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46. Basin boundary for the limit cycle and chaos for the food-chain model (Rai and 
Upadhyay [24]) when 1 1.75,a =  1 0.05,b =  ,0.12 =a  0.7,c =  ,0.1=w  ,0.21 =w  2 1.5,w =  

3 3.75,w =  ,0.10=D  ,0.101 =D  ,0.102 =D  .203 =D    

      Basin boundaries for the chaotic attractor are plotted in Fig. 1.7.  
   

              
               Fig.1.7. Basin boundaries for the chaotic attractor for Problem 46.  

(From Rai, V., Upadhyay,  R. K., Chaotic population dynamics and biology of the top-predator. 
Chaos, Solitons Fractals, 21, 1195–1204, Copyright 2004,  Elsevier. Reprinted with permission). 

                       
 

CHAPTER 2 
Exercise 2.1 

 
1. Without loss of generality, let the initial time be .0=t  The solution is given by 

.)( 0
rtePtP =  At time ,0=t  we have .0PP =  Let at time ,Tt =  the population is tripled, 

that is .3)( 0PTP =  Hence, ,3 00
rTePP =  or ./3ln rT =  The time taken for the population 

to triple its size is ln 3/ .T r=  
2. We have .90,0,900,09.0 00 ==== PtKr  The value of the constant A is obtained as  

.9]/)[( 00 −=−= PKPA  The solution is given by   

    .
91

900

1
)(

09.0 trt eAe
KtP −− +

=
−

=   .897
91

900
)90(

1.8
≈

+
= −e

P  

3. (i) Equilibrium solutions are P1 = 0 and P2 = 500. Now, 

,
250

15.0)( ⎟
⎠
⎞

⎜
⎝
⎛ −=′ PPf      1( ) 0.5 0,f P′ = >      2( ) 0.5 0.f P′ = − <  

Hence, the equilibrium point 01 =P  is unstable and the equilibrium point 5002 =P  is 
stable. Thus, solutions initiating in a neighbourhood of K = 500 approach K as t → ∞ 
while no solution starting in a neighbourhood of P = 0 remains close to zero in the future. 

(ii) ].91/[500)( 5.0 tetP −+=  

4.  .
100

1)0025.0( ⎟
⎠
⎞

⎜
⎝
⎛ −=

PP
dt
dP

 The solution is ,
1

100

1
)(

0025.0 trt AeAe
KtP

−− −
=

−
=   

where . 5.11 9875.4eA −=  The estimated populations in the years 2005 and 2100 are 8.18 
and 10.15 billions respectively.  
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5. Separating the variables and solving the differential equation, we get ,)1/( tceRR α=−  a, 
c are arbitrary constants to be determined. Applying the conditions that at 8 hours, R = 

0.08, and at 12 hours R = 0.05, we obtain ),5.11ln(25.0=a  and ≈−= − aec 12 .9.1520/1−  
Now, when R = 0.9, we obtain t = 15.5985 or approximately 3.36 P.M. 

6. We have  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

αα
α

α K
P

K
PPr

dt
Pd

1 )1(1
2

2

2

 

        ,)]1()2(1[ 2
2

αα
α

+++−⎟
⎠
⎞

⎜
⎝
⎛= ttPr

     where   .
α

⎟
⎠
⎞

⎜
⎝
⎛=

K
Pt   

Setting ,0)( =′′ tP we get P = 0, t = 1, and ),1/(1 α+=t  that is, P = 0, P = K, and =P  

.)1( /1 αα −+K  The point of inflection is .)1( /1 αα −+= KP  
For ,1=α  the point of inflection is P = K/2. Taking the limit as ,0→α  we find that the 
point of inflection moves to P = K/e. 

7. Comparing with (2.12), we have .10,10,10 5
0

93 === −− Pr γ  The solution is given by 

   .
)001.0exp(91

10

) ( 
)(

6

00

0

tePrP
rPtP rt −+

=
−+

= −γγ
 

The limiting value of the population is .106  
8. Comparing with the model for the density dependent growth (2.12), we have r = 0.09, 

,0009.0=γ  .25000 =P  The solution of the model is obtained as  

 rtePrP
rPtP −−+

=
) ( 

)(
00

0

γγ
 

  .
16.225.2

225

)}2500(0009.009.0{)2500)(0009.0(

)2500)(09.0(
09.009.0 tt ee −− −

=
−+

=  

      The limiting value of the population is 100. The equilibrium points are 0 and 100. The 
point 0 is unstable and the point 100 is stable. All other solutions move away from P = 0, 
towards P =100. 

9. )].1)(/exp[()( 00
terPtP αα −−=  

10. Assume that no student leaves the campus throughout the duration of viral fever. Now, 
Number of students infected at a point of time = p,     
    Number of students who are not infected at the same point of time = 2500 − p.  

   Since, the rate at which viral fever spreads is proportional not only to the number of 
people affected, but also to the number of people who are not yet exposed to it, we obtain 
the model as   

  
),2500( pap

dt
dp

−=  ,1)0( =p  a is an arbitrary constant. 

  Separating the variables and solving, we get ).24991/(2500)( 2500atetp −+=  Since, 
,50)5( =p  we obtain .12500/)51ln(=a  Hence, 2454)15( ≈p  students. 

11. The equilibrium points are the solutions of the equation  .0) 6( =−− hPP  The 

equilibrium points are given by ,931 hP −−=   ,932 hP −+=  h < 9. We have 

  ,26)( PPf −=′   ,092)( 1 >−=′ hPf   .092)( 2 <−−=′ hPf  
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The equilibrium point 1P  is unstable whereas the equilibrium point 2P  is asymptotically 

stable. The two equilibrium points coincide when h = 9. The critical value of h is .9=ch  

When 9>h , there are no equilibrium points and the population tends to extinction. If 
,3>P  .0)( <′ Pf  In this case, we get stable solutions. Hence, the initial value of the 

population should satisfy .30 >P  That is, the population may be extinct if 30 <P , even 

though the condition chh <  is satisfied. 
12.  The equation is a harvesting model with constant harvesting.  

(i) The equilibrium points are 

  ],11[
2

]4[
2
1 22 pKrhKKrrK
r

N −±=−±=      where .
4
rK

hp =  

      Let,  ],11[
21 pKN −−=  and  ].11[

22 pKN −+=  

      Real solutions are obtained only when p < 1, or ).4/(rKh <  We find 

     ],)/2(1[)( NKrNf −=′ ,01)( 1 >−=′ prNf     .01)( 2 <−−=′ prNf  
 The equilibrium point 1N is unstable whereas the equilibrium point 2N  is asymptotically 
stable. The two equilibrium points coincide when p = 1, that is when ,4 rKh =  or 

4/rKh =  and .2/KN =  The critical value of h is .4/rKhc =  When 4/rKh > , there 
are no equilibrium points and the population tends to extinction. 
(ii) If ,2 KN >  .0)( <′ Nf  In this case, we get stable solutions. Hence, the initial value 

of the population should satisfy ).2/(0 Kn >  That is, the population may become extinct 

if )2/(0 Kn < , even though the condition chh <  is satisfied. 

13. Equilibrium point is ./
1

αqEKeN −=  N = 0 can not be taken as an equilibrium point even 
though the limit of the right hand side exists.  Now,  
 ,]1)/[ln()( qENKNf −−=′ α    and    .0)( 1 <−=′ αNf  
Therefore, 1N  is asymptotically stable. Note that )0( =′ Nf  is not defined.  
The sustainable yield is given by 

 ),( )( /
1 uYKueqEKeqENqEY uqE ==== −− αα   where  ./αqEu =  

Also, ,]1[)( ueuKuY −−=′ α  .]2[)( ueuKuY −−=′′ α  Setting ,0)( =′ uY  we get the 
stationary point as u = 1. When u = 1, .0)( <′′ uY  The maximum occurs for u = 1, or 

.α=qE  Maximum sustainable yield = ./)1( eKuY α==   
14. The location of the steady state varies with the length of the delay and the form of the 

characteristic equation changes due to the direct inclusion of the delay in the parameters 
and the indirect changes resulting from the varying location of the steady state. The 
model has the trivial steady state (0, 0) and the nontrivial steady state is given by 

   ,debe Pa =−−μτ       or   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−

d
be

a
P

μτ
ln

1
.  

In particular, if ),/ln()/1( dbμτ >  there is no positive steady state. In this case, given 
that the initial value is positive, we have  

),()( tdPtPbe
dt
dP

−−≤ − τμτ    with   .dbe <−μτ  

     The solution goes to zero and the trivial steady state is globally stable. 
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15. *),(* PFP =  gives )1(* rKP +=  which depends on r. At  *,PP =  
     1)]1/(1[ <+=′ rF for all r > 0. Asymptotically stable for all r. 
16. We find the solution  of the equation *),(* PFP =  that is of 

     ,
*

1exp** ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −=

K
PPP λ   or   .1

*
1exp =⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

K
Pλ  

    The solution is given by P* = K, for all λ . 

    Now,  ,1exp)( ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −=

K
PPPF λ      .11exp ⎥⎦

⎤
⎢⎣
⎡ −⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −=

K
P

K
P

dP
dF λλ  

    At ,* KPP ==  we get ].1[ λ−=
dP
dF

 

   Equilibrium is stable for ,1 1 <− λ  or .20 << λ  It is unstable for λ  < 0 and λ  > 2. 

Neighboring trajectories approach the equilibrium point asymptotically for ,10 << λ  and 
with damped oscillations for .21 << λ  

   Now,         ,0=
dP
dF

 when .
r
KP =      .21exp

2

2

⎥⎦
⎤

⎢⎣
⎡ −⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛−=

K
rP

K
Pr

K
r

dP
Fd

 

   For ,
r
KP =     .0)1exp(

2

2

<−⎟
⎠
⎞

⎜
⎝
⎛−= r

K
r

dP
Fd

  

  Maximum of the trajectory occurs at ./ rKP =  The maximum value = ).1exp()/( −rrK  

  (i) For K = 500, r = 1, ,500 =P we have the following sequence of values: 122.98, 261.40, 
421.26, 493.11, 499.95, 500, (see Fig.2.1).  

  (ii) For K = 500, r = 1, ,6600 =P  we get the sequence of values: 479.26, 499.56, 500, (see 
Fig. 2.1). 

 

     
  Fig.2.1. Discrete solution values for the data sets (i) and (ii). 
   

17. Choose .)( 2KNV ii −=  0≥iV  and has a minimum V = 0 at .KNi =  

    The increment iVΔ  on the trajectory is given by 

  ],2][1[ )1()1(2 −+−=Δ −−
i

nr
i

nr
ii nenenKV ii  where .ii KnN =  

  0≤Δ iV  when (i) ,1)1( <− inre  and ];/2[]1[ )1(
i

nr ne i ≥+−   

    or (ii) ,1)1( ≥− inre  and ]./2[]1[ )1(
i

nr ne i <+−  We obtain 0≤Δ iV  for 20 << r  and for all   

.in  0=Δ iV  only for ./* KNni =  Hence, equilibrium is globally asymptotically stable.   
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18.  Equilibrium point is x* = 1. 1 1  )1( <−=′ rF  gives .20 << r  Asymptotically stable  

for .20 << r  Maximum occurs at x = 1/r and the maximum value is rr /)1exp( − .   

19. For steady state, we solve )]*1/(*)[(*)(* 2bPPPFP +== λ ,  to get ,0* =P  and 

1. ,/)1(* >−= λλ bP  We have    
2

2 2

(1 )
.

(1 )
n

n

bPdF
dP bP

λ −
=

+
   

Hence, the eigen values corresponding to P* = 0 and  ,/)1(* bP −= λ are λ  and 

λλ /)2( −  respectively. For λ =1, we have only a trivial equilibrium point.  

Setting ,0/ =dPdF  we get ./1 bP =  For this value of P, .0)( <′′ PF  Hence, we obtain 

the maximum at ./1 bP =  The maximum value is ).2/()/1( bbF λ=   
 

Exercise 2.2 
 

1. Setting ,0),(,0),( == YXGYXF we obtain the equilibrium point as ,3/212* =X  
.15/2332* =Y  Note that (0, 0) is not an equilibrium point. The elements of the Jacobian 

matrix of the system evaluated at an equilibrium point (X*, Y*) are 

 
2

11 2

8.0
1 ,

50 ( 5 )

X Ya
X Y

= − −
+

  
2

12 2

1.6
,

( 5 )

Xa
X Y

= −
+

 

 
2

21 2

3
,

( 5 )

Ya
X Y

=
+

   
2

22 2

0.6
0.05.

( 5 )

Xa
X Y

= −
+

 

At the equilibrium point ( *, *) :X Y  We obtain ,682222.011 −=a  ,011111.012 −=a  

,100833.021 =a  .045833.022 −=a  The characteristic equation is λλ 72806.02 + + 
0.032389 = 0. The coefficients in the equation are positive. By Routh-Hurwitz criterion, 
the eigen values are negative or have negative real parts. The equilibrium point 
( *, *)X Y is asymptotically stable.  

2. We have ),(),( 111 ZcPbaZPF −−=  and  )]./([),( 22 PZcaZPG −=  
Conditions (i), (ii), (iii), (v), (vi) and (vii) are satisfied. Equality condition in (iv) is 
satisfied. The requirement (viii), G (C, 0) = 0 gives ,02 =a  which violates the 

assumption that 2a is positive. Hence, Kolmogorov theorem cannot be applied. 

3. We have  ,),( 11 DX
wYXbaYXF
+

−−=    .),(
1

1
2 DX

XwaYXG
+

+−=  

Conditions (i), (ii), (iv), (v), (vi), (vii) are satisfied. Equality condition in (iii) is satisfied. 

(viii) ,0)0 ,(
1

1
2 =

+
+−=

DC
CwaCG  gives .

21

12

aw
DaC
−

=   

C > 0 gives the condition .21 aw >  

      (ix) B > C gives the condition  ,
)( 21

21

1

1

aw
aD

b
a

−
>  or   .21

21 K
aDaw >−  

      The two species system (2.80), (2.81) qualifies as a Kolmogorov system when the 
conditions ,21 aw >  2121 )( aDawK >−  are satisfied. 
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4. The elements of the Jacobian matrix of the system are 

,
)(

2
21111 DX

wDYXbaa
+

−−=    ,12 DX
wXa
+

−=  

 ,
)( 2

1

11
21 DX

YDwa
+

=  .
1

1
222 DX

Xwaa
+

+−=  

At the equilibrium point :)0 ,0(0E  We obtain . ,0 ,0 , 2222112111 aaaaaa −====  The 

eigen values are ,011 >= aλ  and .022 <−= aλ  The equilibrium point is unstable. Since 
Re( ) 0λ ≠  for both eigen values, the fixed point is hyperbolic. Since the eigen values are 
real and are of opposite signs, we find that E0 is a hyperbolic saddle point which repels in 
the x-direction and attracts in y-direction.    
At the equilibrium point :)0 ,(1 KE  We obtain  

,2 1111 Kbaa −=  ,
)(12 DK

wKa
+

−=  ,021 =a  ,
1

1
222 DK

Kwaa
+

+−=  .
1

1

b
aK =   

The eigen values are ,01111 <−== aaλ  and  

0
)(

)( 111

112211

11

11
2222 >

+
−−

=
+

+−==
Dba

Dbaawa
DKb

awaaλ  

using the result from Kolmogorov condition (ix). The equilibrium point is unstable. The 
fixed point )0 ,(1 KE  is also a hyperbolic saddle point which attracts in the x-direction and 
repels in y-direction.    
 At the equilibrium point E*(X*, Y*): We obtain  

 ,
)*(

*
*2

21111 DX
wDYXbaa

+
−−=  ,

*
*

12 DX
wXa
+

−=   

 ,
)*(

*
2

1

11
21 DX

YDwa
+

=    .0),(
1

1
222 =

+
+−==

DX
XwaYXGa   

The eigen values of J are the roots of .0211211
2 =−− aaa λλ  By Routh-Hurwitz theorem, 

the necessary and sufficient conditions for the eigen values to be negative or have negative 
real parts are 0)(,0)( 211211 >−>− aaa . That is  

 ,0
)*(

*

*

*
)(

2
1

11
2112 >⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
⎟
⎠
⎞

⎜
⎝
⎛

+
=−

DX
YDw

DX
wXaa  which is true. 

 *)2(
)*(

.
)*(

*

)*(

*
*2)( 1121111 Xba

DX
D

DX
wY

DX
wDYXbaa −−

++
=⎥

⎦

⎤
⎢
⎣

⎡

+
−−−=−  

           *)2(
)*(

*)( 1111 Xba
DX

DXba −−
+

−=  (from 0),( =YXF ) 

           *
)*(

*
*)( 111 Xb

DX
XXba +
+

−−=  ⎥
⎦

⎤
⎢
⎣

⎡
+
−

+=
)*(

*
1*1 DX

KXXb  

           ⎥
⎦

⎤
⎢
⎣

⎡
+
−+

=
)*(

*2
*1 DX

KDXXb .            

Now, ,0)( 11 >−a  if .0*2 >−+ KDX  Substituting the expression for X*, we get 
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    ,02
21

12 >−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

KD
aw

Da
  or   .02 11

21

12
1 >−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

aDb
aw

Dab        (A) 

The equilibrium point *)*,(* YXE is locally asymptotically stable if the condition (A) is 
satisfied. 

5. The elements of the Jacobian matrix of the system are 

  ,
)(

21
211 uh

vhua
P

P

+
−−=    ,12 uh

ua
P +

−=  

 ,
)( 221 uh

vbha
P

P

+
=  .

)(

2
)( 222

2

22 vh
fvhc

uh
bua

Z

Z

P +
−−

+
=  

At the equilibrium point :)0 ,0(0E  We obtain . ,0 ,0 ,1 22211211 caaaa −====  The eigen 

values are ,11 =λ  and .02 <−= cλ  The equilibrium point is a hyperbolic saddle point. 

 At the equilibrium point :)0 ,1(1E  We obtain  

,111 −=a  ,
)1(

1
12

Ph
a

+
−=  ,021 =a  .

122 c
h

ba
P

−
+

=   

The eigen values are ,01111 <−== aλ  and .
1

)(

1222 +

−−
=−

+
==

P

p

P h
chcb

c
h

baλ  

But (from text), b > c, ,0 cbchP −<<  .10 << Ph Therefore, the equilibrium 1E  is a 
saddle point with stable manifold locally in the u -direction and with unstable manifold 
locally in the v -direction.  
 At the equilibrium point *)*,(* vuE : We have 

 

.1
)(

 
)()(

      

,
)(

1
)(

21

22

2211

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

+
=

+
−−

+
=

+
−−−=

+
−−=

uh
vu

uh
vhu

uh
v

uh
vhuu

uh
vhua

PP

P

P

P

P

P

P

 

,12 uh
ua

P +
−= ,

)( 221 uh
vbha

P

P

+
=  ,

)(

)(

)(

2
)( 222

22

222

2

22 vh
hvfv

vh
fvhc

uh
bua

Z

Z

Z

Z

P +
−

=
+

−−
+

=  

where all the quantities are evaluated at *).*,( vu  The eigen values of J are the roots of 
2

11 22 11 22 12 21( ) ( ) 0.a a a a a aλ λ− + + − =  Using the Routh-Hurwitz theorem, we find the 
conditions for local stability as    

        ,0
)(

)(

)(
1 )(

222

22

22211 >
+
−

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−=+−=

vh
vhfv

uh
vuaaA

Z

Z

P
   

 ,0
)()(

)(

)(
1 

3222

22

221122211 >
+

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−=−=

uh
uvbh

vh
vhfv

uh
vuaaaaB

P

P

Z

Z

P
  

 where all the quantities are evaluated at *).*,( vu  Sufficient conditions are 

,*)(* 2uhv P +<  and .*)( 22
Zhv <  If the above conditions are satisfied, then both predator 

and prey species coexist, and they settle down at its equilibrium point. 
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6. The non-zero equilibrium points are the solution of the equations 

   ,0
)(11 =

++
−−

XY
wYXba

γβα
   .0

)(
1

2 =
++

+−
XY

Xwa
γβα

 

     We have   .
1

1

211

Xw
a

XYwY
Xba

=
++

=
−

γβα
 Solving the right equality, we obtain 

  ].)[(
1

221
2

aXaw
a

Y αγ
β

−−=              (2.1) 

Using the first and third terms in the equality and substituting the expression for Y, we 

obtain  ].)[()( 221111 aXawwXwXba αγ
β

−−=−  

Simplifying, we obtain  .0])([ 21121
2

11 =−−−+ awXawawwXbw αβγβ  

The roots of this equation are  ),2/(][ 11
2 bwqppX β+±=  

where  .4  , 2111211 awbwqwwawawp αβγβ =−+=  Irrespective of the sign of p, the root 

in the first quadrant is ).2/(][* 11
2 bwqppX β++=  

The value of Y* is given by (2.1) (the chosen parameter values should satisfy Y* > 0). 

7. We have ,
)(

),( 11 XY
wYXbaYXF

γβα ++
−−=  and  1

2( , ) .
( )

w XG X Y a
Y Xα β γ

= − +
+ +

 

Conditions (i), (ii), (iii), (iv), (v), (vii) are satisfied.  

(vi) 1
1

1

(0,  ) 0,  gives = 0 if .
( )

aF A A w a
w a

α
β

β
= > >

−
  

(viii) ,0)0 ,( =CG  gives  0
)( 21

2 >
−

=
γ

α
aw

aC  if .21 γaw >  

(ix) B > C gives 1 2

1 1 2

.
( )

a a
b w a

α
γ

>
−

  

Summarizing, we get the conditions as   1 1 2,w a w aβ γ> >  and 1 2

1 1 2

.
( )

a a
b w a

α
γ

>
−

    

An oscillatory predator-prey dynamics (time series) exhibited by the model system for 
the given set of parameter values, ,5.21 =a ,05.01 =b ,85.0=w ,45.0=α  ,2.0=β  

,6.0=γ  ,95.02 =a  and ,65.11 =w  is presented in Fig. 2.2.  

8. The equilibrium points are (0, 0), ( )0 ,/ 11 ba  and (X*, Y*) (see Problem 6). 
The elements of the Jacobian matrix of the system are 

    11 1 1 2

( )
2 ,

( )

w Y Ya a b X
Y X

α β
α β γ

+
= − −

+ +
    12 2

( )
,

( )

w X Xa
Y X

α γ
α β γ

+
= −

+ +
   

    1 1
21 22 22 2

( ) ( )
, .

( ) ( )

w Y Y w X Xa a a
Y X Y X

α β α γ
α β γ α β γ

+ +
= = − +

+ + + +
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           Fig.2.2. Time-series displaying oscillatory dynamics in the model (2.71)-(2.72). 
 

At the equilibrium point :)0 ,0( We obtain 11 1 12 21 22 2,  0,  0,  .a a a a a a= = = = −  The eigen 

values are 1 1,aλ =  and 2 2 0.aλ = − <  The equilibrium point (0, 0) is unstable. Since, 

Re( ) 0λ ≠  for both eigen values, the fixed point is hyperbolic. Since, the eigen values are 
real and are of opposite signs, we find that (0, 0) is a hyperbolic saddle point which repels 
in the x-direction and attracts in y-direction. 
At the equilibrium point (K, 0), where  ./ 11 baK =   

We obtain    ,111 aa −=  ,12 K
wKa
γα +

−=  ,021 =a  .2
1

22 a
K

Kwa −
+

=
γα

 

The eigen values are 1 1,aλ = −  and 2 22 1 2( /( )) .a w K K aλ α γ= = + −  If ,02 <λ  that is 

,)]/([ 21 aKKw <+ γα  that is, ,)]/([ 21111 aabaw <+ γα  then the equilibrium point )0 ,(K  is 
asymptotically stable. Otherwise, )0 ,(K  is unstable. It depends on the values of the 

parameters .,,,,, 1211 γαbaaw  If ,02 >λ  that is, ,)]/([ 21111 aabaw >+ γα  then the eigen 
values are real and are of opposite signs and the fixed point )0 ,(K  is a hyperbolic saddle 
point.  
At the equilibrium point (X*, Y*): The expressions for X*, Y* are 

 );2/(][* 11
2 bwqppX β++=  .4  , 2111211 awbwqwwawawp αβγβ =−+=  

 ].*)[(* 2212 aXawYa αγβ −−=  

The eigen values of J are the roots of .0)()( 211222112211
2 =−++− aaaaaa λλ  Using the 

Routh-Hurwitz theorem, the necessary and sufficient conditions are given by 
,0)( 2211 >+− aa and .0)( 21122211 >− aaaa  We have (dropping *) 

 .
1

1

211

Xw
a

XYwY
Xba

=
++

=
−

γβα
 (see Problem 6) 

 ..)(
1

])[(
1

21
2

221
2

Xaw
a

aXaw
a

Y γαγαβα −=−−+=+  

 
21111

)(

)(
2

XY
YYwXbaa

γβα
βα
++

+
−−=  

        ⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡ −
−−−=

Xww
aXba

a
XawwXbXba

1

211

2

21
111

)()( γ
.)( 111

1

2 XbXba
w
a

−−=
γ

 

 
)(

)(

)(

)( 2
22

1
222 XY

Xaa
XY
XXwaa

γβα
γα

γβα
γα

++
+

+−=
++

+
+−= ).( 11

2 Xba
w

a
−−=

β
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 )()( 11
2

111
1

2
2211 Xba

w
aXbXba

w
aaa −−−−=+

βγ
 

      ⎥
⎦

⎤
⎢
⎣

⎡
−+−⎥

⎦

⎤
⎢
⎣

⎡
−=

w
a

w
aXb

ww
aa 2

1

2
1

1
21 1

βγβγ
 

       [ ].)( 112
1

1

1

1
21 wwwwa

ww
Xb

ww
wwaa −−+⎥

⎦

⎤
⎢
⎣

⎡ −
= γβ

βγ
 

Sufficient conditions for 0)]([ 2211 >+− aa  are  

,01 <− ww βγ  and .0)( 112 <−− wwwwa γβ  Now,  

 ⎥⎦
⎤

⎢⎣
⎡ −−⎥
⎦

⎤
⎢
⎣

⎡
−−=− )()()( 11

2
111

1

2
21122211 Xba

w
aXbXba

w
aaaaa βγ

 

        ))()((  11213
1

2
2 XbaawX
Xw

wa
−−++ γγα      

          term.second])()[( 2121111
1

2 +−+−= aaawXbXba
ww
a

γγ
β

 

Sufficient conditions for 0)( 21122211 >− aaaa  are  

,0)( 21 >− aw γ ,0)( 11 >− Xba  and ,0)( 21211 >−+ aaawXb γγ  

that is, ,0)( 21 >− aw γ  and .
)( 11

21

21 aXb
aw

aa
<<

+ γ
γ

 

We require the above conditions to be satisfied for asymptotic stability. However, it is 
possible to derive alternate conditions by simplifying in a different way. 

 
9. The equilibrium points are the solutions of the equations  

 ,0
1)/(

1
2

=⎥
⎦

⎤
⎢
⎣

⎡

++
−⎟

⎠
⎞

⎜
⎝
⎛ −

uu
v

K
uu

α
   . 0 

1)/(

 
 

2
=⎥

⎦

⎤
⎢
⎣

⎡
−

++
γ

α
β

uu
uv  

   Two of the equilibrium points are (0, 0) and (K, 0). From the second equation, we get   

)./(}]1)//{(1[ 2 uuu βγα =++  Using this result in the first equation, we get  
.**))(/(* uuKKv −= γβ   

    Simplifying the equations ,0) )(( 2 =−++− ααα vKuuuK  0) ( 2 =++− ααγαβ uuu ,   

we obtain  .0])/( [ )( 2 =−++− uuuuK γαβαα The first root gives u = K, which gives 
the equilibrium point (K, 0). Setting )],/(1[ γβα −=S  we obtain the solutions of 

02 =++ αSuu  as .2/ ] 4[* 2 α−±−= SSu  Hence, .**])[/(* uuKKv −= γβ  

The non-trivial solutions exist if ,42 α>S  and u* < K, that is if ),/4()]/(1[ 2 αγβ >−  and 
u* < K. If ,0<S  that is ,γβ >  we obtain two positive equilibrium points. If ,0>S  that is 

,γβ <  we have ,0* <u  and there are no positive equilibrium points. 

10. We have  ,
1)/(

1),(
2 ++

−⎟
⎠
⎞

⎜
⎝
⎛ −=

uu
v

K
uvuF

α
  and  .  

1)/(

 
),(

2
γ

α
β

−
++

=
uu

uvuG  

     (i) 0)/( <∂∂ vF , (v) 0)0 ,0( >F , (vi) 0 ,0) ,0( >= AAF , (vii) ,0)0 ,( =BF  ,0>= KB   
are satisfied. Equality in condition (iii), 0)/( =∂∂ vG  is satisfied.  
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    (iv) ,0>⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

v
Gv

u
Gu  gives .0)]/(1[ 2 >− αβ uu  Hence, we get the condition .2 α<u  

(ii) ,0  <⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

v
Fv

u
Fu  gives (after simplification) the condition 

  .]1)/[(]1)/[( 222 ++<− uuuuvK αα  

   Since ,2 α<u  the left hand side is negative and the inequality is satisfied as all other   
quantities are positive. 

   (viii) ,0)0 ,( =CG  C > 0, gives the quadratic equation for C as αγαβγγ +−+ CC  )( 2  

.0=  The roots of the equation are ].)/4(}1)/{(}1)/[{(2 2 αγβαγβ −−±−=C   

    Both the roots are real and positive if ,γβ >  and )./4(}1)/{( 2 αγβ >−  
   (ix) B > C gives K > C, that is K > (larger root of C). 

    Summarizing, we get the conditions as ,2 α<u  ,γβ >  ),/4(}1)/{( 2 αγβ >−   

K  > ].)/4(}1)/{(}1)/[{( 5.0 2 αγβαγβ −−+−  
11. A stable equilibrium solution for the given model system exhibited for a typical set of 

parameter values, K = 1, 3, 2.3α β= =  and 0.3γ =  is presented in Fig.2.3.  We obtain 
the non-zero equilibrium solution as (u*, v*) = (0.1511, 0.9836). 

12. We have   ,
)(

1 ),(
ZdXD

BZ
K
XAZXF

++
−⎟

⎠
⎞

⎜
⎝
⎛ −=   ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−=
)(

),(
3

3

DX
wcZZXG . 

Conditions (i), (ii), (v), (vii), (viii) are satisfied.  

       (iii)  . or      ,0   gives   ,0 33

3

3

c
cDwX

DX
wc

Z
G −

<<
+

−<
∂
∂

 

             Since ,0>X  we obtain the condition )./( 33 Dwc <  
 

     
         Fig.2.3. Phase plot and time series for the model system (2.75)-(2.76) for K = 1, 
        3, 2.3α β= =  and .3.0=γ  
        

      (iv) ,0>⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

Z
GZ

X
GX  gives   0 

)( 3

3
2

3

3 >⎥
⎦

⎤
⎢
⎣

⎡
+

−+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+ DX
wcZ

DX
ZwX .  

   A sufficient condition is  ,0
)(

 
2

3

33 >
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

DX
Dw

cZ   or   
2

3

33

)( DX
Dw

c
+

> . 
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      (vi) From ,0*),0( =AF  we obtain )./(* ABADA −=  The condition * 0,A >  gives the 
requirement B > A.    

     (ix) The condition *,* CB > gives .*CK >  From (iii), we have ]/)[(* 33 ccDwC −< . 

         We may choose ]/)[( 33 ccDwK −> .   
    Summarizing the results, Kolmogorov theorem gives the following conditions. 

     (a) Combining (iii), and (iv), we get  .
)()( 3

3
2

3

33

DX
w

c
DX
Dw

+
<<

+
  

          If mX  is the maximum value of X, we can choose )./( 33 DXwc m +<  

     (b) ,AB >  (c) ]/)[( 33 ccDwK −> . 

13. We have   ,
)(

1 ),(
3

3

1 DZ
Uw

K
ZAUZF

+
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=   and   .),( 4

Z
UwcUZG −=  

Conditions (i), (ii), (iii), (v), (vi) are satisfied. Equality condition in (iv) is satisfied. The 
requirement (vii) gives .0* 1 >= KB  The requirement (ix) gives .*1 CK >  But condition 
(viii) is violated. We obtain .)0 *,( cCG =  The condition ,0)0 ,( =CG  C > 0 is violated 
since .0≠c  Hence, Kolmogorov theorem cannot be applied.  

14. The oscillatory predator-prey dynamics exhibited by Holling-Tanner model (2.84), (2.85) 
for the given set of parameter values is given in Fig.2.4.   

 

           
     Fig.2.4. Oscillatory predator-prey dynamics exhibited by Holling-Tanner model. 
      
15. Note that (0, 0) is not an equilibrium point. (K, 0) is an equilibrium point. The second 

equation gives ./ 4wcZU =     Substituting in the first equation, we get 

 ,0)(
14141

3 =
++

−−
ZwcZw

cZwZK
K
A

γβα
 

   or ,0)(])([ 141
2

34114141 =+−−−++ γβαγβα wcAZKcwwAwcAKZwAK  

   or ,0)(2 =−−+ qZKpZ     where  .
)(

,
)(

)/(

141

41

141

341

γβ
α

γβ
α

wc
wKq

wc
AKcwwp

+
=

+
+

=  

   Irrespective of the sign of ),( Kp −  the positive root is given by 

 .4)()(*2 2
⎥⎦
⎤

⎢⎣
⎡ +−+−−= qKpKpZ      We have ./** 4wcZU =  

 An oscillatory predator-prey dynamics exhibited by the model system for the given set of 
parameter values, A = 2, K = 100, ,1.23 =w  ,45.01 =α  ,2.01 =β  ,6.01 =γ  c = 0.95 and 

,65.14 =w  is presented in Fig. 2.5. 
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16. We have    ,
)(

1 ),(
111

3

ZU
Uw

K
ZAUZF

γβα ++
−⎟

⎠
⎞

⎜
⎝
⎛ −=    and   .),( 4

Z
UwcUZG −=  

  Conditions (i), (ii), (iii), (v), (vii) are satisfied. Equality condition in (iv) is satisfied. 

 (vi) ,0*),0( =AF  gives ,0
)(

*
13

1 >
−

=
β

α
Aw

AA  if .13 βAw >  

 (viii) .0)0,( ≠= cCG  The condition is not satisfied.   (ix) B > C  is also not satisfied . 
 Hence, Kolmogorov theorem cannot be applied. 

17. The equilibrium point is ),1/()( 21121
*
1 bbbKKX −−=  ).1/()( 21212

*
2 bbbKKX −−=  

Since ,0*
1 >X  and ,0*

2 >X  we obtain the conditions ),/1()/( 2211 bKKb <<  and 

.121 <bb  The second condition is implied in the first condition. (Positivity holds also 
when the inequalities are reversed). The elements of the Jacobian matrix are (dropping 
the superfix *) 

 ),/(]2)[/( 11121111111 KXrXbXKKra −=−−=  ,/)( 111112 KXbra −=  

 ,/)( 222221 KXbra −=  )./(]2)[/( 22221222222 KXrXXbKKra −=−−=   
The characteristic equation is  

 .0)1](/))(/[(]/)()/[( 21222111222111
2 =−+++ bbKXrKXrKXrKXrλλ  

Applying the Routh-Hurwitz criterion, we find that the positive equilibrium point is 
asymptotically stable when .121 <bb  The required condition is << )/( 211 KKb  )./1( 2b   

 
 

               
              Fig.2.5. Time-series displaying oscillatory predator-prey dynamics  
                      exhibited by the modified HT model (2.90)-(2.91). 
 
18. The positive equilibrium point * * *

1 2( ,   )E X X  is the solution of the equations 

  ,021111 =−− tctba  and ,022122 =−− tctba  where ,ln 11 Xt =  .ln 22 Xt =  

We obtain .  ,  ,  , 21
21

1221

1221
2

1221

1221
1

tt eXeX
cbcb
ababt

cbcb
cacat ==

−
−

=
−
−

=   

The elements of the Jacobian matrix are 
 ,ln)ln1( 12111111 bXcXbaa −=−+−=  ,/ 21112 XXca −=   

 ,/ 12221 XXba −=  .)ln1(ln 22212222 cXcXbaa −=+−−=  

The characteristic equation is  .0)()( 212121
2 =−+++ bccbcbλλ  
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Routh-Hurwitz criterion gives the necessary and sufficient conditions for the roots to be 
negative or have negative real parts, as ,021 >+ cb  and  .02121 >− bccb  The positive 

equilibrium point is asymptotically stable when )./()/( 2121 ccbb >  

For the given set of parameter values ,4/3)/( 21 =bb  and .3/2)/( 21 =cc  The condition 
is satisfied and the equilibrium point is asymptotically stable. The equilibrium point is  

=) ,( *
2

*
1 XX  ). ,( 57 −ee     

19. For r = 1.5, ,3=α  we get .1*)3/1( << u  u* is a solution of  

  .0
*2

1
5.1

*
)1*(

1*)( )1*(5.1)1*( =−−=−
−

+= −− uur e
u

e
u

uruf
α

  

Newton-Raphson’s method applied with the initial approximation taken as 0.5, gives the 
sequence of iterates as 0.478602777, 0.480756737, 0.47971041, 0.480048641, 
0.48004895. With ,48004895.0* =u  we get .779926575.0*)1(* =−= urv  We obtain  

 ,660220275.05.1*5.4 =−= up  ,00245929.1)*1( >=−=++ purCBA  
 ,0904886625.2)2(*2 >=−+−=+− rpurCBA α  
 .0035260224.0)(*1 >=−−=− rpuCA α  

By Miller’s theorem or Jury test, the equilibrium point is asymptotically stable. 
20. The equilibrium points are obtained as (0, 0), and (4/9, 5/3). The elements of the Jacobian 

matrix J are ,5.035.211 PNa −−=  ,5.012 Na −=  ,8.121 Pa =  .8.12.022 Na +=  At (0, 
0), the eigen values of J are 2.5 and 0.2. The system is unstable. At (4/9, 5/3), the eigen 
values of J are 1.0 and 1/3. The system is unstable. 

 
Chapter 3   

Exercise 3.1    
1. MATLAB 7.0 is used to compute the phase plane diagram to generate the chaotic attractor 

and time series.  Chaotic attractor and the temporal evolution for (i) t vs x, (ii) t vs y, (iii) t 
vs z are plotted in Figs. 3.1 (a), (b), (c) and (d). 
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