
4 Instabilities of Flows and Transition to Turbulence

1.7 Starting from the mathematical formulation and analysis of Kelvin-Helmholtz in-
stability, describe the Rayleigh-Taylor instability by using U1 = U2 = 0.

1.8 In an estuary, salty water is over fresh water locally. The densities of fresh and
salty water can be taken as 1020kg/m3 and 1040kg/m3, respectively. Calculate the cut-off
wavenumber below which unstable waves grow at the interface, considering surface tension
at the interface be 0.020 N/m. Find out the wave length at which the growth rate is
maximum.

1.9 Is there an upper limit for critical Reynolds number for pipe flow?

1.10 Obtain the dispersion relation for Rayleigh-Taylor instability, when the fluids on
either side of the interface is of finite depth, H1 and H2.

1.11 If the vessel for the problem of 1.10 experiences an added acceleration f in the
direction of gravity, what will be the dispersion relation?

Chapter 2:

2.1 What are the mechanisms for two- and three-dimensional flows by which energy is
created at higher wavenumbers for turbulent flows?

2.2 Derive the energy and dissipation spectra for high Reynolds number turbulent flows
in the inertial subrange.

2.3 Relate the time scales of mean and fluctuation fields of an equilibrium turbulent
flow. Does this justify the usage of unsteady RANS in solving unsteady flows?

2.4 What is the closure problem in turbulence modeling for Reynolds-averaged Navier-
Stokes (RANS) equation? What is the basis by which it is solved in engineering codes?

2.5 Explain what is meant by equilibrium turbulence. How this can be used in justifying
“Unsteady RANS”? How this is used in constructing sub-grid scale (SGS) model in LES?

2.6 What are the justifications for relating turbulent stresses to the mean strain rates
in turbulence models or subgrid scale stress models?

2.7 How is vortex stretching responsible for energy cascade in three-dimensional turbu-
lence?

2.8 What is backscatter or inverse energy cascade? Discuss it in the context of enstrophy
cascade in two-dimensional turbulence.

2.9 A viscous incompressible flow is established by a constant pressure gradient between
two parallel planes, one of which is also imparted a constant velocity U0. The two planes are
at H distance apart. Find out the velocity distribution and the limiting pressure gradient
for the flow to separate.

2.10 How is Kolmogorov length scale important in DNS of turbulent flows?

2.11 Derive the asymptotic suction required at the wall of a two-dimensional boundary
layer to maintain the flow to be similar.

2.12 Is the dispersion relation always dependent on governing differential equation?
Obtain the dispersion relation for Rayleigh-Taylor instability.

2.13 Show that for an irrotational flow, nonlinearity of the convection term merely
redefines the pressure and thus seldom gives rise to instability.
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2.14 Solve the Blasius boundary layer equation: f ′′′ + 1
2ff

′′ = 0 in 0 ≤ η ≤ ηmax,
computationally as a boundary value problem, where η is the similarity profile introduced
in the text. Choose a value of ηmax = 12 for your calculation. Is there an inflection point
for the Blasius profile?

2.15 Consider the following 1D convection equation,

∂u

∂t
+ c

∂u

∂x
= 0, c > 0 (2.1)

Obtain the numerical amplification factor |G| and normalized group velocity |VgN/c|, for
the following space-time discretization schemes used for this model equation: (i) OUCS3-
RK4, (ii) CD2-RK4 and (iii) QUICK-RK4 schemes.

2.16 Considered a wave packet with k0 = 50 in a domain of length 10, with 4096
uniformly distributed points following the initial condition given by,

u(x, t)|t=0 = e−α(x−x0)2 cos[k0(x− x0)] (2.2)

where x0 is the center of the wave-packet at t = 0, whose central wavenumber is given by
k0. Solve Eq. (2.1), using CD2 and OUCS3 spatial discretization schemes with RK4 time
integration method. Choose, α = 30000, c = 0.1 and CFL number Nc = 0.1.

Chapter 3:

3.1 For a periodic vortex-train convecting at Y = 20δ∗ over a zero pressure gradient
(ZPG) boundary layer, compare the receptivity of the boundary layer when the train moves
at (a) c = U∞ and (b) c = U∞/3. The distance between successive vortices is a = 100πδ∗.

3.2 Why is the local solution upstream of a harmonic point source placed on the wall
of a ZPG boundary layer independent of Reynolds number?

3.3 Why do ZPG boundary layers display Klebanoff or breathing mode in response to
very low frequency disturbance field? Is there a lower cut-off frequency for this?

3.4 A ribbon is placed outside a boundary layer over a ZPG flow and is vibrated elec-
tromagnetically at a constant physical frequency. Formulate the corresponding receptivity
problem and state qualitatively the nature of the response field within the boundary layer.

3.5 Identify the eigenvalue(s) in the complex wave number plane for a ZPG boundary
layer for Re = 1000, for a constant frequency excitation in the ranges (i) 0.003 < ω̄0 <
0.03 and (ii) 0.03 < ω̄0 < 0.06. Give justifications for your identification.

3.6 A pusher propeller driven aircraft wing is being affected due to tip vortices of the
propeller blades. How will it affect the transition on the wing? Give a qualitative answer
with justification.

3.7 From the neutral curves for boundary layers experiencing different pressure gradients
(favourable and adverse), identify viscous and inviscid instabilities of these flows.

3.8 A boundary layer is excited at the wall and the free stream, simultaneously. For
this flow, one uses compound matrix method (developed for wall excitation problems) and
obtains eigenvalues also on the left half of wavenumber plane. What is the significance of
this result?

3.9 Show the coupling between wall modes and free-stream modes of the Orr-Sommerfeld
equation.


