we know, ݊݌ = ݊௜ଶ, therefore, substituting 

݌ = ௡೔
మ

௡
, we have the quadratic equation ݊ଶ − (ܰ஽ − ஺ܰ)݊ − ݊௜ଶ = 0, from the solution, we 

get ݊ =
(ேವିேಲ)ାට(ேವିேಲ)మାସ௡೔

మ

ଶ
. Similarly, substituting ݊ = ௡೔

మ

௣
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2.11 Calculate the wavelength of emission for transition from 2s to 1s level of P impurity in Si. 

The donor binding energy is 25 meV and the Bohr model is valid. 

Ans. According to Bohr’s Model, if donor binding energy is 25 meV, the ionization energy of 

P in Si is 0.045 eV, the emission wavelength will be (1.24/0.045) m, i.e., 27.55m 

2.12 Calculate the Bohr radius for donor ions in Ge using me = 0.12 m0 and εr=16. Calculate 

the approximate number of Ge atoms within the volume defined by the Bohr radius (aGe = 

5.66 A). Does this number justify the use of effective mass in Eq. (2.28)? 

Ans. The Bohr radius for donor ions in Ge is given by ݎ = ݊ଶ߳௥
௠బ
௠ೝ
ܽ଴, where ܽ଴ = 0.53Å. 



Considering n=1, we get r=70.66 Å 

2.13 Calculate the resistivity of intrinsic Ge at 300 K. 

Ans. The resistivity is given by = ଵ
௤௡೔ ൫ఓ೙ାఓ೛൯

 , The intrinsic carrier concentration of Ge is 2.3 

×1013 cm-3, electron mobility is 3900 cm2/V-sec and hole mobility is 1900 cm2/V-sec. So 

the resistivity is given by 46.85  cm 

2.14 The mobilities by two scattering processes vary with temperature T as AT and B/T. Prove 

that the combined mobility will show a maximum when T2 = B/A. 

Ans. Let the mobility ߤଵ ∝ ଶߤ and ܶܣ ∝ ܤ
ܶൗ . According to Mathiessen’s rule, the over 

mobility ߤ = ఓభఓమ
ఓభାఓమ

, for maximum mobility , ݀ߤ ݀ܶ = 0⁄ , then one can easily prove 

thatܶଶ = ܤ ⁄ܣ  

2.15 The electrons in a semiconductor are scattered by impurities (µimp= AT3/2) and by phonons 

(µph = BT-2.5). Using Mathiessen rule show that the inverse mobility attains a minimum at 

a certain temperature. Obtain the expression for the temperature giving minimum 1/µ. 

Ans. ߤ௜௠௣ = ଷܶܣ ଶ⁄  and ߤ௣௛ =  ଶ.ହ , According to Mathiessen’s rule, the inverse mobilityିܶ ܤ

becomesଵ
ఓ

= ்ఱ మ⁄

஻
+ ଵ

஺
ܶିଷ.ଶ. Putting ௗ

ௗ்
ቀଵ
ఓ
ቁ = 0, one can obtain the expression for 

temperature as ܶସ = ଷ஻
ହ஺

. 

2.16 The current density for electrons in Si along the x direction is Jx = neμxxFx, where F is the 

field along x = (100) direction, and μxx = e<τ>/mxx. Consider all the six valleys and show 

that Jx = ne2<t>Fx/mc, where mc is the conductivity effective mass. 

Ans. 
xxxx me /  . 

Consider a valley with major axis along [100] 
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Since all the six valleys have minima with same energy, the concentration in all the 

valleys are equal, i.e.,          6/ etc , 0
001001010100 nnnnn  , where n0 is the total 

electron concentration. Summing the contributions by each valley to the conductivity, one 

may obtain its expression as 
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The conductivity tensor is thus isotropic and the current density along x direction is 

cxx mFneJ /2  , where 
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2.17 Prove that the imputity scattering limited mobility follows the T3/2 law. 

Ans. At low temperature, scattering of electrons by thermal vibration is weaker than the 

scattering by ionized impurity. As an electron passes by an ionized donor, it is attracted 

and thus deflected from its straight path.  The potential energy of an electron at a distance 

r from the donor ion is due to Coulomb attraction and its magnitude is given by 



r
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If the kinetic energy of the electron approaching an donor ion is greater than its potential 

energy at a distance r from the donor, then the electron will essentially continue without 

feeling the potential energy and therefore without being deflected and we can say that it is 

not scattered.On the other hand, if the kinetic energy of the electron is less than the the 

potential energy at a distance r from the donor ion, then potential energy of the Coulomb 

interaction will be so strong that the electronwill be deflected. 

When the electron is just scattered, we can write  .crPEKE 
where, rcis the critical 

radius.But average kinetic energy is 3/2 kT, so that at r=rc,  
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Thus the impurity scattering limited relaxation time is 
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2.18 Using kinetic theory for the electron gas prove D/µ= kBT/e. 



 The diffusion current density can be written as ܬ =  ௧௛݈ݒݍ
ௗ௡
ௗ௫

,  

Therefore, we can write the diffusion coefficient ܦ =  ௧௛݈ݒ

The mean free path, ݈ = ∴ ,௧௛߬ݒ ܦ = ଶ߬(௧௛ݒ) = ଶ(௧௛ݒ) ௘ఛ
௠

௠
௘

= ௠ߤଶ(௧௛ݒ)
௘

 

Now, from kinetic theory gases, we know ݉ݒ௧௛ଶ = ݇ܶ 

Therefore, we write, ܦ = ݇ܶ ఓ
௘
 

∴
ܦ
ߤ =

݇ܶ
݁  

2.19 Prove that τn is the mean time spent by an excess electron before being lost by 

recombination. 

Ans. The variation of excess electron density with time is )/exp()( ntntn   . (1) . This 

means that the density of electrons that does not suffer recombination after time t is given 

by the above equation. Similarly the density of electrons that do not suffer recombination 

over time tt  is given by  )/(1)()/)(exp[)( nn ttnttnttn   , (2) 

where the approximation xe x  1 has been employed. The difference between (1) and 

(2) denotes the density of electrons that suffer recombination between t and tt  , and 

has a lifetime t. To calculate the average lifetime we write 

ndtttnt nn  


/)/)(/exp(
0

 . The integral may easily be evaluated and we get 

nt  .  

2.20 The field-dependent mobility is expressed as  )/(1/)( 0 cFFF   . How you would 

obtain the expression for the saturation drift velocity? 

Ans.  )/(1/)( 0 cFFF   , i.e  )/(1/)( 0 cd FFFFv   , or  )/1(1/)( 0 cd FFFv   , if 

F>Fc, 1/F can be neglected, we get saturation drift velocity, as cF0  

2.21 In the empirical expression for the drift velocity at high fields given in Example 2.11, find 

out the values of low field mobility and saturation drift velocity for electrons in Si. 



Ans. 

In example 2.11, the drift velocity is given as 
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For low field,F<<Fc, so the drift velocity comes out as v1, which is equal to 
sec/1007.1 7 cm  

 

 

In the similar way, the low fiels mobility will be Fv /1  

2.22 Under a high electric field, the electrons become “hot” with an effective temperature 

Te>TL, TL being the lattice temperature. The energy balance equation eμF2 = (3/2)kB(Te – 

TL)/τe is used to determine the electron temperature. Prove that when the electric field is 

along the <100> direction, the two conduction band valleys having longitudinal mass 

along field direction will be colder than the remaining four valleys. 

Ans. Let the field be applied along z-direction, i.e, [001] direction. As seen, the corresponding 

effective mass along the field direction is ml and the mobility is lme /001   . However 

for the remaining four valleys the mass parallel to the field direction is mt and the mobility 

is c. Since ml> mt, electrons in valleys 1 and 2 will be less heated than the electrons in 

valleys 3-6. 

2.23 Calculate the value of the injected electron density which will raise the quasi Fermi level 

0.01 eV above the conduction band edge of GaAs. 

Ans. We know the carrier density,   kTEENn CFC  exp
 

At T=300 K, for GaAs, Nc=4.7x1017 /cm3 EF-EC=0.01 eV, So n=6.9x1017 /cm3 
 

2.24 The Fermi level is constant in a p-n junction under equilibrium. Using this, show that the 



built-in potential in the junction is expressed by Eq. (2.77). 

Ans. The built in potential is actually the difference in the positions of the intrinsic levels in the 

n and p region of the junction. 

In the p region, the position of the Fermi level is given byܧி௣ = ௜௣ܧ − ݈݇ܶ݊ ேಲ
௡೔

, in the n 

region , the position of the Fermi level is given byܧி௡ = ௜௡ܧ − ݈݇ܶ݊ ேವ
௡೔

. 

 Since the Fermi level is constant throughout, ܧி௣ = ி௡ܧ , therefore, we have,  

௜௣ܧ − ௜௡ܧ = ݈݇ܶ݊ ேಲேವ
௡೔
మ = ݍ ௕ܸ௜  , where ௕ܸ௜  is the built in potential. Assuming complete 

ionization, we can write ݌௣଴ = ஺ܰ, ݊௡଴ = ܰ஽, ݊௣଴ = ௡೔
మ

௣೛బ
 and ݌௡଴ = ௡೔

మ

௡೙బ
, putting all these 

expressions we get the built in potential as given in Eq. (2.77) 

2.25 Obtain the expressions for the potential, field and junction capacitance of a linearly 

graded p-n junction. 

 Let us consider a linearly graded junction where the doping concentration is a linear 

function of x, i.e., axNN AD  , where a is the constant of proportionality. 

From the solution of Poisson’s equation, we get the expression for the electric field as 
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, Where C is the constant of integration to be evaluated from the 

boundary condition. The boundary conditions are, at 2Wx  , ℰ(ݔ) = 0  and 

2Wxx pn  , where W is the depletion layer width. Solving we get 

ℰ(ݔ) = 









42

2
2 Wxqa

s
. Integrating this relation of electric field, the built in potential will 
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2.26 The depletion layer of a p-n junction acts as a parallel plate capacitor in which the –ve 

(+ve) charges are assumed to be placed at xp0 (xn0) : the edges of the depletion layer on 

p(n) side. Net Na =  1018 cm-3 and Nd = 1017 cm-3 and xp0 = 0.1 µm. Calculate the 



depletion layer capacitance per unit area.[ε0 = 8.84 x 10-12 Farads/m]. 

Ans. The depletion layer capacitance per unit area at zero bias is given by 

ௗܥ = ቀ௤ఌೞ
ଶ௏బ

ேಲேವ
ேಲାேವ

ቁ
ଵ ଶ⁄

,  where ଴ܸ = 0.026 × ݈݊ ேಲேವ
௡೔
మ ,for Si ଴ܸ = 0.026 × ݈݊ ேಲேವ

௡೔
మ =

௦ߝ ,ܸ 0.877 = ௗܥ ,11.8 = 9.3 × 10ି଻cm-2 

2.27 Give a sketch of variation of electron and hole densities in a forward biased p-n junction, 

infinitely long in both sides.  

Ans.  

 

The carrier distribution obeys the law :exp(-x/L), where L is the diffusion length. 

2.28 From the diode equation prove that the dynamic resistance of a forward biased p-n 

junction diode is dV/dI = 26 ohm for forward current of 1 mA. 

Ans. From the diode equation we know, ܫ = ଴൫݁௤௏ܫ ௞்⁄ − 1൯ . So ௗ௏
ௗூ

= ௞்
௤

ଵ
ூାூబ

, as ܫ଴  is 

negligible, putting ܫ =  .the dynamic resistance comes out as 26  ,ܣ݉ 1
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2.29 Prove that in a p+-n junction, the forward bias current is predominantly due to holes 

injected into the n-region. 

Ans. 
We know that the diode current is given by 













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qVII
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AqI 00
0 . For p+-n junction, p side is doped much more heavily than the 

n side. So, the equilibrium electron concentration 0pn  in the p side can be neglected 

compared to the equilibrium hole concentration 0np in the n side.So 

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
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Therefore, the forward bias current is predominantly due to holes injected into the n-

region. 

2.30 Prove that the stored charge in n-region due to injected holes is pp IQ  . Obtain the 

expression for the small signal diffusion capacitance dVdQ p / .  

Ans.  The total excess hole charge stored in the n-region is given by  

  peALdxLxpeAQ ppp  


0

/exp . Since the average lifetime of a hole in n-side is 

p , the entire charge pQ recombine in time p and this charge must be supplied in order 

to maintain steady state. Thus steady state current is ppp QI / . 

Further , using the relation   )/exp(1)/exp( 00 TkeVpTkeVpp BnBn  , we may write 

)/exp(0 TkeVpeALIQ Bnppp   . The capacitance due to small changes in the stored 

charge is pBpdiffusion ITkedVdQC )/(/  . 

 



Chapter 03  

3.1 Find the wavelength range over which GaAlAs alloy can be used as a laser. 

Ans

. 

The laser material must have direct gap. The alloy is direct gap for x<0.45 and the band 

gap is 1.985eV for x = 0.45. Since wavelength is λ = 1.24/E8, the range of wavelength 

(energy) is from 0.625 (1.985 eV) to 0.871  µm (1.424eV).  

3.2 For DH laser you need type I alignment. Find the maximum value of x for GaAlAs that 

ensures that EgΓinGaAlAs will be at least 0.2 eV below the EgX or EgL.  

Ans

. 

 ggX EE 1.900+0.125x+0.143x2-1.424-1.247x=0.2. Solving the quadratic equation 

0.276- 1.122x+0.143x2 = 0, we obtain x = 0.132. 

Again  ggL EE = 1.708+0.642x-1.424-1.247x = 0.2. This gives x = 0.1388 ~ 0.14. 

3.3 Show that In0.52Al0.48As  is lattice matched to In0.53Ga0.47 As. 

Ans

. 

a(In0.53Ga0.47 As.)= 5.8688 A; a(InAs) = 6.0584, a(AlAs) = 5.6612. a(In1-xAlxAs)= (1-x) 

6.0584+ x 5.6612 = 5.8688. Solving x = 0.48. 

3.4 Find the composition of In1-x GaxAsyP1-y lattice matched to InP  for emission at 1.3 and 

1.55 µms. 

Ans

. 

The band gap for 1.3 µm is Eg = 1.24/1.3 = 0.954 eV. Putting this in the expression for 
212.072.035.1)( yyyEg  and solving one obtains y = 0.64 and x = 0.29. The 

composition is In0.71Ga0.29As0.64P0.36. 

For 1.55 µm the band gap is 0.8 eV. Proceeding similarly, the composition becomes 

In0.58Ga0.42As0.9P0.1. 

3.5 Show that the conduction band offset in GaAs/AlGaAsheterojunction increases with x, 

attains a maximum and then decreases. Use the 65:35 ratio for calculating the band 

offsets. 

Ans

. 
From the expressions for the band gap  gE =1.247x. Therefore  cE will increase with x. 

However for x> 0.45, the X valley in AlGaAs becomes the lowest conduction band 

valley. The conduction band offset is now XcE and it decreases with x.  

3.6 Show that the heterostructure AlxGa1-xAs/AlyGa1-yAs can show type II band alignment for 

x <y . 

Ans deleted 


