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Figure 2.1
A force vector F  acting at point P. Force components Fx, Fy, and Fz acting parallel to the x–y–z coor-
dinate axes, respectively, are also shown.
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Figure 2.2
Generation of the x″–y″–z″ coordinate system from the x–y–z coordinate system. (a) Rotation of 
θ-degrees about the original z-axis (which defines an intermediate x′–y′–z′ coordinate system); (b) 
rotation of β-degrees about the x′-axis (which defines the final x″–y″–z″ coordinate system).
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Figure 2.3
Force vector F  drawn in two different coordinate systems. (a) Force vector F  in the original x−y−z 
coordinate system; (b) force vector F  in a new x″−y″−z″ coordinate system.
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Figure 2.4
A force F  acting at an angle to a planar surface.
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Figure 2.5
The use of free-body diagrams to determine internal forces acting on planes a−a−a−a and b−b−b−b. 
(a) Free-body diagram based on plane a−a−a−a, perpendicular to rod axis; (b) free-body diagram 
based on plane b−b−b−b, inclined at angle +θ to the rod axis.
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Figure 2.6
A solid 3-D body in equilibrium. (a) A solid 3-D body subject to external forces F F1 5→ ; (b) variation 
of internal forces along an internal line; (c) internal force acting over infinitesimal area ΔA.
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Figure 2.7
Free-body diagrams used to define stress induced in a solid body. (a) 3-D solid body in equilibrium; 
(b) infinitesimal cube removed from the solid body (internal forces acting on three faces shown); (c) 
normal force and two shear forces act over each face of the cube; (d) normal stress and two shear 
stresses act over each face of the cube.
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Figure 2.8
An infinitesimal stress element (all stress components shown in a positive sense).
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Figure 2.9
Stress components acting on an infinitesimal element (all stresses in MPa).
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Figure 2.10
Infinitesimal elements removed from the same point within a 3D solid but in two different orienta-
tions. (a) Infinitesimal element referenced to the x−y−z coordinate system; (b) infinitesimal element 
referenced to the x′−y′−z′ coordinate system.
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Figure 2.11
Stress tensor of Example Problem 2.3, referenced to two different coordinate systems (magnitude of 
all stress components in ksi). (a) Referenced to x−y−z coordinate system; (b) referenced to x″−y″−z″ 
coordinate system.
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Figure 2.12
Free-body diagram used to relate strress components in the x−y−z coordinate system to a principal 
stress.
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Figure 2.13
Stress elements subjected to a state of plane stress. (a) 3-D stress element subjected to a plane stress 
state (all stress components shown in a positive sense); (b) plane stress element drawn as a square 
rather than a cube (positive z-axis out of the plane of the figure; all stress components shown in a 
positive sense).
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Figure 2.14
Transformation of a plane stress element from one coordinate system to another. (a) Plane stress ele-
ment referenced to the x−y−z coordinate system; (b) plane stress element referenced to the x′−y′−z′ 
coordinate system, oriented θ-degrees counter-clockwise from the x−y−z coordinate system.
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Figure 2.15
Plane stress elements associated with Example Problem 2.5. (a) Plane stress element in the x-y coor-
dinate system; (b) plane stress element in the x′-y′ coordinate system; (c) plane stress element in the 
principal stress coordinate system.
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Figure 2.16
2-D element used to illustrate normal and shear strains (deformations are shown greatly exaggerated 
for clarity).
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(b)  Deformed strain element implied by:(a)  Deformed strain element implied by:
εxx = 1000 μm/m
εyy = –500 μm/m
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Figure 2.17
Strain elements associated with Example Problem 2.6 (not to scale).
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Figure 2.18
Infinitesimal element used to illustrate the strain tensor. (a) General 3-D solid body; (b) infini-
tesimal cube removed from the body, prior to deformation; (c) infinitesimal cube removed from the 
body, after deformation.
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(a)  Strain element in the x–y
       coordinate system:

(b)  Strain element in the x′–y′
       coordinate system:

(c)  Strain element in the
       principal strain coordinate
       system:

εxx= 500 μm/m
εyy = –1000 μm/m
γxy = –2500 μrad
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Figure 2.19
Strain elements associated with Example Problem 2.9 (all deformations shown greatly exaggerated 
for clarity).

002x019.eps


