
Chapter 2 problems

2.9.2

p(x) ≥ 0 for all x = 1, 2, · · · and
∑∞
x=1 p(x) =

∑∞
x=1

1
x(x+1) =

∑∞
x=1

(
1
x −

1
x+1

)
= (1− 1

2 ) + ( 1
2 −

1
3 ) + ( 1

3 −
1
4 ) + · · · =

1 + ( 1
2 −

1
2 ) + ( 1

3 −
1
3 ) + · · · = 1

Thus, p(x) is a legitimate probability mass function.

2.9.4

Let A denotes the event that team A wins and B denotes the event that team B wins. Let P (A) = p Let the series
ends in k games where k = 4, 5, 6, 7. Conditional on the event A wins the series (or equivalently, the last game), A
should have won 3 games and B should have won (k− 4) games before the last game. Roles of A and B are reversed,
given that B wins the series. Hence, if X denotes the number of games in the series, then

P (X = k) = P (A wins the last game)P (X = k|A wins the last game)

+ P (B wins the last game)P (X = k|B wins the last game)

= p ·
(
k − 1

3

)
p3(1− p)k−4 + (1− p) ·

(
k − 1

3

)
(1− p)3pk−4 for k = 4, 5, 6, 7

Plugging in the values of k and p, we get

P (X = 4) = (0.6)

(
3

3

)
(0.6)3(0.4)0 + (0.4)

(
3

3

)
(0.4)3(0.6)0 = 0.1552

P (X = 5) = (0.6)

(
4

3

)
(0.6)3(0.4) + (0.4)

(
4

3

)
(0.4)3(0.6) = 0.2688

P (X = 6) = (0.6)

(
5

3

)
(0.6)3(0.4)2 + (0.4)

(
5

3

)
(0.4)3(0.6)2 = 0.29952

P (X = 7) = (0.6)

(
6

3

)
(0.6)3(0.4)3 + (0.4)

(
6

3

)
(0.4)3(0.6)3 = 0.27648

Therefore, the expected number of games is

E(X) =

7∑
k=4

kP (X = k) = 5.69728.

2.9.6

Of the 5! = 120 permutations of the integers 1, 2, 3, 4, 5 the following will yield system failure after 2-components
failure.

(a) 1, 2, , , : 3! = 6 ways.

(b) 2, 1, , , : 6 ways.

(c) 4, 5, , , : 6 ways.

(d) 5, 4, , , : 6 ways.

i.e., 24 ways to fail upon 2-component failure. Hence, P (X = 2) = 24
120 = 1

5 .

P (X = 3) = 1 − P (X = 2) − P (X = 4), since system can not fail after 1 failure, and can not survive after 4
failures, P (X = 1) = 0 = P (X = 5).

P (X = 4): Failure at the 4-th component failure will occur for orderings

(a) 1, 3, 4, , : 3!.2! ways = 12 ways

(b) 2, 3, 5, , : 12 ways
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i.e., 24 ways. Hence, P (X = 4) = 24
120 = 1

5 . So, distribution of X is

X 1 2 3 4 5
P (X = x) 0 1

5
3
5

1
5 0

2.9.8

The following tree describes the problem schematically. Let F be the total number of fingers and W be the winning

amount for Studley. Then their distributions are given by

F 2 3 4
P(F=f) 7

24
1
2

5
24

and
W -5 4 6

P(W=w) 1
2

5
24

7
24

Expected value of Studley’s winning under this strategy E(W ) = (−5). 12 + 4. 5
24 + 6. 7

24 = 1
12 .

If he always sticks one finger out, then

which means

W -5 6
P(W=w) 1

2
1
2

Since EW = (−5). 12 + 6. 12 = 1
2 , sticking out one finger always favors Studley.

2.9.10

The expected payoff (without any charge) is

EP = 5. 1
10 + 2. 3

10 + 1. 2
10 + 0. 4

10 = 13
10 or $1.30. In order to make a profit of $0.20, $1.30 + $0.20 = $1.50 is to

be charged each time the game is played.
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2.9.12

(a) P (X = k) =
(3
k)(

7
3−k)

(10
3 )

for k = 0, 1, 2, 3

Therefore, P (X = 0) =
(3
0)(

7
3)

(10
3 )

=
7.6.5

6
10.9.8

6

= 7
24 = 0.2917

P (X = 1) = 21
40 = 0.525

P (X = 2) = 7
40 = 0.175

P (X = 3) = 1
120 = 0.008333

(b) E(X) = 0× (0.2917) + 1× (0.525) + 2× (0.175) + 3× (0.008333) = 0.9

2.9.14

By definition E(X) =
∑∞
n=0 nP (X = n) =

∑∞
n=1 nP (X = n)

= P (X = 1)

+P (X = 2) + P (X = 2)

+P (X = 3) + P (X = 3) + P (X = 3)

+ · · ·

= P (X ≥ 1) + P (X ≥ 2) + P (X ≥ 3) + · · · =
∑∞
n=1 P (X ≥ n)

2.9.16

Let f(c) = E(X − c)2 = E(X2)− 2cEX + c2. Then f ′(c) = −2EX + 2c.

f ′(c) = 0 gives c = EX = µ. f ′′(c) = 2 > 0. So E(X − c)2 is minimized when c = µ.

2.9.18

Since the probability of obtaining X = x is the weighted sum of pi(x) where the weights are given by the probability

of taking the value Xi, the p.m.f. of X is given by p(x) =
∑k
i=1 aipi(x). Alternatively,

P (X = x) =
∑k
i=1 P (X = Xi)P (Xi = x|X = Xi) =

∑k
i=1 aipi(x)

EX =
∑

all x xp(x) =
∑

all x x
∑k
i=1 aipi(x) =

∑k
i=1 ai

∑
all x xpi(x) =

∑k
i=1 aiEXi

2.9.20

X ∼ HG(N,n, r). So EX = nr
N . Since the randomly observed x is likely to be reasonably close to EX, we assume

that x ≈ nr
N , from which we obtain N∗ = nr

x as a guess for N .

2.9.22

Let W be the number of sets (out of five) that Roger wins. P (Roger wins set)= 0.4. Then,

P (W ≥ 3) = 1− P (W < 3) = 1− P (W ≤ 2) = 1−
∑2
w=0

(
5
w

)
(0.4)w(0.6)5−w = 0.31744

2.9.24

P (X=x)
P (X=x−1) =

(rx)(
N−r
n−x)/(

N
n)

( r
x−1)(

N−r
n−x+1)/(

N
n)

=
(rx)(

N−r
n−x)

( r
x−1)(

N−r
n−x+1)

=
r!

x!(r−x)!
(N−r)!

(n−x)!(N−r−n+x)!

r!
(x−1)!(r−x+1)!

(N−r)!
(n−x+1)!(N−r−n+x−1)!

= (r−x+1)(n−x+1)
x(N−r−n+x)
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P (X=x)
P (X=x−1) ≤ 1 means that

(r − x+ 1)(n− x+ 1) ≤ x(N − r − n+ x), which, upon simplification, yields

nr + r − 2x+ n+ 1 ≤ Nx

Or, (n+ 1)(r + 1) ≤ (N + 2)x

Or, (n+1)(r+1)
N+2 ≤ x

i.e., the mode of the distribution of X is the largest integer less than or equal to (n+1)(r+1)
N+2 .

2.9.26

Let X be the number of defective batteries. Then,

(a) P (X = 1) =
(4
1)(

8
2)

(12
3 )

= 28
55

(b) The probability that the first two batteries work but the third one doesn’t is = ( 8
12 ).( 7

11 ).( 4
10 ) = 28

165

2.9.28

Let X and Y be the random variables for the number of patients in the first and second groups whose headache pain
is alleviated. Then,

P (X > Y ) = P (X ≥ 1, Y = 0) + P (X ≥ 2, Y = 1) + P (X ≥ 3, Y = 2) + P (X ≥ 4, Y = 3) + P (X = 5, Y = 4)

=
(

5
0

)
(0.5)0(0.5)5

∑5
x=1

(
5
x

)
(0.4)x(0.6)5−x +

(
5
1

)
(0.5)1(0.5)4

∑5
x=2

(
5
x

)
(0.4)x(0.6)5−x + · · ·+(

5
4

)
(0.5)4(0.5)1

∑5
x=5

(
5
x

)
(0.4)x(0.6)5−x

= 0.26042

2.9.30

Let W = win $1 on finite sequence of one or more spins. P (W ) = 1− P (6 straight losses).

For every spin, P (loss) = 20
38 = 0.52632.

P (W ) = 1− (0.52632)6 = 0.97874.

P (W1

⋂
W2

⋂
W3

⋂
W4

⋂
W5) =

(
1− (0.52632)6

)5
= 0.89812 i.e., about 90% chance of leaving the table $5 ahead.

Expected winning (+5)(0.89812) + (−63)(0.10188) = −$5.97

2.9.32

(a) P (2 aces in a random bridge hand) =
(4
2)(

48
11)

(52
13)

= 0.2135.

Let X ∼ B(6, 0.2135). Then, P (exactly 2 aces in 6 hands) = P (X = 2) =
(

6
2

)
(0.2135)2(0.7865)4 = 0.2616

(b) P (0 aces in a hand) =
(48
13)

(52
13)

= a

P (1 ace in a hand) =
(4
1)(

48
12)

(52
13)

= b

P (at least 2 aces in a hand) = 1− a− b

P (at least 2 aces in at least 2 hands out of 6) = 1− P (X ≤ 1) where X ∼ B(6, 1− a− b), which is ≈ 0.4834.
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2.9.34

E(2X) =
∑n
x=0 2x

(
n
x

)
pxqn−x =

∑n
x=0

(
n
x

)
(2p)xqn−x = (2p+ q)n = (1 + p)n

2.9.36

By theorem 2.5.3, V (X) = np(1−p). Let f(p) = np(1−p). Then f ′(p) = n(1−2p) gives that f ′(p) = 0 when p = 1
2 .

f ′′(p) = −2n shows that f(p) attains its maximum at p = 1
2 . Thus, V (X) ≤ n( 1

2 )(1− 1
2 ) = n

4 and V (X) = n
4 if and

only if p = 1
2

2.9.38

Let X be the number of trials until rth success. Then X ∼ NB(r, p). Here r = 4 and p = 1
2 . Hence,

P (X ≥ 7) = 1− P (X ≤ 6) = 1−
∑6
x=4

(
x−1

3

)
(0.5)4(0.5)x−4 = 1−

(
3
3

)
(0.5)4 −

(
4
3

)
(0.5)5 −

(
5
3

)
(0.56) = 0.65625

2.9.40

P (X > k) =
∑∞
x=k+1 pq

x−1p
∑∞
x=k q

x = p. q
k

1−q = qk

2.9.42

Let MT = {Tony misses the bull’s eye}; MC = {Cleo misses the bull’s eye}; HC ={Cleo hits the bull’s eye}

P (MTHC) = (0.9)(0.2)

P (MTMCMTHC) = (0.9)2(0.8)(0.2)

P (MTMCMTMCMTHC) = (0.9)3(0.8)2(0.2)

Thus, the probability that Cleo hits the bull’s eye before Tony does is given by:

= P (MTHC) + P (MTMCMTHC) + P (MTMCMTMCMTHC) + · · ·

= (0.9)(0.2) + (0.9)2(0.8)(0.2) + (0.9)3(0.8)2(0.2) + · · ·

=
∑∞
n=0 (0.9)n+1(0.8)n(0.2) = (0.9)(0.2)

∑∞
n=0 (0.72)n = 0.18. 1

1−0.72 = 9
14

2.9.44

First, note that
∑n
i=0Ai = 1−An+1

1−A

Now,
∑M−1
y=1 ypqy−1 = p

∑M−1
y=1 yqy−1 = p ddq q

yp
∑M−1
y=1 qy = p ddq

(
q. 1−q

M−1

1−q

)
= p ddq

(
q−qM
1−q

)
= 1

p (1− qM −MpqM−1)

So, EY = 1
p (1− (q +Mp)qM−1) +MqM−1 = 1−(q+Mp)qM−1+MpqM−1

p = 1−qM−MpqM−1+MpqM−1

p = 1−qM
p = 1−qM

1−q

2.9.46

Let NS = {Somnia not awake}; NT = {Tarde not awake}; YT = {Tarde awake}

P (NSYT ) = (0.8)(0.3)

P (NSNTNSYT ) = (0.8)2(0.7)(0.3)

P (NSNTNSNTNSYT ) = (0.8)3(0.7)2(0.3)

· · ·

Thus, the probability that Tarde wins is given by

P (NSYT ) + P (NSNTNSYT ) + P (NSNTNSNTNSYT ) + · · · =
∑∞
n=0(0.8)n+1(0.7)n(0.3) = 6

11
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2.9.48

(a) As mentioned in the hint, this event will happen only on sequences of the type H,MMH,MMMMH, · · · etc.
Therefore, the required probability

P (H ∪MMH ∪MMMMH ∪ · · · ) = P (H) + P (MMH) + P (MMMMH) + · · ·
= 0.1 + (0.9)(0.8)(0.1) + (0.9)(0.8)(0.9)(0.8)(0.1) + · · ·

= 0.1
[
1 + 0.72 + (0.72)2 + · · ·

]
=

0.1

1− 0.72
=

5

14

(b) This event will happen only on sequences of the type MH,MMMH,MMMMMH, · · · etc. Therefore, the
required probability

P (MH ∪MMMH ∪MMMMMH ∪ · · · ) = P (MH) + P (MMMH) + P (MMMMMH) + · · ·
= (0.8)(0.1) + (0.8)(0.9)(0.8)(0.1) + (0.8)(0.9)(0.8)(0.9)(0.8)(0.1) + · · ·

= (0.8)(0.1)
[
1 + 0.72 + (0.72)2 + · · ·

]
=

0.08

1− 0.72
=

2

7

2.9.50

The two different ways you can win, as mentioned in the hint, are WW,WLWW, · · · and LWW,LWLWW, · · · . The
probability that you win in the first way is

P (WW ∪WLWW ∪WLWLWW · · · ) = P (WW ) + P (WLWW ) + P (WLWLWW ) + · · ·
= (0.6)(0.6) + (0.6)(0.4)(0.6)(0.6) + (0.6)(0.4)(0.6)(0.4)(0.6)(0.6) + · · ·

= (0.6)2
[
1 + 0.24 + (0.24)2 + · · ·

]
=

0.36

1− 0.24
=

9

19

The probability that you win in the second way is

P (LWW ∪ LWLWW ∪ LWLWLWW · · · ) = P (LWW ) + P (LWLWW ) + P (LWLWLWW ) + · · ·
= (0.4)(0.6)(0.6) + (0.4)(0.6)(0.4)(0.6)(0.6)

+ (0.4)(0.6)(0.4)(0.6)(0.4)(0.6)(0.6) + · · ·

= (0.4)(0.6)2
[
1 + 0.24 + (0.24)2 + · · ·

]
=

0.144

1− 0.24
=

18

95

Therefore, the probability that you win is = 9
19 + 18

95 = 63
95 ≈ 0.6632

2.9.52

Let Xi be the event that both Eddie and I get the same outcome at trial i. Let Wi be the event that I get H while
Eddie gets T at trail i. Then, the probability that I win is

P (W ) = P (W1) + P (X1W2) + P (X1X2W3) + · · ·

Now, P (Wi) = (0.6)(0.3) = 0.18 for any i.

P (Xi) = P (HH) + P (TT ) = (0.6)(0.7) + (0.4)(0.3) = 0.54 for any i.

Hence, P (W ) = 0.18 + (0.54)(0.18) + (0.54)2(0.18) + · · · = 0.18
∑∞
n=0(0.54)n = 0.18

1−0.54 = 9
23

2.9.54

By the hint, P (X1) = 1. Consider X2. There are n− 1 choices given n coupons. Thus, X2 ∼ G(n−1
n ). Similarly, we

have Xi ∼ G(n−i+1
n ) for i = 1, · · · , n. Hence, E(

∑n
i=1Xi) =

∑n
i=1E(Xi) =

∑n
i=1

n
n−i+1
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2.9.56

Let X be the number of emissions per 10 microseconds. Then X ∼ B(10, 0.2) ≈ P (2). Thus, P (X = 3) ≈ e−223

3! =
0.180447

2.9.58

E( 1
X+1 ) =

∑∞
x=0

1
x+1

e−λλx

x! = 1
λ

∑∞
x=0

e−λλx+1

(x+1)! = 1
λ

∑∞
y=1

e−λλy

y! = 1
λ (1− P (Y = 0)) = 1

λ (1− e−λ).

2.9.60

The p.m.f. of X ∼ P (λ) is e−λλx

x! . Consider the ratio between P (X = x) and P (X = x+ 1). Then

P (X=x)
P (X=x−1) =

e−λλx
x!

e−λλx−1

(x−1)!

= λ
x . Now λ

x ≥ 1 if x ≤ λ, and thus x = bλc, or the greatest integer less than or equal

to λ, is the mode of P (λ).

2.9.62

E[Xf(X − 1)] =
∑∞
x=0 xf(x − 1) e

−λλx

x! =
∑∞
x=1 xf(x − 1) e

−λλx

x! =
∑∞
x=0 f(x − 1) e

−λλx

(x−1)! =
∑∞
y=0 f(y) e

−λλy+1

y! =

λ
∑∞
y=0 f(y) e

−λλy

y! = λE[f(X)]

2.9.64

p(x) = λxe−x

x! = λ
x
λx−1e−x

(x−1)! = λ
xp(x− 1) for all x ≥ 1.

Let λ = 3.

P (0) = e−3 = 0.049787 (Tabled value 0.05)

P (1) = 3
1P (0) = 0.149362 (Tabled value 0.149)

P (2) = 3
2P (1) = 0.224042 (Tabled value 0.224)

P (3) = 3
3P (2) = 0.224042 (Tabled value 0.224)

P (4) = 3
4P (3) = 0.168031 (Tabled value 0.168)

etc.

2.9.66

EX =
∑∞
x=1

x
1−e−λ

λxe−λ

x! = e−λ

1−e−λ
∑∞
x=1

xλx

x! = e−λ

1−e−λ
∑∞
x=1

λx

(x−1)! = e−λ

1−e−λ
∑∞
y=0

λ1+y

y! = λe−λ

1−e−λ
∑∞
y=0

λy

y! =

λe−λ

1−e−λ e
λ = λ

1−e−λ

E(X(X − 1)) = e−λ

1−e−λ
∑∞
x=2

x(x−1)λx

x! = e−λ

1−e−λ
∑∞
x=2

λx

(x−2)! = e−λ

1−e−λ
∑∞
y=0

λy+2

y! = λ2

1−e−λ

Hence, V (X) = E(X(X − 1)) + EX − (EX)2 = λ2

1−e−λ + λ
1−e−λ −

λ2

(1−e−λ)2 = λ(1−e−λ−λe−λ)
(1−e−λ)2

2.9.68

gX(t) = 1−tn+1

(n+1)(1−t) = 1
n+1

∑n
x=0 t

x

Since gX(t) =
∑∞
x=0 t

xp(x) =
∑∞
x=0 t

x( 1
n+1 ), it shows that p(x) = 1

n+1 for x = 0, 1, · · · , n.
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2.9.70

p(x) = 1
6 for x = 1, 2, · · · , 6. Hence

gX(t) =
∑∞
x=0 t

xp(x) = 1
6

∑6
x=1 t

x = t(t6−1)
6(t−1) = t7−t

6(t−1)

2.9.72

(a) If t = 0, m(t) = (−0.3)10 6= 1. So, this is not a moment generating function.

(b) The p.m.f. is given by P (X = 0) = 0.2;P (X = 1) = 0.8. So X ∼ B(1, 0.8).

Mean = EX = 1× 0.8 = 0.8, Variance = V (X) = 1× 0.8× 0.2 = 0.16

(c) m(t) = 0.5et

1−0.5et = 0.5et
∑∞
k=0(0.5et)k =

∑∞
k=1(0.5)ketk

The p.m.f. is given by P (X = k) = (0.5)k; k = 1, 2, · · · or X ∼ 0.5. Therefore, Mean = 1
0.5 = 2, Vari-

ance = 0.5
(0.5)2 = 2

(d) m(t) =
[

0.6et

1−0.4et

]3
= (0.6)3e3t

∑∞
k=0

(
k+2
k

)
(0.4et)k =

∑∞
k=0

(
k+2
k

)
(1 − 0.4)3(0.4)ke(k+3)t =

∑∞
k=3

(
k−1
k−3

)
(1 −

0.4)3(0.4)k−3ekt.

Hence the p.m.f. is given by P (X = k) =
(
k−1
k−3

)
(1− 0.4)3(0.4)k−3; k = 3, 4, · · · . Hence X ∼ NB(3, 0.4)

Mean = 3
0.4 = 7.5; Variance = 3.(0.4)

(0.6)2 = 10
3

(e) m(t) = e3(et−1) = e3et−3 = e−3e3et = e−3
∑∞
k=0

(3et)k

k! =
∑∞
k=0

e−33k

k! .

Hence, the p.m.f. is given by P (X = k) = e−33k

k! for k = 0, 1, 2, · · · . So, X ∼ P (3).

Mean = 3; Variance = 3.

(f) From the mathematical form of m(t), it is evident that the p.m.f. is P (X = k) = k
12 for k = 2, 4, 6.

Mean = 2. 16 + 4. 26 + 6. 36 = 14
3

Variance =
[
22. 16 + 42. 26 + 62. 36

]
− ( 14

3 )2 = 20
9

(g) m(t) = 1
n

∑n
j=1 e

jt. So the p.m.f. is given by P (X = k) = 1
n for k = 1, 2, · · · , n. In other words, X follows the

discrete uniform distribution on {1, 2, · · · , n}.

Mean =
∑n
j=1 j.

1
n = n+1

2

Variance =
∑n
j=1 j

2 1
n − (n+1

2 )2 = (n+1)(2n+1)
6 − (n+1)2

4 = (n+1)(n−1)
12

2.9.74

(a) X ∼ NB(r, p). P (X = x) =
(
x−1
r−1

)
prqx; x = r, r + 1, · · · .

Let Y = X − r. Then P (Y = y) =
(
r+y−1
r−1

)
prqy; y = 0, 1, · · ·

(b) Now suppose r →∞, p→ 1 and rq → λ > 0. Then

P (Y = y) = (r+y−1)···r
y! prqy. And since, in the limit rq ≈ λ > 0 and since y is a fixed finite constant,

P (Y = y) = pr(r+y−1)···r.qy
y! ≈ (1−λr )r(rq)y

y! ≈ (1−λr )rλy

y! → λye−y

y! for y = 0, 1, 2, · · ·
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