46. Basin boundary for the limit cycle and chaos for the food-chain model (Rai and
Upadhyay [24]) when a, =1.75, b, =0.05, a, =1.0, ¢=0.7, w=1.0, w; =2.0, w, =1.5,
w, =3.75, D=10.0, D; =10.0, D, =10.0, D5 = 20.

Basin boundaries for the chaotic attractor are plotted in Fig. 1.7.
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Fig.1.7. Basin boundaries for the chaotic attractor for Problem 46.

(From Rai, V., Upadhyay, R. K., Chaotic population dynamics and biology of the top-predator.
Chaos, Solitons Fractals, 21, 1195-1204, Copyright 2004, Elsevier. Reprinted with permission).

CHAPTER 2
Exercise 2.1

1. Without loss of generality, let the initial time be t=0. The solution is given by
P(t) = Poert. At time t =0, we have P =PR,. Let at time t =T, the population is tripled,

that is P(T) =3P,. Hence, 3P, = PoerT , or T =In3/r. The time taken for the population

to triple its size is T =In3/r.
2. We have r=0.09,K =900,t, =0,P, =90. The value of the constant A is obtained as
A=[(Py - K)/Py]=-9. The solution is given by
P(t)= K = 90% st PO0) = &81 ~ 897.
1-Ae™™ 1+9e™ 1+9e™
3. (i) Equilibrium solutions are P, = 0 and P, = 500. Now,

’ P ’ ’
f'(P)= 0-5(1—2—50} f'(P)=05>0, f'(P,)=-0.5<0.

Hence, the equilibrium point P, =0 is unstable and the equilibrium point P, =500 is
stable. Thus, solutions initiating in a neighbourhood of K = 500 approach K as t —
while no solution starting in a neighbourhood of P = 0 remains close to zero in the future.
(i) P(t)=500/[1+9e7%].

aw = (0.0025)P(1 —ij The solution is P(t) = K = 100 ,

dt 100 1— Ae—rt 1— Ae—0.0025t

where A=-11.5e*%73. The estimated populations in the years 2005 and 2100 are 8.18
and 10.15 billions respectively.




5. Separating the variables and solving the differential equation, we get R /(R —1) = ce™, a,
C are arbitrary constants to be determined. Applying the conditions that at 8 hours, R =

0.08, and at 12 hours R = 0.05, we obtain a =0.25In(11.5), and ¢ = —e7 1% 5 —1/1520.9.
Now, when R = 0.9, we obtain t = 15.5985 or approximately 3.36 P.M.

2 2 a a
6. We have d—f{ﬁ) P[l—(ij (l+a):|[l—(ﬂj }
dt a K K
ol 2 &)
=|—| P1-t2+a)+t°(1+a)], where t=|—| .
a K

Setting P"(t)=0,we get P=0,t=1,and t=1/(1+«), thatis, P=0,P =K, and P =

K(1+a) V%, The point of inflection is P = K(1+ o) "/ ¢.
For a =1, the point of inflection is P = K/2. Taking the limit asa — 0, we find that the
point of inflection moves to P = K/e.
7. Comparing with (2.12), we have r =107, y = 107, Py = 10°. The solution is given by
rP, - 10°
y Py +(r—y Pye™  1+9exp(-0.001t)"

P(t) =

The limiting value of the population is 10°.
8. Comparing with the model for the density dependent growth (2.12), we have r = 0.09,

y =0.0009, P, =2500. The solution of the model is obtained as
rk

yPo+(r—yPRye
(0.09)(2500) 225

(0.0009)(2500) + {0.09 — 0.0009(2500)}e %% 225-2.16e 700

The limiting value of the population is 100. The equilibrium points are 0 and 100. The
point 0 is unstable and the point 100 is stable. All other solutions move away from P = 0,
towards P =100.

9. P(t) = Py exp[(ry /a)(1—e " ™)].

10. Assume that no student leaves the campus throughout the duration of viral fever. Now,
Number of students infected at a point of time = p,

Number of students who are not infected at the same point of time = 2500 — p.

Since, the rate at which viral fever spreads is proportional not only to the number of
people affected, but also to the number of people who are not yet exposed to it, we obtain

the model as

?j—i) =ap(2500— p), p(0)=1, ais an arbitrary constant.

P(t) =

rt

Separating the variables and solving, we get p(t)=2500/(1+2499e2°%3%) " Since,
p(5) =50, we obtain a =1In(51)/12500. Hence, p(15) ~ 2454 students.
11. The equilibrium points are the solutions of the equation P(6—-P)—h=0. The
equilibrium points are given by P, =3 - Jo—h, P, =3+ J9—h, h<9. We have
f'(P)=6-2P, f'(P)=2/9-h>0, f'(P,)=-24/9—-h<0.



12.

13.

14.

The equilibrium point P, is unstable whereas the equilibrium point P, is asymptotically
stable. The two equilibrium points coincide when h = 9. The critical value of h is h; =9.

When h > 9, there are no equilibrium points and the population tends to extinction. If
P>3, f'(P)<0. In this case, we get stable solutions. Hence, the initial value of the

population should satisfy P, >3. That is, the population may be extinct if P, <3, even
though the condition h < h, is satisfied.

The equation is a harvesting model with constant harvesting.

(1) The equilibrium points are

1 5 2 K 4h
N=—[rK++r K —4rhK]=—[1+.1- h =—.
2r[ ] 2[ y1-p], where p K

Real solutions are obtained only when p < 1, or h <(rK/4). We find
f'(N)=r[1-2/K)N], f'(N)=rl-p>0, f'(N,)=-r1-p<0.

The equilibrium point N, is unstable whereas the equilibrium point N, is asymptotically

stable. The two equilibrium points coincide when p = 1, that is when 4h=rK, or

h=rK/4 and N =K /2. The critical value of h is h, =rK/4. When h>rK/4, there

are no equilibrium points and the population tends to extinction.

(i) If 2N > K, f'(N)<0. In this case, we get stable solutions. Hence, the initial value

of the population should satisfy n, > (K /2). That is, the population may become extinct

if ny <(K/2), even though the condition h < h, is satisfied.

Equilibrium point is N; = Ke9E/% N =0 can not be taken as an equilibrium point even
though the limit of the right hand side exists. Now,
f'(N)=a[In(K/N)-1]-qgE, and f'(N;)=-a<0.
Therefore, N, is asymptotically stable. Note that f ‘(N = 0) is not defined.
The sustainable yield is given by
Y (E) = EN, = qEKe %/% = ¢ Kue™ =Y (u), where u=qE/a.

Also, Y'(u)=oaK[l-ule™, Y"(u)=aK[u-2]e™. Setting Y'(u)=0, we get the
stationary point as U = 1. When u = 1, Y"(u) <0. The maximum occurs for u = 1, or
gE = a. Maximum sustainable yield=Y (u=1)=aK /e.

The location of the steady state varies with the length of the delay and the form of the
characteristic equation changes due to the direct inclusion of the delay in the parameters
and the indirect changes resulting from the varying location of the steady state. The
model has the trivial steady state (0, 0) and the nontrivial steady state is given by

_ B —ur
be e =d, or P= lln(bed ]

a

In particular, if 7 > (1/ u)In(b/d), there is no positive steady state. In this case, given

that the initial value is positive, we have

Z—T <be #*P(t—7)-dP(t), with be ** <d.

The solution goes to zero and the trivial steady state is globally stable.

10



15. P*=F(P*), gives P*=K(1+r) which depends on r. At P = P*,
F'=[1/(1+r)] < lforall r> 0. Asymptotically stable for all r.
16. We find the solution of'the equation P* = F(P*), thatis of

& &
P*=Pp* exp[l(l - P—H, or exp{l 1- P—ﬂ =1.
K K

The solution is given by P* =K, for all 4.

Now, F(P)=P exp{l(l - EH, 3—’; = exp_l(l - Eﬂ[l - A?P}

At P=P*=K, weget(;—llz:[l—i].

Equilibrium is stable for | 1-1 | <1, or 0 <A<2. Itisunstable for L <0and A >2.

Neighboring trajectories approach the equilibrium point asymptotically for 0 < A <1, and
with damped oscillations for 1 < A < 2.
Now, d—F =0, when P = 5 dz—F = (— Lj exp{ r(l - BH[Z - E}
dP r dp? K K K
2
For P = 5, d—’; = (—Ljexp(r -1)<0.
r dpP K
Maximum of the trajectory occurs at P = K/r. The maximum value = (K /r)exp(r —1).
(1) For K= 500, r =1, P, = 50, we have the following sequence of values: 122.98, 261.40,
421.26,493.11,499.95, 500, (see Fig.2.1).
(i1) For K=1500,r =1, P, = 660, we get the sequence of values: 479.26, 499.56, 500, (see
Fig. 2.1).

600 o

500 - ’_._..--'."-‘." --------- -
-
400 I"’
-
-
-
F,.1 300 - .,
. = =i =~ Ist data
”
200 -+
,’ ---#--- 2nd data
100 -
a
a 100 200 300 400 500 600 F00

F

)

Fig.2.1. Discrete solution values for the data sets (i) and (ii).

17. Choose V; = (N; —K)?. V; =0 and has a minimum V=0 at N; = K.

The increment AV; on the trajectory is given by
AV, = K?n,[e"!"") _1][n,e" ") 1 n, —2], where N; =Kn;.
AV; <0 when (i) e""™) <1, and [e"""™) +1]>[2/n,];

or (i) ™™™ >1, and [e""™") 4+1]<[2/n;]. We obtain AV; <0 for 0<r <2 and forall
n;. AV; =0 only for n; = N */K. Hence, equilibrium is globally asymptotically stable.

11



18. Equilibrium point is x* = 1. | F'(1) | = | I-r | <1 gives 0 <r < 2. Asymptotically stable
for 0 < r < 2. Maximum occurs at X = 1/r and the maximum value is exp(r—1)/r.
19. For steady state, we solve P* = F(P*¥) = [(AP*) /(1+bP *?)], to get P*=0, and
P* = W,A >1. We have
dF _ A(1- bP?)
dP  (1+bP’)*"
Hence, the eigen values corresponding to P*= 0 and P* = W , are A and
(2—- A1)/ A respectively. For 1 =1, we have only a trivial equilibrium point.
Setting dF /dP = 0, we get P =1/+/b. For this value of P, F"(P) < 0. Hence, we obtain
the maximum at P = 1/+/b. The maximum value is Fa/ \/B) =1 /(2\/6).

Exercise 2.2
1. Setting F(X,Y)=0,G(X,Y)=0,we obtain the equilibrium point as X*=212/3,

Y *=2332/15. Note that (0, 0) is not an equilibrium point. The elements of the Jacobian
matrix of the system evaluated at an equilibrium point (X*, Y*) are

X  8.0Y? 1.6X?
a11 = ___—2’ a12 :_—2’
50 (X +5Y) (X +5Y)
3y _06X°
X H5Y)ET R (X457

At the equilibrium point (X*)Y*): We obtain a;; =-0.682222, a;, =-0.011111,

a,; =0.100833, a,, =—0.045833. The characteristic equation is 22 +0.728064 +
0.032389 = 0. The coefficients in the equation are positive. By Routh-Hurwitz criterion,
the eigen values are negative or have negative real parts. The equilibrium point
(X*,Y*)is asymptotically stable.

2. We have F(P,Z)=(a; -bP-c,Z2), and G(P,Z)=[a, —¢,(Z/P)].
Conditions (i), (i1), (iii), (v), (vi) and (vii) are satisfied. Equality condition in (iv) is
satisfied. The requirement (viii), G (C, 0) = 0 gives a, =0, which violates the
assumption that a, is positive. Hence, Kolmogorov theorem cannot be applied.

3. We have F(X,Y)=a b X ——""_ G(X,Y)=-a,+_ X

X+D X + D,

Conditions (i), (ii), (iv), (v), (vi), (vii) are satisfied. Equality condition in (iii) is satisfied.

(viii) G(C.0) = —a, +—MC _ ¢, gives c =-22P1
27C+D

1 Wy -,
C > 0 gives the condition w; > a,.

ﬂ>ﬂ, or W, —a,> Dia,
by (w—ay)
The two species system (2.80), (2.81) qualifies as a Kolmogorov system when the

conditions w; >a,, K(w; —a,)> Da, are satisfied.

(ix) B > C gives the condition

12



4. The elements of the Jacobian matrix of the system are

wDY wX
aj=a -2 X ————, ap=- ,
(X + D) X +D
A = w,D,Y A — a4 w; X
T x+D)? P T X+D,

At the equilibrium point E;(0,0): We obtain a;; =a;,a;, =0,a,; =0,8,, =—a,. The
eigen values are 4; =a; >0, and 4, =—-a, <0. The equilibrium point is unstable. Since
Re(A) #0 for both eigen values, the fixed point is hyperbolic. Since the eigen values are

real and are of opposite signs, we find that Eq is a hyperbolic saddle point which repels in
the X-direction and attracts in y-direction.

At the equilibrium point E; (K, 0) : We obtain

wK w, K a
a=a -2bK, aj=———, a,, =0, 8y, =—a, +———, K=—L,
11 =8 | 12 (K+D) 21 22 2 K+D, b,
The eigen values are 4, =a;; = -4, <0, and
Ay =gy =8, + wia _a(w —ay)—a,b D, >0
b(K+D;) a; +b D,

using the result from Kolmogorov condition (ix). The equilibrium point is unstable. The
fixed point E;(K,0) is also a hyperbolic saddle point which attracts in the x-direction and

repels in y-direction.
At the equilibrium point E (X', Y ): We obtain

sk %
allzal—Zblx*—&, alzz_&’
(X *+D)? X *+D
w;D,Y * w; X
321:%, aZZZG(X,Y):—az+ 1 :0.
(X *+Dy) X + Dy

The eigen values of J are the roots of A% —a;;A —a;,a,; = 0. By Routh-Hurwitz theorem,
the necessary and sufficient conditions for the eigen values to be negative or have negative
real parts are (—a;;) > 0,(—a;,8,;) > 0. That is

%k %k
(—auaﬂ)z( wX j( Wi DY ]>O,thh$hﬂ&

X*+D ) (X *+D)?
wDY * wy * D
-a;1)=-a —2b X *- = . —(a; —2b X*
2) [1 : (X*+Df} (X*+D) (X *4D) 7 2XY)
D
:(al—blx*)m—(al—zblx*) (from F(X,Y)=0)
X * X *—K
=—(a, - b X*)—"—— 1+ X * =X ¥ 1+
@b )(X*+D)+1 b [+(X*+DJ
sk —
:qx*{zx +D K}‘
(X *+D)

Now, (-a;;)> 0, if 2X *+D — K > 0. Substituting the expression for X*, we get

13



2(32—'31]+D-K>0, or 2b1( 2,0, ]+b1D—a1>O. (A)
W, —a, W, —a,
The equilibrium point E * (X*,Y *) is locally asymptotically stable if the condition (A) is
satisfied.
5. The elements of the Jacobian matrix of the system are

a11=1—2u—£2, a12:_ 4 s

(hp +u) hp +u
o —_ bhev oo bu o 2fvh
e rw? T e rw) (0 4

At the equilibrium point E((0,0): We obtain a;; =1,a;, =0,a,; =0,a,, = —C. The eigen
values are 4; =1, and 4, = —C < 0. The equilibrium point is a hyperbolic saddle point.
At the equilibrium point E;(1,0): We obtain

a;; =-1,a S ay; =0, ay, = b -C
11 > @412 (1+hp), 21 > 922 hp+l :
. b (b—c)—ch,
The eigen values are 4, =a;; =—-1<0, and 4, =a,, = -C= .
hp +1 hp +1

But (from text), b > ¢, 0 <chp <b-c, 0<hp <1.Therefore, the equilibrium E, is a
saddle point with stable manifold locally in the u-direction and with unstable manifold
locally in the v -direction.

At the equilibrium point E * (u*,v*): We have

hpv Cl—u—u- hpv

a, =1-2u——"®°Y _ _ eV
! (hp +u)? (hp +u)?

v hpv v
= —-u- 5 =Uu 51|
(hp +u) (hp +U) (hp +U)
u bhpv bu 2 fvh3 fu(v> —h32)
h » 821 = 20 8 = VI I T IV
p+U (hp +U) (hp +u) (hz +v°)=  (hz +v7)
where all the quantities are evaluated at (u* v*). The eigen values of J are the roots of

ap =-—

A’ —(a,+a,)A+(a,a,, —a,a,)=0. Using the Routh-Hurwitz theorem, we find the
conditions for local stability as

2 2
A=—(311+azz)=u[1— ! :|+ thz =V

(hp +u)? | (h2+v3)? 7
2 2
B=a; a2y, —apa,; =u|l- \ . fV(th 2V 2) n bhpuv3 -0,
(hp +w)~ || (hz +v5)* | (hp +u)

where all the quantities are evaluated at (u* v*). Sufficient conditions are

v¥ < (hp + u®)?, and (v¥)* < h%. If the above conditions are satisfied, then both predator
and prey species coexist, and they settle down at its equilibrium point.

14



6. The non-zero equilibrium points are the solution of the equations

X
a-bx-— W _g g%
(o + pY +yX) (o + pY +9X)

a; —b X 1 a, . . . .

We have = = . Solving the right equality, we obtain
wY a+pY +yX  wX
1
Y = [(W —8,)X 0@, @.1)
ap

Using the first and third terms in the equality and substituting the expression for Y, we

obtain (a; — by X )w; X =%[(w1 —ya,)X —aa,].

Simplifying, we obtain  Sw,b; X 2 + [w(w, —ya,) — fw,a;]X —waa, = 0.

The roots of this equation are X =[p++4/ p2 +q]/(2pw;by),
where p = pwa; + wya, —ww;, q=4pw,bweaa,. Irrespective of the sign of p, the root

in the first quadrantis X*=[p + 4 p?+q] /(2 pw,by).
The value of Y* is given by (2.1) (the chosen parameter values should satisfy Y* > 0).
X
7. We have F(X,Y)zal—blx—L, and G(X,Y)=-a, + Wi )
(a+ BY +9yX) (a+pBY +yX)
Conditions (i), (i1), (iii), (iv), (v), (vii) are satisfied.

(vi) F(0, A) =0, gives A-— % S 0if w>a,g.

(W_alﬁ)

(viii) G(C,0) = 0, gives C = — 2%
(W —ayy)

>0 if wy > a,y.

a,a

(ix) B> C gives & >—
(Wl _a27)

Summarizing, we get the conditionsas w>a 3, w, >a,y and &, a2—a'
bl (Wl -8, ¥)
An oscillatory predator-prey dynamics (time series) exhibited by the model system for
the given set of parameter values, a; =2.5 b, =0.05,w=0.85 a=045 =02,
y =0.6, a, =0.95, and w; =1.65, is presented in Fig. 2.2.
8. The equilibrium points are (0, 0), (a, /by, 0) and (X*, Y*) (see Problem 6).
The elements of the Jacobian matrix of the system are
w(a + BY)Y W(a +y X)X
a,=4a —-2b X - 7, A =- 27
(a+ BY +yX) (a+ pY +yX)
W, (a + BY)Y W, (a +y X)X
= 7> 8y =—a, + >
(a+ BY +yX) (a+ BY +yX)

21
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Fig.2.2. Time-series displaying oscillatory dynamics in the model (2.71)-(2.72).

At the equilibrium point (0,0): We obtain a, =a,, a,, =0, a,, =0, a,, =—a,. The eigen
values are 4, =a, and A, =—a, <0. The equilibrium point (0, 0) is unstable. Since,
Re(A) #0 for both eigen values, the fixed point is hyperbolic. Since, the eigen values are
real and are of opposite signs, we find that (0, 0) is a hyperbolic saddle point which repels
in the X-direction and attracts in y-direction.

At the equilibrium point (K, 0), where K =a,/b;.

wK w; K
, 831 =0, ay =

+ K a+iK
The eigen values are A, =-a,, and 4, =a,, =(WK/(a+yK))—a,. If 1, <0, that is

We Obtain a“ = —al, alz = — - az

[w,K /(e + Ky)] < &,, thatis, [w,a, /(bj +8,7)] < @,, then the equilibrium point (K, 0) is
asymptotically stable. Otherwise, (K,0) is unstable. It depends on the values of the
parameters W;,a;,a,,b,a,y. If 1, >0, that is, [wa; /(bja +a;7)] > a,, then the eigen
values are real and are of opposite signs and the fixed point (K, 0) is a hyperbolic saddle
point.

At the equilibrium point (X*, Y*): The expressions for X*, Y* are

X*=[p+yp” +al/2pwby); p=pwia; +Wya, —wwy, g =44wbwaa,.
QpY*=[(w —ray)X *—oa,].
The eigen values of J are the roots of 1% —(a;; + @y, )A + (a,8y — aj,8y;,) = 0. Using the

Routh-Hurwitz theorem, the necessary and sufficient conditions are given by
- (a“ + azz) > 0, and (al 1897 — 312321) > 0. We have (droppmg *)

a; —b X _ 1 __% . (see Problem 6)
wY a+pY +yX  wX

1 1
a+pY =a +a—[(W1 —1ay)X —aay ] = a_(Wl —1a) X..
2

2
all =a1 —2b1X - W(a+ﬁY)Y )
(a+ pY +yX)
=a1 _blx _blx —|:W(W1 _}aZ)Xj”:(al _b1X)a2j| :&(al —b1X)—b1X.
a, ww; X Wy

W (a +pX) X — a4 Qa+pX) _ ap

8y, = —a, + = =
2T G B X P @Y X)W

(@, —b; X).
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a
ayp +a :%(al =0y X) by —2Tﬂ(al —b;X)
|

=a1a2[L—%}blx[&+1_&}

W, W, W

= alaz[W\A;Nﬂwl}F \?\;\;/( [az(,BW1 _VW)_lel

1 1
Sufficient conditions for [—(a;; +a,,)] > 0 are

}/\N—ﬂNl <O, and az(ﬂNl —}/\N)—VV\NI <0. NOW,

a
(a8 —appay)) = [&(31 - blx)_blxj“:_z_ﬂ(al - blx)j|
W, w
2
wa
+ 32 (o +yX) (W — 72y )(a — by X)
wy X

_%h
Ww,
Sufficient conditions for (a;;a,, —a;,a,;) > 0 are

(Wl —}/a.z) >O, (al —bIX) >O, and le(Wl +}/a.2)—}/ala2 >O,

(a; — b X)[b X (w; +7a,)—7a,a, ]+ second term.

that is, (w; —ya,) >0, and _id b X <a.

(W +72;)
We require the above conditions to be satisfied for asymptotic stability. However, it is
possible to derive alternate conditions by simplifying in a different way.

9. The equilibrium points are the solutions of the equations

u v pu
U1 [N AN 0 SV R ) '
u[( Kj (uz/a)+u+l} V[(uz/a)+u+l y}

Two of the equilibrium points are (0, 0) and (K, 0). From the second equation, we get
[1/{(u?/a)+u+1}]=(y/pu). Using this result in the first equation, we get
VE= (B /KK -uFu*.

Simplifying the equations (K —u)(u? + o U+ a) — VKo = 0, off u— y(U> +au+a)=0,

we obtain (K -u)[uU’ +a U+« —(afp/y)u]=0.The first root gives U = K, which gives
the equilibrium point (K, 0). Setting S=a[l—-(f/y)], we obtain the solutions of
U2 +Su+a =0 as u*=[-S+/S? —4q ]/2. Hence, v*=(B/yK)[K —u*Ju*.

The non-trivial solutions exist if S > 4¢, and u* <K, that is if [1—(,8/;/)]2 >(4/a), and

u* <K.If S<0, thatis B>y, we obtain two positive equilibrium points. If S > 0, that is
[ <y, we have u* <0, and there are no positive equilibrium points.
10. We have F(u,v)= (1 —ij —;, and G(u,v) = __pu
K) u?/a)+u+l (U?/a)+u+l
(1) (oF/ov)<0, (v) F(0,0)>0, (vi) F(0,A)=0,A>0, (vii) F(B,0)=0, B=K >0,
are satisfied. Equality in condition (iii), (0G/ov) =0 is satisfied.
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(iv) U(Z—Gj +V(Z—Gj >0, gives up[l— (u?/a)]>0. Hence, we get the condition u? <a.
u V

(i) u (Z—Fj +V (%:j <0, gives (after simplification) the condition
u

VK[(u?/a)=1]<u[(u?/a)+u+1]%.

Since u? <, the left hand side is negative and the inequality is satisfied as all other
quantities are positive.

(viii) G(C,0) =0, C> 0, gives the quadratic equation for C as y c?+ (y-p)aC+ay

= 0. The roots of the equation are 2C =[{(S/y)—1} £ a\/{(,B ly)— l}2 -(4/a)].
Both the roots are real and positive if 8>y, and {(B/y)-1}* > (4/a).

(ix) B> C gives K > C, that is K > (larger root of C).
Summarizing, we get the conditions as u? <a, B>y, {(B/7)-1}* > (4/a),

K > 0.5[{(B/7) -1y +a{(B/7) -1} ~(4/e)]
11. A stable equilibrium solution for the given model system exhibited for a typical set of
parameter values, K=1, a =3, # =23 and y =0.3 is presented in Fig.2.3. We obtain
the non-zero equilibrium solution as (u*, v¥) = (0.1511, 0.9836).

12. We have F(X,Z)= A(I—LJ—L, G(X,Z)=2|c-—__|
K) (D+dX+2) (X +Dy)
Conditions (i), (i), (v), (vii), (viii) are satisfied.
Ws <0, or X< WS_—CDS
X + Dy c
Since X >0, we obtain the condition € < (w; / D5).

(iii) g—§<0, gives C—

22 T T T T T T 24

(%]

i
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0.5

AAAA
WA

L L | L L o L L 1 1 1 L
o 01 02 03 0.4 0.5 0B o7 1] 100 200 300 400 500 BO0 700

Fig.2.3. Phase plot and time series for the model system (2.75)-(2.76) for K= 1,
a=3,p=23and y =0.3.

i) X[ L1250, gives x| — W2 |izlc—— M |og)
oX oz (X + D5)? X + D,

A sufficient condition is Z {C -
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(vi) From F(0, A*) =0, we obtain A*= AD/(B— A). The condition A" >0, gives the
requirement B > A.
(ix) The condition B* > C*, gives K > C *. From (iii), we have C* <[(w; —cDs)/c].
We may choose K >[(w; —cDs)/c].
Summarizing the results, Kolmogorov theorem gives the following conditions.
WDy W
(X +Dy)? (X +Dy)
If X, is the maximum value of X, we can choose € < W; /(X,, + D3).
(b) B> A, (c) K>[(wy —cDs)/c].

(a) Combining (iii), and (iv), we get

13. We have F(Z,U)= A(I—AJ—&, and G(Z,U)=c— MY
Ky ) (Z+Dy) z
Conditions (i), (ii), (iii), (v), (vi) are satisfied. Equality condition in (iv) is satisfied. The
requirement (vii) gives B* = K; > 0. The requirement (ix) gives K; > C *. But condition
(viii) is violated. We obtain G(C*,0) = c. The condition G(C,0)=0, C > 0 is violated
since ¢ # 0. Hence, Kolmogorov theorem cannot be applied.

14. The oscillatory predator-prey dynamics exhibited by Holling-Tanner model (2.84), (2.85)
for the given set of parameter values is given in Fig.2 4.
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Fig.2.4. Oscillatory predator-prey dynamics exhibited by Holling-Tanner model.

15. Note that (0, 0) is not an equilibrium point. (K, 0) is an equilibrium point. The second
equation gives U =cZ /w,. Substituting in the first equation, we get
A (K-2)- w;cZ _0
K oWy + BiCZ + W,y Z

b

or  AKoyw, + Z[AK(BC+Wsyq) — AoyW, — W3 Kce] - AZz(ﬂlc +Wuy1) =0,
awW, +(W3Ke/A)  Koyw,

(Bie+war)) T (Bie+Wayy)
Irrespective of the sign of (p — K), the positive root is given by

2Z*:[—(p— K)++/(p-K)? +4q} We have U* =cZ */w,.
An oscillatory predator-prey dynamics exhibited by the model system for the given set of

parameter values, A=2, K=100, w; =2.1, oy =0.45, B, =0.2, y, =0.6, c=0.95 and
w, =1.65, is presented in Fig. 2.5.

or Z?+(p-K)Z-q=0, where p=

19



16. We have F(Z,U):A(l—éj— WU and G(ZU)=c—Y
K (al + ﬂlu + }/12) Z
Conditions (i), (ii), (iii), (v), (vii) are satisfied. Equality condition in (iv) is satisfied.
. .o . «_ Ao .
(vi) F(0, A*) =0, gives A W2~ AB) >0, if wy > ApB;.
(viii) G(C,0) = ¢ # 0. The condition is not satisfied. (ix) B> C is also not satisfied .
Hence, Kolmogorov theorem cannot be applied.

17. The equilibrium pointis X; = (K, — K,b))/(1-bby), X; = (K, —K;b,)/(1-bjby).
Since X, >0, and X, >0, we obtain the conditions b, < (K, /K,)<(1/b,), and

b;b, <1. The second condition is implied in the first condition. (Positivity holds also

when the inequalities are reversed). The elements of the Jacobian matrix are (dropping
the superfix *)

a = /KPIK =2X = b Xy == X, /Ky), a1, =—=(nb X))/ K,

ay1 = (K X3) /Ky, @y = (R /KKy —=by Xy =2X,]==(p X, /Ky).
The characteristic equation is

224 ALK, KD + (X)) /Ky 1+ [(6 X,/ K))(X5) /Ky (1= byby) = 0.
Applying the Routh-Hurwitz criterion, we find that the positive equilibrium point is
asymptotically stable when b;b, < 1. The required condition is b; < (K;/K,) < (1/b,).
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Fig.2.5. Time-series displaying oscillatory predator-prey dynamics
exhibited by the modified HT model (2.90)-(2.91).

18. The positive equilibrium point E*(X,, X,) is the solution of the equations
a; —bit; —cit, =0, and a, —b,t; —C,t, =0, where t; =In X;, t, =In X,.
Ay — a0 _ ba, —b,a,
bc, —bye, " % bc, — by,
The elements of the Jacobian matrix are
ap=a;-b(1+InX;)-cInX, =-by, a;, =—¢; X,/ X,,
ay =-0b X,/ X, ayy=a, -b,InX; —c,(1+InX,)=-cC,.

We obtain t, = , X, =e', X, =e"2,

The characteristic equation is 22+ A(b; +¢,) +(bcy —Cyby) =0.



19.

20.

Routh-Hurwitz criterion gives the necessary and sufficient conditions for the roots to be
negative or have negative real parts, as b, +¢, >0, and Db;c, —¢;b, > 0. The positive
equilibrium point is asymptotically stable when (b, /b,) > (¢, /¢,).
For the given set of parameter values (b, /b,)=3/4, and (c,/c,)=2/3. The condition
is satisfied and the equilibrium point is asymptotically stable. The equilibrium point is
(X1, X2)= (e/,e7).
Forr=15, a =3, we get (1/3) <u*<1. u*is a solution of

P UL e A B,

ou * 2u*

Newton-Raphson’s method applied with the initial approximation taken as 0.5, gives the
sequence of iterates as 0.478602777, 0.480756737, 0.47971041, 0.480048641,

0.48004895. With u* = 0.48004895, we get V¥ =r(1—u*)=0.779926575. We obtain
p=4.5u*-15=0.660220275 A+B+C =r(1-u*p)=1.0245929> 0,
A-B+C=2-r+u*2a-rp)=2.904886625> 0,
A-C=1-u*(a—-rp)=0.035260224> 0.

By Miller’s theorem or Jury test, the equilibrium point is asymptotically stable.

The equilibrium points are obtained as (0, 0), and (4/9, 5/3). The elements of the Jacobian

matrix J are a;; =2.5-3N -0.5P, a;, =-0.5N, a,; =1.8P, a,, =0.2+1.8N. At (0,

0), the eigen values of J are 2.5 and 0.2. The system is unstable. At (4/9, 5/3), the eigen
values of J are 1.0 and 1/3. The system is unstable.

Chapter 3
Exercise 3.1

1. MATLAB 7.0 is used to compute the phase plane diagram to generate the chaotic attractor
and time series. Chaotic attractor and the temporal evolution for (i) t vs X, (ii) t vs y, (iii) t
vs Z are plotted in Figs. 3.1 (a), (b), (c) and (d).
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