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1.23. The statement Jx,Q(z) says that there is some value of z for which
P(z) is true. The statement ~ V ~ Q(z) says that it is not true that
Q(z) fails for all . These say the same thing.

1.24. The statement Vxdy,y > x says that, for any z, there is a y that is
greater than . In the real numbers, for instance, this is true. The
statement JyVx,y > x says that there is a y that is greater than all z.
In the real numbers, for instance, this is false. So the two statements
are quite different, and we cannot commute the quantifiers.

Chapter 2: Methods of Proof

2.1. If m, n are odd then, by definition, m = 2k+1 and n = 2/4 1 for some
k,¢ € Z. Multiplying, we obtain:

m-n=02k+1)-(20+1) =22kl +k+ () + 1,
which is odd by definition.

2.2. If n is even then, by definition, n = 2¢ for some ¢ € Z. Multiplying, we
obtain:

m-n =m(20) = 2(ml),

which is even by definition.
2.4. Writing things out, we obtain

2444+ (2k—2) + 2k

2142+ +(k—1)+k)

k(k+1)
2

= K>+ k.

= 2 by Prop. 2.4.2
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2.5.

2.6.

2.7.

2.8.

Writing things out, we obtain

1434+ (2k—3)+ (2k — 1)
= 2-D+U4-D+---+(2k-2)—-1)+(2k—-1)
= (2+4-- (2]{:—2) 2k) — k
= (k*+ k‘) by Exercise 2.4
= k.

Since, for n > 1, we have 2n > n+ 1 mailboxes, we can apply Theorem
2.3.3 and conclude that some mailbox contains at least two pieces of
mail. Exhausting all the posibilities, those two pieces of mail must be
either both blue, both red, or one blue and one red.

We can write m = 3¥ and n = 3¢ for some k,/ € IN. Let us assume,
without loss of generality, that £ < /. Seeking a contradiction, assume
that m +n = 3", for some » € IN. Then we have:

m+n=3+3"=3143"%)=3", with ¢—k>0.

Now note that since 3* = m < m +n = 37, it must be that k < .
Hence,

1+37%"=3"" with r—k>0.

The right hand side of the last equality is either 1 or divisible by 3,
whereas the left hand side is bigger than or equal to 2 and definitely
not divisible by three. Thus, the equality must be false, which means
that our original hypothesis m + n = 3", for some r € IN) was false.

Nothing is really special about 3. The same proof would work for any
other number except 2. It does not work for 2 because if we take [ = k
and r = k 4+ 1, the last equality above would read:

1420 =2"

which is definitely true, so we would not arrive to any contradiction. In
fact, for { = k and r = k + 1, we always have 2¥ 4 2! = 27, so Exercise
2.7 does not apply.
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2.12.

2.13.

2.14.

2.15.

2.17.

2.18.
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Following the given scheme, we have 2¢?> = p?. If ¢ has, say, r prime
factors, then ¢? has 2r prime factors. Thus 2¢® has 2r +1 prime factors.
On the other hand, p? must have an even number of prime factors, and
we arrive at a contradiction. Hence our original assumption v/2 = p/q
must be false.

Write n = k2, and suppose that n + 1 = 2 for some | € IN. Then
l=(Mn+1)—-n=0r—-k={+Ek)({—k). Then £+ k =1, and that
is impossible for natural numbers ¢ and k.

We proved in Exercise 2.1 that the product of two odd numbers is odd.
Therefore, if the product of two numbers is even, at least one of them
must be even.

From Exercise 2.2, we know that if either m or n is even, then n - m
must also be even regardless of the parity of the other number. Thus,
for n - m to be odd, we must have that both numbers are odd.

If n is even, then n — 1 is odd. Now, n = (n— 1)+ 1, so n is the sum of
two odds. If n is odd, then n = n, so n is the sum of one odd integer.

False: 12 + 22 = 5, which is not a perfect square.

True: Suppose, seeking a contradiction, that there are no perfect squares
in that list. This means that all the numbers in the list fall between
two consecutive squares, i.e. there is k such that k> <n <n+1 <
.. <2n+2 < (k+1)% We then have:

2n+2<(k+1)°=k*+2k+1<n+2k+1,

or
n+1<2k.

Squaring both sides we obtain:
n? 4 2n+1 < 4k* < 4n,

or
(n—1%*=n*-2n+1<0,

which is impossible.
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2.19.

2.20.

2.21.

2.22,

2.23.

2.24.

2.25.

2.26.

True: 6=14243, or 28=1+42+44+7+14. In fact, these numbers have
a name: Perfect numbers. Not much is known about perfect num-
bers. It is conjectured that there are no odd perfect numbers, mainly
because nobody ever found an odd perfect number, but it has never
been proved. It has also not been proved that there are infinitely many
perfect numbers.

False: 22 — 12 = 3, which is a prime.
False: 22 + 12 = 5, which is a prime.
True: If z > 0 we have:

0<2r & 2°+1<2®+2r+1=(1+2)

False: Take n = 2,a; = 1,a2 = 4. Then the inequality would read:

144

<(1-4)Y2 =29
5 <(1-4)

5
2

Y

which is clearly false.

True: Write the decimal expansion of these two numbers. Since the
numbers are different, there will be a first digit in the decimal expansion
which does not coincide. Take the highest of the two numbers and
truncate its decimal expansion right after this digit. The number we
obtain is rational (since its decimal expansion has finite length) and it
clearly lies between the two numbers.

True: Write the rationals as fractions py /¢, p2/q with the same denomi-
nator ¢ so that p; +2 < py (one can always achieve this by taking ¢ big
enough). Then either y/p;2+ 1 or \/p;2+ 2 is an irrational number
that lies between p; and po (cf. Exercise 2.12). Divide this irrational
by ¢ to obtain another irrational that lies between the two rationals.

True: We have to prove that k¥ < m < n < (k + 1)? cannot happen.
In other words, writing m = ¢3, we want to prove that if k% < £3, then
(k+1)% < (¢ +1)3. This is the same as

K>+ 2k +1 <3 +30+3041,
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2.27.

2.28.

2.29.

SOLUTIONS MANUAL

or
k? 4+ 2k < 03+ 302 + 3¢.

Since k? < £3 and 0 < 3¢, it sufiices to show
2k < 30°.

To prove this, note that since k? < 3, we have 4k? < 4¢3 < 9¢*. Taking
square roots in both ends of the last equation we obtain the desired
inequality:.

We will use the alternative form of the principle of complete induction
given in the text (see also Exercise 2.31). The property is clearly true
for 2 (since 2 is prime). Assume that it is true for any £ < n. We
have to prove that it is true for £ = n. If the only divisors of n are
n itself and 1, we are done, since that would imply that n is itself a
prime. Otherwise n has a divisor d < n. By the induction hypothesis,
d must have some prime factor p. Now, since p divides d which divides
n, p must also divide n. But then p will be a factor of n. Hence the
property is also true for n.

For k = 3, we know that the property is true. Suppose that the property
is true for £k =n — 1. We need to prove that it is true for £ = n. Take
three consecutive vertices A, B, C' of your n-gon and join A with C' by
a segment. This segment separates the n-gon in an (n — 1)-gon and a
triangle. Note that the sum of the interior angles of the (n — 1)-gon
plus the sum of the interior angles of the triangle equals the sum of
the interior angles of the original n-gon. By the induction hipothesis,
the sum of the interior angles of the (n — 1)-gon is ((n — 1) — 2) - 180°.
Thus, for the n-gon, we will obtain:

(n—1)—2)-180° + 180° = (n — 2) - 180°,
which is what we wanted to prove.

The property is true for k = 3, since 2> =8 > 7 =1+ 2-3. Assume
that the property is true for K =n —1. We want to show that it is true
for k =n. In other words, we want to prove that

2" > 1+ 2n.
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2.31.

2.32.

Observing that 2" = 2 - 2" we find an obvious place to apply the
induction hypothesis:

2" = 2.7
> 2-(142(n—1)) from the induction hypothesis
= (1+2n)+ (2n—3)
> 14+2n since 2n—3 > 0 for n > 2.

If one starts the induction process from a number ng 4+ 1, ng > 1, then
P(1) might not be true (it might not even be defined), and we would
not be able to use induction according to the statement in the text.
But we can modify this statement using the following trick:

Define a property P’ as follows:
P'(k)istrue < P(ng+ k) is true .

Then P'(1) is true since P(ng + 1) is true, and P'(n — 1) = P'(n)
because P(ng +n — 1) = P(ng + n) by hypothesis. But now we can
apply induction (as stated in the text) to the property P’, so that P'(n)
holds for any natural number n. This implies that P(ng + n) holds for
all n € N, or equivalently, P(m) holds for all n > ng + 1.

For n =1, we have:

qg l—q+q 1

1 _ _
+1—q 1—¢q 1—q’

so the formula holds for n = 1. Assume that the formula is true for
n — 1. We want to prove that it is true for n. Then we have:

q ¢ ¢
SR S s G R ) T ) R
qn—l qn
T U-@) -¢ ) A-gU-g) (g
_ ! q"
I—00-0) (¢ T-g0-g) 1—q7
_ 1—q"+q"
1-q¢)(1—=¢*---(1—qm

1
(I-q)1=¢*)---(1—q")°
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2.34.

2.35.

2.36.
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where we used the induction hypothesis in the first equality.

It is true for n = 5:
20 =32>26=5+1.

Assume that it is true for n — 1 > 5. We must prove it for n. We can
write:

2" = 2.7
> 2((n—1)>41) by the induction hypothesis
= n*+1+(n°—4n+3)
= n*+1+(n*—4dn+4) -1
= n*+1+n-22%-1
> n’+1 since (n—2)2—1>0ifn> 4.

Let P(n) be the statement, “If n + 1 letters are placed into n mail-
boxes then some mailbox must contain two letters. When n = 1 the
claim is that if we put two letters into one mailbox then some mailbox
must contain two letters. Obvious. Now suppose that P(n — 1) has
been proved. We have n mailboxes and we place n + 1 letters into n
mailboxes. If the last mailbox contains two letters then we are done.
If not, then the last box contains one or two letters. But then the first
n — 1 mailboxes contain at least n letters. So the inductive hypothesis
applies and one of them must contain two letters. That completes the
inductive step, and the proof.

Assume that we have n mailboxes. Let £(j) be the number of letters
in box j. Now
(1) +€2)+---+4ln) =n+1,

since all the letters taken together total n + 1 letters. Dividing by n
gives

(D) 02+ +Un) _n+1

> 1.

So the average number of letters per box exceeds 1. This can only be
true if some box contains more than 1 letter. Thus some box contains
two letters.
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2.37.

2.38.

2.39.

2.40.

2.41.

It cannot be that just one letter is in the wrong envelope. Because then
the letter that should have been in that envelope is also in the wrong
envelope. So at least two letters would be in the wrong envelope. So
the probability is 0.

Consider the set S all ordered pairs (¢,p) where ¢ is a line passing
through (at least) two of the given points and p is a point not on that
line (certainly p exists because the points are not all colinear). Define
a function f on S by

f(¢,p) = distance of ¢ to p.

Then f is a function with a finite domain, so there is a particular
ordered pair (¢, pp) which minimizes the function. Then ¢, is the line
that we seek. We invite the reader to check cases to verify this assertion.

Draw a pair of coordinate axes. Now draw a “smallest possible rectan-
gle”, with sides parallel to the coordinate axes, that contains the string.
Let the lengths of the sides of the rectangle be a and b. Then, using
the fact that a line is a distance-minimizing curve in the plane, we can
see that a + b < 1. The rectangle of greatest area with this constraint
on its perimeter is the square of side 1/2. It has area 1/4.

Let
B(x) = z is a boy under the age of 10.
and
P(x) = x practices all pieces in his/her piano book every day.
Then our statement is
Vx, B(x) = P(x).
We can rewrite this as

~ dz,~ (B(z) = P(z)).

The assertion is true for n = 1 by inspection.
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Assume now that the assertion is verified for n = j. Then we have
a 2 \'*" _ a 2\ (a2 7
0 a N 0 a 0 a
_ (a2 (& 2§
N 0 a 0 o
(AT 2+ )d?
- 0 altt '
That completes the inductive step.

2.42. The assertion is clear for n = 1. Now assume that it is true for n = j.
We write
G+1)P=(G+1) = (FP+37°+3+1) -G +1)
= 2 +37+2j
= (7 —7)+ (3% +34).
Now, by the inductive hypothesis, j3 — j is divisible by 6. Also
372435 =3j(j+1).

Since either 7 or j 4+ 1 is divisible by 2, this last expression is also
divisible by 6. Hence (j + 1) — (j + 1) is divisible by 6, and the
induction is complete.

2.44. We will prove that, for any positive integer n,

1 1 1
\ﬁ+ﬁ+"'+\/—ﬁz\/ﬁ'

The claim is plainly true for n = 1. Now assume that it has been
established for n = j. Then we have

1 L 1 Ly 1 L 1 >\/T+ 1
—+ =ttt =t =2Vt .
YR A/ E Vitl

So we need to show that

Vi+ ‘+12\/j+1.

J

TH
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Multiplying both sides by 1/j + 1, we see that this is the same as

or

JU+)+1>5+1

Vil+1) =3,

Now squaring both sides gives the result. The induction is complete,
and the result proved.

Chapter 3: Set Theory

. (a
(c
(e

)
)
)
g)

(
(
(
(2

SNU =1{1,2,3,4}.

SUUYNV = {2,4}.

UUVUT)\ S = {6,7,8,9}.

Sx V)\ (T x U) = {(1,2), (1,4), (1,6), (L1, 8), (2,2), (2,4),

,6),(2,8),(3,6),(3,8), (4,6), (4,8), (5,6), (5,8)}-

3.2. Itisempty: If a € S x T, then a = (z,y), with x € S and y € T. But
T has no elements, so such a y cannot exist, so such an a cannot exist
either.

C:

V)

N

V)

If € “(NueaSas), then © & NyeaSa, which implies Jag such
that © & S,,. But this means that x € ©S,,, so certainly
T € UaeACSa.

: If v € Upea®Sa, then Jag such that z € ©S,,,. Thus, x € S,, ,

5O T & NucaSa. Therefore, x € “(NpeaSa)-

s Ifx € TN(UaeaSy) then z € T and x € Uyea S, This implies

that x € T" and = € S,, for some ag € A. So x € T'N Sy,
which implies € Uaea(T N S,).

s Ifx € Upea(T'NS,) then x € TN S, for some oy € A. Thus,

x €T and x € S,,. Therefore, z € T and =z € UyeaSa, s0
zeTnN (UQGASQ).



