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1.1 Introduction

This manual is complementary to the book “Optimal and robust control:
Advanced Topics with MATLABr”, CRC Press, referred in the following to
as the textbook. It contains the solutions to the exercises given at the end
of each chapter. Although some solutions are given in analytical forms, for
most of them the use of MATLABr is required. The detailed procedures are
all explained in the textbook, so that major emphasis is here given to the
solution flow.

1.2 Solutions of exercises of Chapter 2

1.2.1 Exercise 2.1

Exercise: Apply the vectorization method to solve the Lyapunov equation:

ATP + PA = −I

with

A =

 0 1 −1
2 −5 −1
3 1 −2



Solution: The solution of this exercise follows MATLABr exercise 2.3 of the
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textbook. We have first to calculate matrix M = I⊗AT +AT ⊗ I (with I 3× 3

identity matrix) and then to solve P = −M−1



1
0
0
0
1
0
0
0
1


. One gets:

P =

 1.7045 0.2973 −0.3649
0.2973 0.1494 −0.0506
−0.3649 −0.0506 0.4577



1.2.2 Exercise 2.2

Exercise: Given the nonlinear system ẋ = x3 − 8x2 + 17x + u calculate the
equilibrium points for u = −10 and study their stability.

Solution: The equilibrium points are given by: ẋ = 0, which yields:

x3 − 8x2 + 17x− 10 = 0

Since

x3 − 8x2 + 17x− 10 = x3 − x2 − 7x2 + 7x+ 10x− 10 =

= (x− 1)(x2 − 7x+ 10) = (x− 1)(x− 2)(x− 5)

the equilibrium points are x̄1 = 1, x̄2 = 2 and x̄3 = 5.
Their stability is now calculated by linearizing the system around each of

these equilibrium, i.e., by evaluating ∂f
∂x

∣∣∣
x=x̄

.

Since ∂f
∂x

∣∣∣
x=x̄1=1

= 4, x̄1 is unstable.

Since ∂f
∂x

∣∣∣
x=x̄2=2

= −3, x̄2 is stable.

Since ∂f
∂x

∣∣∣
x=x̄3=5

= 12, x̄3 is unstable.

1.2.3 Exercise 2.3

Exercise: Given system G(s) = 1
se

−sT determine the set of T values which
provide a stable closed-loop system.
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Solution: The exercise can be solved considering a Padé approximation for

the delay term, for instance a first-order one e−sT ≃ 1−sT
2

1+sT
2

, so that G(s) ≃
1−sT

2

s(1+sT
2 )
. With this approximation the closed-loop transfer function becomes:

W (s) =
s(1− sT

2 )

s2 T
s + s(1− T

2 ) + 1

which is stable if T < 2. Higher-order Padé approximations can be studied
with the same approach and then the Routh criterion can be applied to the de-
nominator of the closed-loop transfer function to derive the stability condition
with respect to T .

1.2.4 Exercise 2.4

Exercise: Study the stability of system with transfer function

G(s) =
s2 + 2s+ 2

s4 + a1s3 + a2s2 + a3s+ a4

with 1 ≤ a1 ≤ 3, 4 ≤ a2 ≤ 7, 1 ≤ a3 ≤ 2, 0.5 ≤ a4 ≤ 2.

Solution: We can study the stability of this uncertain system by applying
the Kharitonov criterion. Let’s consider therefore:

D1(s) = s4 + s3 + 7s2 + 2s+ 0.5
D2(s) = s4 + 3s3 + 4s2 + s+ 2
D3(s) = s4 + 3s3 + 7s2 + s+ 0.5
D4(s) = s4 + s3 + 4s2 + 2s+ 2

By calculating the roots of these polynomial (using MATLABr command
roots), we find that D1(s), D3(s) and D4(s) have all roots with negative real
part, while D2(s) has two positive real part roots. Therefore, we cannot state
that for any value of the parameters the uncertain system is stable.

1.2.5 Exercise 2.5

Exercise: Given the polynomial p(s, a) = s4 + 5s3 + 8s2 + 8s + 3 with a =[
3 8 8 5

]
, find p(s, b) with b =

[
(b−0 , b

+
0 ) . . . (b−3 , b

+
3 )

]
so that the

polynomial class p(s, b) is Hurwitz.

Solution:
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1.2.6 Exercise 2.6

Exercise: Study the stability of the system G(s) = s2+3s+2
s4+q1s3+5s2+q2s+q3

with

parameters q1 ∈ [1, 3], q2 ∈ [5, 10], q3 ∈ [2, 18].

Solution:As for exercise 2.4, we can apply the Kharitonov criterion. Consider:

D1(s) = s4 + s3 + 5s2 + 10s+ 2
D2(s) = s4 + 3s3 + 5s2 + 5s+ 18
D3(s) = s4 + 3s3 + 5s2 + 5s+ 2
D4(s) = s4 + s3 + 5s2 + 10s+ 18

The analysis of the roots of these polynomials reveal that only D3(s) has
all the roots with negative real part. Therefore, there exist values of the pa-
rameters for which the system is unstable.

1.3 Solutions of exercises of Chapter 3

1.3.1 Exercise 3.1

Exercise: Calculate the Kalman decomposition for the system with state-
space matrices:

A =


−2 3 0 0 0
1 0 0 0 0
1 −1 3 0 0
−2 1 −1 −1 0
−4 1 2 −1 −2

 ; B = CT =


1
1
1
1
1



Solution: We first calculate the controllability and observability matrices:

Mc =


1 1 1 1 1
1 1 1 1 1
1 3 9 27 81
1 −3 −1 −9 −19
1 −4 14 −12 84

 ;MT
o =


1 −6 32 −104 384
1 4 −26 94 −362
1 4 10 34 94
1 −2 4 −8 16
1 −2 4 −8 16


Both have rank equal to 4 and in both cases the first four columns are

linearly independent. Therefore, we can determine Xr as the subspace spanned
by the first four columns of Mc and Xo as the subspace spanned by the first four
columns of MT

o . We then determine Xnr has the null space of M
T
c (MATLABr

command Xnr=null(Mc’)) and Xno has the null space of Mo (MATLABr


