
Chapter 2

Geometrical and Numerical Methods
for First-Order Equations

2.1 Direction Fields—the Geometry of Differential Equa-
tions

1. Looking at the point (2, 1), y′ = 9
2 , which matches graph b.

2. Looking at the point (2, 1), y′ = 18, which matches graph c.

3. Looking at the point (2, 1), y′ = 2
9 , which matches graph a.

4. Looking at the point (2, 1), y′ = 1
18 , which matches graph d.

5. Graph B

6. Graph C

7. Graph D

8. Graph A

9. y′ = cos y #9 #10
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10. y′ = y4

59
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60 Section 2.1

11. y′ = sin y
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12. y′ = e−y
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13. y′ = cosx
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Section 2.1 61

14. y′ = x4
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15. y′ = sinx
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16. y′ = e−x
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62 Section 2.1

17. y′ = x+ y
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18. y′ = xy
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19. y′ = ex
2
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Section 2.1 63

20. y′ = x2(y + 1)

21. y′ =
x− 1

y − 1
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22. y′ = y(y2 − 2)
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64 Section 2.1

23. y′ =
x2 − 1

y2 + 1
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24. y′ =
x3(y2 + 1)

y2 + x2
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25. xy(x2 + 2)
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2.2. EXISTENCE AND UNIQUENESS FOR FIRST-ORDER EQUATIONS 65

2.2 Existence and Uniqueness for First-Order Equations

1. y′ = y2 − x2, y(0) = 0, f = y2 − x2,
∂f

∂y
= 2y. The theorem guarantees

that a solution exists and is unique on some interval.

2. y′ = x2−y2, y(0) = 1, f = x2−y2,
∂f

∂y
= −2y. The theorem guarantees

that a solution exists and is unique on some interval.

3. y′ = y−2 − x2, y(0) = 0, f =
1

y2
− x2,

∂f

∂y
= −y−3. The theorem does

not guarantee that a solution exists or is unique on some interval.

4. y′ = x ln y, y(1) = 1, f = x ln y,
∂f

∂y
= x

y . The theorem guarantees that

a solution exists and is unique on some interval (y ̸= 0).

5. y′ = y +
1

1− x
, y(1) = 0, f = y +

1

1− x
,
∂f

∂y
= 1. The theorem does

not guarantee that a solution exists or is unique on some interval.

6. y′ = ey + cscx, y(0) = 0, f = ey + cscx,
∂f

∂y
= ey. The theorem does

not guarantee that a solution exists or is unique on some interval.

7. f(x, y) = 3x(y + 2)2/3,
∂f

∂y
=

2x

(y + 2)1/3
, which is discontinuous when

y = −2, so a solution exists and is unique everywhere except possibly
along y = −2.

8.
∂f

∂y
=

4

3
xy(−1/3) which is not continuous at y = 0. Hence a solution

exists and is unique everywhere except possibly along y = 0.

Actual solution: y =
x6

27
. This solution crosses y = 0 when x = 0.

9. f(x, y) = (x − y)1/5,
∂f

∂y
=

−1

5(x− y)4/5
, which is discontinuous when

y = x, so solutions exist and are unique everywhere except possibly

along y = x. Alternatively, f(x, y) =
(x− y)′

5
,
∂f

∂y
= −1

5
, so solutions

exist and are unique everywhere.

10.
∂f

∂y
= 2x(2/3) which, along with f(x, y), are continuous everywhere. Hence

solution exists and is unique.
Actual solution: y = 0.
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66 Section 2.2

11. f(x, y) = x2y−1,
∂f

∂y
= −x2y−2, which are both discontinuous when

y = 0, so solutions exist and are unique everywhere except possibly
along y = 0.

12.
∂f

∂y
= −2

3
xy(−5/3) which is not continuous at y = 0. Hence a solution

exists and is unique everywhere except possibly along y = 0.

Actual solution: y =

(
5

6

)(3/5)

x(6/5) This solution crosses y = 0 when

x = 0.

13. f(x, y) = (x+y)−2,
∂f

∂y
=

−2

(x+ y)3
, which are both discontinuous when

y = −x, so solutions exist and are unique everywhere except possibly
along y = −x.

14.
∂f

∂y
=

2

3
xy(−1/3) which is not continuous at y = 0. Hence a solution

exists and is unique everywhere except possibly along y = 0.

Actual solution: y =
x6

216
which crosses y = 0 when x = 0.

15. f(x, y) = 5(y − 2)3/5 and y(0) = 2.
∂y

∂y
=

3

(y − 2)2/5
is discontinuous

when y = 2, so solutions exist and are unique everywhere except possibly
along y = 2. Solving for the initial value,

y′ = 5(y − 2)3/5 ⇒
∫

(y − 2)−3/5 dy =

∫
5 dx

⇒ 5

2
(y − 2)2/5 = 5x+ C

Applying initial conditions,

5

2
(2− 2)2/5 = 5(0) + C ⇒ C = 0

⇒ (y − 2)2/5 = 2x ⇒ y − 2 = ±(2x)5/2

⇒ y = 2± (2x)5/2

Solutions passing through (0, 2) are NOT unique.

16.
∂f

∂y
= −2xy−3 which is continuous everywhere except y = 0, so solutions

exist and are unique everywhere except possibly along y = 0.

Actual solution:

(
−3

2
+

x2

2

)1/3
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2.3. FIRST-ORDER AUTONOMOUS EQUATIONS—GEOMETRICAL INSIGHT 67

17. f(x, y) = 2
√
y is continuous for y ≥ 0 and

∂f

∂y
=

1
√
y

is continuous

for y > 0. Hence, by the theorem, a solution exists and is unique for
y(1) = 3.

Actual solution is given by: y = (x+
√
3− 1)2.

18.
∂f

∂y
= x(1/3)(−2y) which is continuous everywhere (as is f), therefore,

unique solution will exist everywhere.

19.
∂f

∂y
= (y − 1)(−2/3) which is continuous everywhere except y = 1, so

solutions exist and are unique everywhere except possibly along y = 1.
Actual solution: 1± 2

√
2x(3/2)

20. f(x, y) and
∂f

∂y
are not continuous at y = 1, so solutions exist and are

unique everywhere except possibly along y = 1.
Actual solution: y = 1 + 3

√
3− 3 cosx which IS unique.

21.
∂f

∂y
DNE at y = 0; if y > 0, then ∂f

∂y = 1 and if y < 0, then ∂f
∂y = −1.

Hence,
∂f

∂y
= lim

h→0

f(x, y + h)− f(x, y)

h
DNE. Therefore, the solutions will exist

and be unique except possibly at y = 0.
If y ≥ 0, y = eCex which will never be 0. If y < 0, y = −eCe−x which
will never be 0. Thus, the only solution to this DE is y = 0 which IS
unique.

2.3 First-Order Autonomous Equations—Geometrical In-
sight

1. y′ = 2y + 3

Root y = − 3
2

Multiplicity 1

(i) y − y′-plane; see graph

(ii) By the phase line diagram, y = − 3
2 is an unstable equilibrium

point.

(iii) y > − 3
2 , y → ∞ as x → ∞

y < − 3
2 , y → −∞ as x → ∞
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(iv) xy-plane; see graph
2.3.1(i) 2.3.1(iv)
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2. y′ = −3y + 2

Root y = 2
3

Multiplicity 1

(i) y − y′-plane; see graph

(ii) By the phase line diagram, y = 2
3 is a stable equilibrium point.

(iii) y < 2
3 , y → 2

3 as x → ∞
y > 2

3 , y → 2
3 as x → ∞

(iv) xy-plane; see graph
2.3.2(i) 2.3.2(iv)
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3. x′ = x2 − x− 6 = (x− 3)(x+ 2)

(i) y − y′-plane; see graph
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Section 2.3 69

(ii) x = −2 is a stable equilibrium
x = 3 is an unstable equilibrium

(iii) If x0 > 3, then x(t) → ∞ as t → ∞.
If −2 < x0 < 3, then x(t) → −3 as t → ∞.
If x0 < −2, then x(t) → −3 as t → ∞.

(iv) xy-plane; see graph
2.3.3(i) 2.3.3(iv)
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4. x′ = x(x+ 2)(x− 3)

Equilibrium Multiplicity
x = 0 1
x = −2 1
x = 3 1

Highest power and coefficient: x(+x)(+x) = +x3

(i) y − y′-plane; see graph

(ii) x = −2, 3 unstable; x = 0 stable

(iii) For x0 ∈ (−∞,−2), x → −∞ as t → ∞
For x0 ∈ (−2, 3), x → 0 as t → ∞
For x0 ∈ (3,∞), x → ∞ as t → ∞

(iv) xy-plane; see graph
2.3.4(i) 2.3.4(iv)
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5. y′ = y2 + 4y + 4, y2 + 4y + 4 = 0, (y + 2)2 = 0

Root y = −2
Multiplicity 2

End behavior: y2

(i) y − y′-plane; see graph

(ii) By the phase line diagram, y = −2 is a half-stable equilibrium
point.

(iii) y > −2, y → ∞ as x → ∞
y < −2, y → −2 as x → ∞

(iv) xy-plane; see graph
2.3.5(i) 2.3.5(iv)
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6. y′ = −y2, −y2 = 0

Root y = 0
Multiplicity 2
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Section 2.3 71

End behavior: −y2

(i) y − y′-plane; see graph

(ii) By the phase line diagram, y = 0 is a half-stable equilibrium point.

(iii) For y > 0, y → 0 as x → ∞.
For y < 0, y → −∞ as x → ∞.

(iv) xy-plane; see graph
2.3.6(i) 2.3.6(iv)
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7. y′ = y2(2− y)

Equilibrium Multiplicity
y = 0 2
y = 2 1

Highest power and coefficient: y2(−y) = −y3

(i) y − y′-plane; see graph

(ii) y = 0 is a half-stable point; y = 2 is a stable point.

(iii) For y ∈ (−∞, 0), y → 0 as x → ∞.
For y ∈ (0,∞), y → 2 as x → ∞

(iv) xy-plane; see graph
2.3.5(i) 2.3.5(iv)
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8. y′ = (y − 1)2(y − 2)3(1 + y)

Equilibrium 1 2 −1
Multiplicity 2 3 1

Highest power and coefficient: (y)2(y)3(+y) = +y6

(i) y − y′-plane; see graph

(ii) y = −1 is stable; y = 1 is half-stable; y = 2 is unstable.

(iii) If y0 > 2, then y → ∞ as x → ∞.
If 1 < y0 < 2, then y → 1 as x → ∞.
If −1 < y0 < 1, then y → −1 as x → ∞.
If y0 < −1, then y → −1 as x → ∞.

(iv) xy-plane; see graph
2.3.8(i) 2.3.8(iv)
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9. y′ = (y − 2)3(y2 − 9) = (y − 2)3(y + 3)(y − 3)
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Section 2.3 73

Equilibrium 2 −3 3
Multiplicity 3 1 1

Highest power coefficient: (y)3(y2) = +y5

(i) y − y′-plane; see graph

(ii) y = −3, 3 unstable, y = 2 stable

(iii) For y0 ∈ (−∞,−3), y → −∞ as x → ∞
For y0 ∈ (−3, 3), y → 2 as x → ∞
For y0 ∈ (3,∞), y → ∞ as x → ∞

(iv) xy-plane; see graph
2.3.9(i) 2.3.9(iv)
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10. y′ = cos y + 1, −2π < y < 2π. cos y + 1 = 0, cos y = −1.

Roots y = −π y = π
Multiplicity 1 1

End behavior: cosine wave

(i) y − y′-plane; see graph

(ii) By the phase line diagram, y = −π is a half-stable equilibrium
point. y = π is a half-stable equilibrium point.

(iii) For y > π, y → ∞ as x → ∞.
For −π < y < π, y → π as x → ∞.
For y < −π, y → −π as x → ∞.
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(iv) xy-plane;see graph
2.3.10(i) 2.3.10(iv)
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11. y′ = sin y, −2π < y < 2π
sin y = 0, −2π < y < 2π

Roots y = −π y = 0 y = π
Multiplicity 1 1 1

End behavior: trigonometric sine wave

(i) y − y′-plane; see graph

(ii) By the phase line diagram, y = −π is a stable equilibrium point.
y = 0 is an unstable equilibrium point.
y = π is a stable equilibrium point.

(iii) For y > π, y → π as x → ∞
For 0 < y < π, y → π as x → ∞
For −π < y < 0, y → −π as x → ∞
For y < −π, y → −π as x → ∞

(iv) xy-plane; see graph
2.3.11(i) 2.3.11(iv)

-6 -4 -2 2 4 6
y

-1

-0.5

0.5

1

y'

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

K14712_SM_Cover.indd   84 05/11/14   5:12 PM



Section 2.3 75

12. v′ = g − k
mv. Equilibrium satisfies g − (k/m)v = 0, so v =

gm

k

(i) v − v′-plane; see graph

(ii) v =
gm

k
is a stable equilibrium point.

(iii) For v ∈ [0,∞), v → gm
k as t → ∞

(iv) Figures will vary. See graph with g = 32, m = .25, k = 2 as in example 2 in 1.3.
2.3.12(i) 2.3.12(iv)

k m
v

g

v'

1 2 3 4 5 6

1

2

3

4

5

6

13. v′ = g − k
mv2. Equilibrium satisfies g − (k/m)v2 = 0, so v2 = gm/k

yields v = ±
√

gm/k. Note that this is a free-fall problem where v > 0
in the downward direction. We thus ignore v < 0.

(i) Graphs will vary

(ii)

√
gm

k
is a stable equilibrium point

(iii) For v ∈ [0,∞), v → +
√
gm/k as t → ∞

(iv) Graphs will vary

14. x′ = (2− x)3(x2 + 4), (2− x)3(x2 + 4) = 0

Roots 2 ±2i
Multiplicity 3 ignore

End behavior: (−x)3(x2) = −x5

(i) x− x′-plane; see graph

(ii) By the phase line diagram, x = 2 is a stable equilibrium point.

(iii) For x > 2, → 2 as t → ∞.
For x < −2, → 2 as t → ∞.

K14712_SM_Cover.indd   85 05/11/14   5:12 PM



76 Section 2.3

(iv) tx-plane; see graph
2.3.14(i) 2.3.14(iv)
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15. y′ = (2− y)3(y2 + 4)2

Root 2
Multiplicity 3

Highest power and coefficient: (−y)3(y2)2 = −y7

(i) x− x′-plane; see graph

(ii) By the phase line diagram, y = 2 is a stable equilibrium point.

(iii) If y0 < 2, then y → 2 as x → ∞.
If y0 > 2, then y → 2 as x → ∞.

(iv) tx-plane; see graph
2.3.15(i) 2.3.15(iv)
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16. y′ = −y2(4− y)(9− y2)
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Roots 0 4 3 −3
Multiplicity 2 1 1 1

Highest power and coefficient: −y2(−y)(−y2) = −y5

(i) x− x′-plane; see graph

(ii) y = −3, 4 are stable; y = 0 is half-stable; y = 3 is unstable.

(iii) If y0 < −3, y → −3 as x → ∞.
If −3 < y0 < 0, y → −3 as x → ∞.
If 0 < x < 3, y → 0 as x → ∞.
If 3 < x < 4, y → 4 as x → ∞.
If x > 4, y → 4 as x → ∞.

(iv) tx-plane; see graph
2.3.16(i) 2.3.16(iv)
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17. x′ = x5(1− x)(1− x3), x5(1− x)(1− x3) = 0

Roots 0 1 two normal
Multiplicity 5 2 ignore

End behavior: x5(−x)(−x3) = x9

(i) x− x′-plane; see graph

(ii) By the phase line diagram, = 1 is a half-stable equilibrium point;
= 0 is an unstable equilibrium point.

(iii) For x > 1, → ∞ as t → ∞.
For 0 < x < 1, → 1 as t → ∞.
For x < 0, → −∞ as t → ∞.
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(iv) tx-plane; see graph
2.3.17(i) 2.3.17(iv)
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18. x′ = x(x− 3)(1 + x3)(1− x2)2, x(x− 3)(1 + x3)(1− x2)2 = 0

Roots 0 3 −1 two non-real ±1
Multiplicity 1 1 1 ignore 2

End behavior: x(x)(x3)(−x2)2 = x9

(i) x− x′-plane; see graph

(ii) By the phase line diagram, x = 3 is an unstable equilibrium point;
x = 1 is a half-stable equilibrium point; x = 0 is a stable equilib-
rium point; x = −1 is an unstable equilibrium point.

(iii) If x > 3, → ∞ as t → ∞.
If 1 < x < 3, → 1 as t → ∞.
If 0 < x < 1, → 0 as t → ∞.
If −1 < x < 0, → 0 as t → ∞.
If x < −1, → −∞ as t → ∞.

(iv) tx-plane; see graph
2.3.18(i) 2.3.18(iv)
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19. x′ = x2(1− 2x)3(x2 − 1), x2(1− 2x)3(x2 − 1) = 0

Roots 0 1
2 ±1

Multiplicity 2 3 1

End behavior: x2(−x)3(x2) = −x7

(i) x− x′-plane; see graph

(ii) By the phase line diagram, x = 1 is a stable equilibrium point; x =
1
2 is an unstable equilibrium point; x = −1 is a stable equilibrium
point.

(iii) If x > 1, → 1 as t → ∞.
If 1

2 < x < 1, → 1 as t → ∞.
If −1 < x < 1

2 , → −1 as t → ∞.
If x < −1, → −1 as t → ∞.

(iv) tx-plane; see graph
2.3.19(i) 2.3.19(iv)
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20. x′ = x3(x2 + 5)(x− 4)2(x+ 5)

Roots 0 4 −5
Multiplicity 3 2 1

End behavior: x3x2x2x = x8

(i) x− x′-plane; see graph

(ii) By the phase line diagram, x = 1 is a stable equilibrium point; x =
1
2 is an unstable equilibrium point; x = −1 is a stable equilibrium
point.
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(iii) If x > 1, → 1 as t → ∞.
If 1

2 < x < 1, → 1 as t → ∞.
If −1 < x < 1

2 , → −1 as t → ∞.
If x < −1, → −1 as t → ∞.

(iv) tx-plane; see graph
2.3.20(i) 2.3.20(iv)

-6 -4 -2 2 4
x

-75000

-50000

-25000

25000

50000

x'

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

21. y∗ = ±1, f ′(y) = −2y, f ′(−1) = 2 ⇒ Unstablef ′(1) = −2 ⇒ Stable

22. y∗ = ±1, f ′(y) = −2y, f ′(−1) = 2 ⇒ Unstablef ′(1) = −2 ⇒ Stable

23. y∗ = −1, f ′(y) = 3y2, f ′(−1) = 3 ⇒ Unstable

24. y∗ = 0, f ′(y) = −3y2, f ′(0) = 0 ⇒ Inconclusive. However, from the phase
line diagram, y∗ = 0 is stable.

25. (a) y′ = r + y2

25: Phase line for y′ = r + y2 : r < 0, r = 0, r > 0
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25: Saddlenode bifurcation for y′ = r + y2

26. (a) y′ = 1− r + y2

26: Phase line for y′ = 1− r + y2 : r < 1, r = 1, r > 1

26: Saddlenode bifurcation for y′ = 1− r + y2

27. (a) y′ = ry + y2
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27: Phase line for y′ = ry + y2 : r < 0, r = 0, r > 0

27: Transcritical bifurcation for y′ = ry + y2

28. (a) y′ = ry − y3

sqrt r-sqrt r
y

y’

-1.5 -1 -0.5 0.5 1 1.5
y

-0.4

-0.2

0.2

0.4
y’

sqrt r-sqrt r
y

y’

28a: Phase line for y′ = ry − y3 : r < 0, r = 0, r > 0
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28a: Pitchfork bifurcation for y′ = ry − y3

(b) y′ = ry + y3

sqrt r-sqrt r
y

y’

-1.5 -1 -0.5 0.5 1 1.5
y

-0.4

-0.2

0.2

0.4
y’

sqrt r-sqrt r
y

y’

28b: Phaseline for y′ = ry + y3 : r < 0, r = −, r > 0

28b: Pitchfork bifurcation for y′ = ry + y3

29. If we Taylor expand the function about y∗ and keep the lowest order
non-zero term, we see that we have y′ = f (3)(y∗)y3 as the approximate
solution near the equilibrium point. Phase line analysis then shows the
equilibrium point is stable.

2.4 Modeling in Population Biology

1. (a) x = 0 is half-stable, x = 1 is stable. For logistic equation, x = 0 is
unstable and x = k is stable. Yes, the are different.

(b) For small x, logistic model growth is larger.

2. x = 0 - Stable, x = 1 - Unstable, x = 6 - Stable

3. x = 0 - Stable, x = 2 - Unstable, x = 10 - Stable

4. (a) x = 0 - Half-stable, x = 2 - Unstable, x = 7 - Stable

(b) For small x, Allee effect model has larger growth rate.

5. (a) x = 0 - Half-stable, x = 1 - Unstable, x = 4 - Stable
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(b) For small x, Allee effect model has larger growth rate.

6. (a) Exponential growth - Unlimited growth rate. No limitations placed
on organisms.

(b) Logistic model - Growth rate dependent on factors such as popu-
lation amount or food availability.

(c) Allee effect - Growth rate dependent on factors such as population
amount or food availability as well as a sufficient population to
sustain itself.

7. (a) x = 0 - Unstable, x = a - Stable, x = 5 - Unstable

(b) For x0 > 5, bacteria grows uninhibited.

(c) The parameter a could represent the strength of the immune system
or ability of the body to fight off the given bacteria. A healthy
person would likely have an a-value that is closer to 0 than to 5
because the lower value of a represents a lower value of the bacteria
(that is stable).

8. (a) For a > 0,
x = 0 - Unstable
x = 5−

√
a - Stable

x = 5 +
√
a - Unstable

x = 10 - Stable

(b) For a = 0,
x = 0 - Unstable
x = 5 - Half-stable
x = 10 - Stable

(c) For a < 0,
x = 0 - Unstable
x = 10 - Stable

(d) Saddle-node

(e) Bacteria grows unchecked to a level of 10. No, the bacteria popu-
lation eventually reaches and levels off at 10, which above the fatal
level.

(f) The parameter a could again represent the strength of the immune
system or ability of the body to fight off the given bacteria.

9. x′ = x(1− x)(x− 6)(x− 10)

10. x′ = x(2x−1)(x−1)2(x−2)(x−8) or x′ = x(2x−1)2(x−1)(x−2)(x−8)

11. (a) x′ = x2(2− x)2(x− 4)

(b) x = 0 - Half-stable, x = 2 - Half-stable, x = 4 - Unstable
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12. (a) x′ = rx(x− a)(x− 1) r, a > 0

(b) i. 0 < a < 1, x = 0 - Unstable, x = a - Stable, x = 1 - Unstable

ii. a = 1, x = 0 - Unstable, x = 1 - Half-stable

iii. a > 1, x = 0 - Unstable, x = 1 - Stable, x = a - Unstable

(c) When a < 1, the bacteria goes to the stable level a if it starts
with a level less than 1 and grows without bound otherwise. When
a = 1, the bacteria goes to the half-stable level a = 1 if it starts
with a level less than 1 and grows without bound otherwise. When
a > 1, the bacteria goes to the stable level of 1 if it starts with a
level less than a and grows without bound otherwise.

13. dN
dt = rN(1− N

K )

Let x = N
A , τ = t

T → dτ = 1
T dt

dN
dt = d(xA)

dτ
dτ
dt = r(xA)(1− xA

K )

Ax′ 1
T = rAx(1− xA

K ).

Let A=K and T = 1
r ⇒ x = N

K , τ = rt, then

x′ = rTx(1− xA
K ) = x(1− x)

14. Let x = N
A , τ = t

T

Ax′ 1
T = R(xA)(1− xA

K )− HxA
B+xA .

Then x′ = RTx(1− xA
K )− THx

B+xA

Let T = 1
R , A = K ⇒ x′ = x(1− x)−

H
R x

A(B
A+x)

⇒ Let h = H
AR , b = B

A so

that x = N
K , τ = Rt

15. dg
dt = k1s0 − k2g +

k3g
2

k2
4+g2

x = g
A , τ = t

T

Ax′ 1
T = k1s0 − k2Ax+ k3(xA)2

k2
4+(xA)2

x′ = T
Ak1s0 − Tk2x+ Tk3Ax2

k2
4+A2x2 = T

Ak1S0 − Tk2x+
T

k3
A x2


 k24
A2

+ x2




T k3

A = 1 ⇒ T = A
k3

= k4

k3

Let A = k4, T = k4

k3
, r = Tk2 = k4k2

k3
, s = T

Ak1S0 = k1

k3
S0

16. (a) Small N is approximately constant harvesting; large N is approx-
imately constant yield

(b) x∗ = 0,
(1− b) +

√
(b+ 1)2 − 4h

2
; x∗ = 0 is always a biologically

relevant equilibrium solution and will be stable if it is the only one;
the other equilibrium will be stable when it is biologically relevant
(i.e., when the radicand is positive)
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2.5 Numerical Approximation: Euler and Runge-Kutta
Methods

1. dy/dx = x3, y(1) = 1; explicit solution: y = 1
4 (x

4 + 3)

Euler RK4 Explicit
xi yi yi y(xi)
1.0 1 1 1
1.1 1.1 1.116 1.1160
1.2 1.2331 1.2684 1.2684

2. dy/dx = −y2, y(0) = 1; explicit solution: y = 1
x+1

Euler RK4 Explicit
xi yi yi y(xi)
0 1 1 1
0.1 0.9 0.909 0.909
0.2 0.819 0.8333 0.8333

3. dy/dx = x4y, y(1) = 1; explicit solution: y = e(x
5−1)/5

Euler Explicit
xi yi y(xi)
1.0 1 1 1
1.1 1.1 1.1299 1.1299
1.2 1.2611 1.3467 1.3467

4.
dy

dx
= −y2 cosx, h = 0.1, y(0) = 1; explicit solution y =

1

1 + sinx
.

x0 = 0

x1 = 0 + (0.1)(1) = 0.1

x2 = 0 + (0.1)(2) = 0.2

Euler : y0 = 1

y1 = 1 + (0.1)(−(1)2 cos(0)) = .9

y2 = .9 + (0.1)(−(.9)2 cos(0.1)) = .8194
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Runge-Kutta:
y1:

k1 = f(0, 1) = −(1)2 cos 0 = −1

k2 = f

(
0 + .05, 1 +

(.1)(−1)

2

)
= −(.95)2 cos(.05) = −.901372

k3 = f

(
0 + .05, 1 +

(.1)

2
(−.902499)

)
= −.9107543

k4 = f(0 + .1, 1 + (.1)(−.911786)) = −.8220166

y1 = 1 +
(.1)

6
(−1 + 2(−.901372) + 2(−.910754) + (−.8220166))

= .9092288

y2:

k1 = −.822567

k2 = −.745136

k3 = −.751797

k4 = −.68177

⇒ y2 = .8342587

Explicit:

y(0) =
1

1 + sin 0
= 1

y(0.1) =
1

1 + sin(0.1)
= .909228

y(0.2) =
1

1 + sin(0.2)
= .834258

Euler RK4 Explicit
xi yi yi y(xi)
0.0 1 1 1
0.1 .9 .909228 .909228
0.2 .8194 .834258 .834258

5. y′ =
sinx

y3
, y(π) = 2, h = .1.

Euler RK4 Explicit
xi yi yi y(xi)
π 2 2 2

π + .1 2 1.999375 1.99937
π + .2 1.99875 1.9975 1.99750
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6. dy/dx = ye−x, y(0) = 1; explicit solution: y = exp(1− e−x)

Euler Explicit
xi yi y(xi)
1.0 1 1
1.1 1.1 1.0998 1.0998
1.2 1.1995 1.1987 1.1987

7. dy/dx = e−y, y(0) = 2; explicit solution: y = ln(x+ e2)

Euler RK4 Explicit
xi yi yi y(xi)
0.0 2 2 2
0.1 2.0135 2.0134 2.0134
0.2 2.0269 2.0267 2.0267
0.3 2.0401 2.0398 2.0398
0.4 2.0531 2.0527 2.0527
0.5 2.0659 2.0655 2.0655
0.6 2.0786 2.0781 2.0781
0.7 2.0911 2.0905 2.0905
0.8 2.1034 2.1028 2.1028

8. dy/dx = −xy2, y(0) = 1; explicit solution: y =
2

2 + x2

Euler RK4 Explicit
xi yi yi y(xi)
0.0 1 1 1
0.1 1 0.99502 0.99502
0.2 0.99 0.980392 0.980392
0.3 0.970398 0.95694 0.95694
0.4 0.942148 0.92593 0.92593
0.5 0.90664 .88889 .88889
0.6 0.86554 0.847457 0.847458
0.7 0.82059 0.803213 0.803213
0.8 .77346 0.75758 0.75758

9. dy/dx = y+cosx, y(0) = 0; explicit solution: y = 1
2 (sinx− cosx+ ex)

Euler RK4 Explicit
xi yi yi y(xi)
0.0 0 0 0
0.1 0.1 .1050 0.1050
0.2 0.2095 .2200 0.2200
0.3 0.3285 .3450 0.3450
0.4 0.4568 0.4801 0.4801
0.5 0.5946 0.6253 0.6253
0.6 0.7418 .7807 0.7807
0.7 0.8986 0.9466 0.9466
0.8 1.0649 1.1231 1.1231
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10. dy/dx = y+sinx, y(0) = 2; explicit solution: y = −1
2 (cosx+sinx−5ex)

Euler RK4 Explicit
xi yi yi y(xi)
0.0 2 2 2
0.1 2.2 2.2155 2.2155
0.2 2.4300 2.4641 2.4641
0.3 2.6929 2.7492 2.7492
0.4 2.9917 3.0743 3.0743
0.5 3.3298 3.4433 3.4433
0.6 3.7107 3.8603 3.8603
0.7 4.1383 4.3299 4.3299
0.8 4.6165 4.8568 4.8568

11. dy/dx = x+ y, y(0) = 0; explicit solution: y = −x− 1 + ex

Euler RK4 Explicit
xi yi yi y(xi)
0.0 0 0 0
0.1 0 0.0052 0.0052
0.2 .01 0.0214 0.0214
0.3 .031 0.0499 0.0499
0.4 .0641 0.0918 0.0918
0.5 .1105 0.1487 0.1487
0.6 .1716 0.2221 0.2221
0.7 .2487 0.3138 0.3138
0.8 .3436 0.4255 0.4255

12. dy/dx = (x+ 1)(y2 + 1), y(0) = 0; explicit solution: y = tan( 12x
2 + x)

Euler RK4 Explicit
xi yi yi y(xi)
0.0 0 0 0
0.1 0.1 0.1054 0.1054
0.2 0.2111 0.2236 0.2236
0.3 0.3364 0.3594 0.3594
0.4 0.4812 0.5206 0.5206
0.5 0.6536 0.7215 0.7215
0.6 0.8677 0.9893 0.9893
0.7 1.1481 1.3837 1.3837
0.8 1.5422 2.0660 2.0660

13. y′ = e−x2

1 2 3 4

0.25

0.5

0.75

1

1.25

1.5

1.75

2
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14. y′ = x3ey + 3x2 sin y

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

15. y′ = x3y − x2y2

-1 1 2 3

0.25

0.5

0.75

1

1.25

1.5

1.75

2

16. y′ = |1− x2|y + x3

0.5 1 1.5 2

2

4

6

8

10

12

14

17. y′ = y
√
x2 + y2 + 1 + cos(xy)

-0.4 -0.2 0.2 0.4 0.6

2

4

6

8

10

12

14

18.
h (a.) x(1) (b.) x(1)
1 100.75 101.249
0.5 100.75 101.249
0.25 100.75 101.249
0.1 100.75 101.249
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2.6 An Introduction to Autonomous Second-Order Equa-
tions

1. y = cekx, y′ = kcekx, y′′ = k2cekx ⇒
yy′′ = cekx ∗ k2cekx = c2k2e2kx = (y′)2

2. If v = θ′, then v =
C + g cos θ

m
and

tanh−1

(
(C−g) tan(θ/2)√

g2−C2

)

√
g2 − C2

=
t

m
+K

3. Substitution gives v dv
dx = −gR2

x2 . Separating, solving, and applying the

IC gives v = ±
√

2gR(Rx − 1) + v20 . The “+” corresponds to the object

going away from center of earth; the object “escapes” if the radicand is
always nonnegative. Since R

x → 0 as x → ∞ ⇒ −2gR+ v20 ≥ 0.

4. (a) If u(x) =
dy

dx
, then we have u′ =

√
1 + u2.

(b) This is separable, so

∫
du√
1 + u2

= sinh−1(u) = x− x0

⇒ u =
e(x−x0) − e−(x−x0)

2
for some constants c, d.

(d) Then, if u =
dy

dx
=

e(x−x0) − e−(x−x0)

2
= sinh(x− x0),

then y = cosh(x− x0) + C.

Chapter 2 Review

1. False. Neither f nor ∂f
∂y is continuous everywhere.

2. False. It may not be unique.

3. False. RK use four function evaluations to calculate the next step.

4. False. Euler’s method is not superior.

5. True.

6. True. Phase line analysis will work and gives information on long-term
behavior.
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7. (i) Solutions exist everywhere; (ii) solutions are unique everywhere.

8. (i) Solutions exist everywhere; (ii) solutions are unique when xy ̸= 1.

9. (i) Solutions exist everywhere; (ii) solutions are unique everywhere ex-
cept possibly along y = 0.

10. (i) Solutions exist everywhere except possibly when x = π
2 ± nπ for

n = 0, 1, 2, · · · ; (ii) solutions are unique everywhere except possibly
when x = π

2 ± nπ for n = 0, 1, 2, · · · .

11. (i) Solutions exist everywhere except possibly when y = π
2 ± nπ for

n = 0, 1, 2, · · · ; (ii) solutions are unique everywhere except possibly
when y = π

2 ± nπ for n = 0, 1, 2, · · · .

12. (i) Solutions exist everywhere except possibly when x = π
2 ± nπ for

n = 0, 1, 2, · · · ; (ii) solutions are unique everywhere except possibly
when y = π

2 ± nπ for n = 0, 1, 2, · · · .

13. (i) Solutions exist everywhere except possibly along x = −1; (ii) solu-
tions are unique except possibly along x = −1.

14. y′ = x2 − y that passes through the initial condition y(−2) = 0

15. y′ = x− y2 that passes through the initial condition y(0) = 0
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16. (a),(c) y∗ = −3 is unstable; y∗ = 2 is stable.
(b),(d) see graphs
Chap.2 Review 16(b) 16(d)

−2 0 2 4 6 8 10

−4

−3
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0

1

2

3

4

x

y
17. (a),(c) x∗ = a is stable; x∗ = 0, 4 are unstable.

(b),(d) see graphs (a = 2)
Chap.2 Review 17(b) 17(d)
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2
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4
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18. (a),(c) y∗ = 1 is stable; y∗ = −2 is unstable.
(b),(d) see graphs
Chap.2 Review 18(b) 18(d)
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19. Left picture matches (d); right picture matches (b). Check pairs of
points such as (0, 1), (1,−1), (1, 0).

20. Left picture matches (a); right picture matches (d). Check pairs of
points such as (0, 1), (12 , 1).

21. x′ = x2(x− 2)(4− 3x)
0- half stable, 2 - stable, 4

3 - unstable

22. x′ = (x2 − 9)2(x− 1)
−3- half stable, 3 - half stable, 1 - unstable

23. x′ = (1 + x)(3 + 2x)(5− x)7

− 3
2 - stable, 5 - stable, −1 - unstable
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24. x′ = x4(2x− 3)3(x2 + 4)(x2 + 2x+ 1)
−1- half stable, 0 - half stable, 3

2 - unstable

25. x′ = (x4 − 16)2

− 4√
3
- unstable, −2 - stable, 2 - unstable, 4√

3
- stable

26. x′ = x(4− 3x)3(2x+ 1)4(x3 − 1)
−.5- half stable, 0 - stable, 4

3 - stable, 1 - unstable
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27. (a) r > 1, no equilibrium points.

(b) r ≤ 1, −
√
1− r - unstable;

√
1− r - stable

r < 1 r > 1

Bifurcation diagram for 27

28. (a) r < 1, no equilibrium points.

(b) r ≥ 1, negative value - unstable; positive value - stable

r < 1 r > 1
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Bifurcation diagram for 28

29. (a) r = 1, 0 - half stable

(b) r > 1, 0 - unstable, positive value - stable

(c) r < 1, 0 - stable, other value - unstable

r < 1 r > 1

Bifurcation diagram for 29
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30. dN
dt = rN(1− N

K )−H

Let x = N
A , τ = t

T → dτ = 1
T dt

dN
dt = d(xA)

dτ
dτ
dt = r(xA)(1− xA

K )−H

Ax′ 1
T = rAx(1− xA

K )− HT
A .

Let A=K and T = 1
r , h = HT

A
H
Kr ⇒ x = N

K , τ = rt, then

x′ = rTx(1− xA
K )− HT

A = x(1− x)− h

31. y′ = 1−y2

2x , y(1) = π.

xi RK:yi Euler:yx
1 3.1416 3.1416
1.1 2.7742 2.6981
1.2 2.5144 2.4127
1.3 2.3210 2.2118
1.4 2.1713 2.0621
1.5 2.0522 1.9459
1.6 1.9550 1.8531
1.7 1.8743 1.7770
1.8 1.8061 1.7135

32. xy′ + x2 + xy − y = 0, y(1) = 1.

xi RK:yi Euler:yx
1 1 1
1.1 0.8906 0.9
1.5 0.3196 0.3494
2.0 -.5285 -.4981

33. y′ = y−y2

x+1 , y(2) = 0.
All answers are 0 because y0 = 0 is an equilibrium point.

34. (x+ 2y3)y′ = y, y(−1) = 1.

xi RK:yi Euler:yx
-1 1 1
-0.9 1.0802 1.1
-0.5 1.2671 1.2919
0 1.4142 1.4383
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35. y′ = 1−y2

2x , y(1) = π.

xi RK:yi Euler:yx
1.4142 1.0000 1.0000
1.5142 1.1251 1.1207
1.6142 1.2592 1.2495
1.7142 1.4030 1.3868
1.8142 1.5571 1.5332
1.9142 1.7222 1.6891
2.0142 1.8992 1.8552
2.1142 2.0889 2.0321
2.2142 2.2924 2.2207

36. (1− x2)y′ + xy = 0, y(0) = 5.

xi RK:yi Euler:yx
0 5 5
0.1 4.9749 5.0
0.5 4.3301 4.4634
0.9 2.1777 2.5333

37. (2xy2 − y)2 + xy′ = 0, y(π) = 1.

xi RK:yi Euler:yi
3.24 .5678 .11153
3.34 .5110 .11150
3.44 .4724 .11148
3.54 .4435 .11146
3.64 .4206 .11144

38. y2 + 2(x− 1)y′ − 2y = 0, y(0) = −3.

xi RK:yi Euler:yx
0 -3 -3
0.1 -2.3479 -2.25
0.5 -.8572 -.7543
0.9 -.1279 -0.0999

K14712_SM_Cover.indd   109 05/11/14   5:12 PM


