
 

Solution to problem 2.1 

The first step is to calculate the equilibrium constant at 723 K. This constant can be determined 

from the standard free energy of reaction, as given by: 

lnR gG R T K∆ = −  

First calculate RG∆   at 298 K from fG∆   data (at 298 K).  The following data are taken from the 

Appendix 1. The constants a, b, c and d are constants in the heat capacity polynomial. 

 

Formula ∆Hf
°   kJ/mol ∆Gf

°  kJ/mol a b×10
2
 c×10

5
 d×10

9
 

N2 0 0 28.85 -0.1569 0.8067 -2.868 

H2 0 0 29.06 -0.1913 0.3997 -0.8690 

NH3 -46.22 -16.6 27.524 2.5603 0.98911 -6.6801 
 

The free energy of formation of 3NH  is –16.6 kJ/mol. This value is equal to RG∆   because the 

free energies of formation of nitrogen and hydrogen are equal to zero. Therefore, at 298 K: 

3
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To calculate K  at 723 K use the relationship: 

2
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∆∂
=
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This equation requires an expression for RH∆   as a function of T , which in turn depends on the 

difference in heat capacities between reactants and products, according to the equation: 

R
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

 

The calculations are based on a reaction stoichiometry of one mole of 3NH . 

31
2 2 32 2N H NH+   



 

Using the data from Appendix 1 (given above), we can obtain an expression for the change in 

heat capacity. The general formula is: 
2 3

PC a bT cT d T∆ = ∆ + ∆ + ∆ + ∆  

Substituting the values from the above table gives: 
2 5 2 9 330.49 2.926 10 1.889 10 3.943 10PC T T T− − −∆ = − + × + × − ×  

The enthalpy of reaction at 298 K is equal to the enthalpy of formation of 3NH , or 

3
,298 46.22 10 J/molRH∆ = − × . By integration we then obtain the general equation: 

,298
298

T

R R PH H C dT∆ = ∆ + ∆∫   

Substitution and integration gives the following equation: 

2 5 9
3 2 3 4

298

2.926 10 1.889 10 3.943 1046.22 10 30.49
2 3 4

T

RH T T T T
− − − × × ×

∆ = − × + − + + − 
  

  

Simplify to give the following equation: 
4 3 2 6 3 10 43.86 10 30.49 1.463 10 6.297 10 9.86 10RH T T T T− − −∆ = − × − + × + × − ×  

The equilibrium constant at 723 K can now be computed: 
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Substitution and integration gives: 

( )
7234 6 10

3 2 3723

298

1 3.86 10 6.297 10 9.86 10ln 30.49ln 1.463 10
812 8.314 2 3
K T T T T

T

− −
− × × ×  = − + × + −  

    
 

Substitution of the limits and simplification gives 3
723 4.153 10K −= × . The equilibrium constant 

can be expressed in terms of the mole fractions, fugacity coefficients and total pressure: 
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The sum of the stoichiometric coefficients is: 
3 1
2 21 1iv = − − = −∑  

The fugacity coefficient φ  is defined as: 

f
P

φ =  

Therefore the three fugacity coefficients are: 

 

2

1350 1.35
1000Hφ = = ,     

2

1380 1.38
1000Nφ = =   and  

3NH
860 0.86

1000
φ = =  

Therefore: 

.5 1.5
0.86 0.467

(1.38) (1.35)
Kφ = =  

The mole fractions in yK  refer to equilibrium mole fractions. Take a basis of 100 moles of feed 

and let w  moles of 2N  react. The following mole table then can be constructed: 

 

   Component Initial Moles Equilibrium Moles 
2N  21 21 - w 

2H  63 63 – 3w = 3(21-w) 

3NH  0 2w 
Ar 16 16 

Total 100 100 – 2w 
 

Express yK  in terms of equilibrium moles. 

1.5 0.52 100 2 100 2
100 2 3(21 ) 21y

w w wK
w w w

 − −   =     − − −    
 

Now substitution of K , Kφ  and P  gives: 

  1
yK K K P−

φ=       or         3 14.153 10 (0.467) (1000)yK− −× =  



 

Solving gives 8.893yK = . The value of w  can then be determined. Simplification gives a 

quadratic equation: 

 
2 42.64 405.9 0w w− + =  

 

This equation can be solved using the quadratic formula. It has two roots, 15.36w =  and 

27.28w = . As w  must be less than 21, it follows that the realistic solution is 15.36w = . 

Therefore, the equilibrium mole fractions at 1000 atm and 723 K are: 

 

2
21 15.36N 0.0814

100 2 15.36
−

= =
− ×

 

2
3(21 15.36)H 0.244

100 2 15.36
−

= =
− ×

 

3
2 15.36NH 0.443

100 2 15.36
×

= =
− ×

 

16Ar 0.231
100 2 15.36

= =
− ×

 

 

Comments: High pressure favours conversion because there is a decrease in moles on reaction. 

The reaction is exothermic and therefore a low temperature would give a more favourable 

conversion. However, a high temperature is used to give a high reaction rate. 



 

Solution to problem 2.2 

Part (a) 

The first step is to calculate the equilibrium constant at 1023 K. For this purpose the equilibrium 

constant is first calculated at 298 K using the free energy of reaction: 

lnR gG R T K∆ = −  

K  is then calculated at 1023 K using the van’t Hoff equation: 

2
ln R

g

HK
T R T

∆∂
=

∂



 

The Gibbs free energy of reaction is calculated from the data in Appendix 1. The data, including 

heat capacity data for the species present are: 

Formula ∆Hf
° 

kJ/mol 

∆Gf
° 

kJ/mol 

a b×10
2
 c×10

5
 d×10

9
 

H2 0 0 29.06 -0.1913 0.3997 -0.8690 

C2H6 -84.72 -32.9 6.889 17.24 -6.395 7.273 

C2H4 52.32 68.17 3.95 15.61 -8.331 17.64 
 

Therefore the free energy of reaction at 298 K is: 

,298 ,298 2 4 ,298 2 6(C H ) (C H )R f fG G G∆ = ∆ − ∆    

3 3 3
,298

J68.05 10 ( 32.90 10 ) 100.95 10
molRG∆ = × − − × = ×  

The equilibrium constant at 298 K is then calculated to be 18
298 1.9373 10K −= × . To compute 

1023K  it is first necessary to calculate RH∆   as a function of temperature. For this purpose use 

the following relationship: 

R
P

H C
T

∂∆
= ∆
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

 

The difference in heat capacity between products and reactants is calculated from the above data. 

The general formula is: 
2 3

PC a bT cT d T∆ = ∆ + ∆ + ∆ + ∆  

Substituting the values from the above table gives: 



 

2 5 2 9 325.5 1.222 10 2.788 10 16.45 10PC T T T− − −∆ = − × − × + ×  

The enthalpy change with reaction at 298 K is: 

  ,298 ,298 2 4 ,298 2 6(C H ) (C H )R f fH H H∆ = ∆ − ∆    

  3 3 3
,298

J52.25 10 ( 84.60 10 ) 136.9 10
molRH∆ = × − − × = ×  

The general expression for RH∆   is thus derived by integration: 

,298
298

T

R R PH H C dT∆ = ∆ + ∆∫   

For the cracking of ethane, substitution of the values and integration gives: 
3 2 6 3 9 4130,007 25.5 6.11 10 9.293 10 4.113 10RH T T T T− −∆ = + − × − × + ×  

The general equation for the equilibrium constant in integral form is: 

298
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1ln ln
T

R

g

HK K dT
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∆
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

 

Substitution of RH∆   and integration with a limit of 1023 K gives a value of 1023 0.4916K = . 

The equilibrium constant is related to the composition by:  
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where 2 2 4
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H C H

C H
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The sum of the stoichiometric coefficients is: 

1 1 1 1iv = + − =∑  

Therefore: 

2 2 4

2 6

H C H

C H
y

y y
K K P P

y
= =  

with P  in atm. 120 /100 1.2 bar.P = =  Take a basis of 1 mole of ethane and let X  moles react (

X  is therefore the fractional conversion). 



 

 

Compound Initial Moles Final Moles 
2 6C H  1 1 X−  

2 4C H  0 X  

2H  0 X  
Total 1 1 X+  

 

Substitute for the mole fractions: 
21

1 1 1 (1 ) (1 )y
X X X XK

X X X X X
+   = =   + + − − +   

 

Therefore, the equilibrium conversion is given by: 

( )
2

2
0.4916 1.2

1
X

X
=

−
 

Solve for  0.539X = .  The conversion of ethane is 53.9 % at equilibrium. 

 

Part (b)  

In part (a) a general expression for RH∆   was derived. Substituting 1023 K into this equation 

gives 144255 J/molRH∆ = . This number is positive which indicates that 144,255 J must be 

transferred to the reactor for each mole of ethane that cracks. 



 

Solution to problem 2.3 

 

The equilibrium constant at 500 ºC has a value of 85. The relationship between composition and 

the equilibrium constant K  is: 

i

i

y v

f

K K
K P

K
φ ∑=
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From the reaction stoichiometry the change in moles on reaction is: 
1 1
2 21 1iv = − − = −∑  

Because the fugacity coefficients are equal to one, it follows that 1Kφ = . Using a standard state 

of 1 bar gives: 
0.5

yK K P−=  where P  is in bar 

The mole fractions at equilibrium must be expressed in terms of the number of moles present at 

equilibrium. Take a basis of 100 moles of original mixture and let X  be the fractional 

conversion at equilibrium. That is, 

2 2

2

SO ,0 SO

SO ,0

N N
X

N
−

=  

Construct a stoichiometric table on the 100 mole basis: 

 

Compound Moles Initial Moles Final 

2SO  8 8(1 )X−  

3SO  0 8X  

2O  11 8
211 X−  

2N  81 81 

Total 100 100 4X−  

 

 

 



 

Substitute into the equation for K: 

3

2 2

SO0.5 0.5
0.5 0.5

SO O

8
100 41 85

8(1 ) 11 4
100 4 100 4

y

X
y XK K P

y y X X
X X

− −

 
 − = = × = =

− −  
  − −  

 

Simplify: 
0.5100 485

1 11 4
X X

X X
− =  − − 

 

 

The above equation is solved numerically to get a value of 0.9587X = . Therefore at equilibrium 

95.87% of the original 2SO  is converted to 3SO . 

 

At 2 bar pressure the equation becomes: 

 
0.5

0.5 100 485 2
1 11 4

X X
X X

− − =  − − 
 

 

Solving numerically gives a value of 0.97X = . Note that an increase in pressure gives an 

increase in conversion. 



 

Solution to problem 2.4 

The reactor is adiabatic so the energy released by the reaction heats up the process stream. Take 

a basis of 100 moles of mixture. First calculate PC∆  for the reaction using the values supplied. 

3 2 3
1 1

SO O SO2 2( ) ( ) ( ) 64.0 32.6 47.7 0P P P PC C C C∆ = − − = − − =  

It is seen that 0PC∆ =  which means that the heat of reaction is constant (it does not change with 

temperature) and the heat capacity of the feed may be used to represent the mean heat capacity of 

the mixture. Let X  be the fractional conversion of 2SO , then the mole balance table is 

Compound Moles Initial Moles Final 

2SO  8 8(1 )X−  

3SO  0 8X  

2O  11 11 4X−  

2N  81 81 

Total 100 100 4X−  
 

The heat released on reaction is the product of the enthalpy of reaction and the moles of 3SO  

that react, or  8 ( )RX H−∆ . The heat capacity of 100 moles of feed is 

8 47.7 11 32.6 81 28.8 3073PC J= × + × + × =  

The energy balance therefore gives: 

673

( )8 3073( 673)
T

R PH X C dT T−∆ = = −∫  

Substitute for RH−∆ , X  and simplify to give the adiabatic reaction line: 

   255.6 673T X= +  (1) 

where T  is in Kelvin. The relationship between composition and the equilibrium constant K  is: 

i

i
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f
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K P

K
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From the reaction stoichiometry the change in moles on reaction is: 
1 1
2 21 1iv = − − = −∑  



 

The fugacity coefficients are equal to one, therefore 1Kφ = . With a standard state of 1 bar: 

0.5
yK K P−=  where P  is in bar 

The mole fractions at equilibrium must be expressed in terms of the number of moles present at 

equilibrium. Take a basis of 100 moles of original mixture and let X  be the fractional 

conversion at equilibrium. That is: 
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=  

Substitute into the equation for K: 

3

2 2
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0.5 0.5
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8
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 
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Simplify: 

  
0.5100 4

1 11 4
X XK

X X
− =  − − 

 (2) 

The temperature dependence of K  is given by: 

2
ln R

g

Hd K
dT R T

∆
=
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As RH∆   is assumed constant, this equation can be integrated to give: 

2

1 2 1

( ) 1 1ln R

g

K H
K R T T

 −∆
= − 
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or, by rearrangement: 

2

2 1 1

1 1 ln
( )

g

R

R K
T T KH

 
= +  

−∆  

 

Substitute the known value of 85K =  at 500ºC. 

 3
1 1 8.314 ln

773 8598.2 10
K

T
 = +  

×  
 (3) 

Equations (1), (2), and (3) can be solved numerically to give 0.798X =  and 2 876.9T K= .  



 

Solution to problem 2.5 

The reaction is represented as: 

 2
1PdO  Pd  O
2

+  

The composition at equilibrium depends on the activities of the three species. Thus: 

 2
0.5

Pd O

PdO

a a
K

a
=  

Both palladium oxide and palladium metal are solids and therefore their activities are equal to 

one. The equilibrium constant thus reduces to: 

 
2

0.5
OK a=  

At low to moderate pressure the fugacity coefficient of oxygen equals one, and the activity of the 

oxygen is given by its partial pressure: 

 
2

0.5
OK P=  

The equilibrium constant is related to the free energy change of reaction: 

ln( )o
R gG R T K−∆ =  

Combining the two equations: 

2
0.5

Oln( )
o
R

g

G T P
R

−∆
=  

The free energy change of reaction is given by: 

1011273 [2.89log ( ) 18.57]
o
R

g

G T T
R
∆

= + −  

Combining the two equations: 

2
0.5

O 10ln( ) 11273 [2.89log ( ) 18.57]T P T T= + −  

Substitution of 0.2 bar for the oxygen partial pressure gives a temperature of about 1063 K. At 1 

bar the temperature is about 1175 K. 

 



 

Solution to problem 2.6 

Take a basis of 6 moles of mixture, that is, 5 moles of water and 1 mole of methane. Assume 

ideal gas behaviour. The equilibrium constants are then related to the composition by the 

relationship: 

 
1

jj j
n

P y j
j

K K P P yν∑ν ∑ν

=
= = ∏  

Let x be the number of moles of 2CO  formed and let w be the moles of CO formed. The mole 

balance table can then be written: 

 
Species Initial Final 

4CH  1 1 x w− −  

2H O  5 5 2x w− −  
CO  0 w  

2H  0 3 4w x+  

2CO  0 x  
Total 6 6 2 2w x+ +  

 
For reactions 1 and 2 the change in stoichiometric coefficients is 2j∑ν = . The mole fractions 

of the species are given by: 

 
4 2

2 2

CH H O CO

H CO

1 5 2; ;
6 2 2 6 2 2 6 2 2

3 4 ;
6 2 2 6 2 2

x w x w wy y y
w x w x w x

w x xy y
w x w x

− − − −
= = =

+ + + + + +

+
= =

+ + + +

 

Therefore the PK  are given by: 

 ( ) 2

4 2

3 3
CO H2

1 2
CH H O

(3 4 )4 0.41
(1 )(5 2 )(6 2 2 )P

y y w w xK P
y y x w x w w x

+
= = =

− − − − + +
 



 

 ( ) 2 2

4 2

4 4
CO H2

2 2 2 2
CH H O

(3 4 )4 1.09
(1 )(5 2 ) (6 2 2 )P

y y x w xK P
y y x w x w w x

+
= = =

− − − − + +
 

These two equations are solved numerically for w and x using a suitable method. In this case, the 

solutions were generated using the POLYMATH software. The solutions thus found are: 

 0.18 and 0.60w x= =  

The final values on the mole balance table can then be calculated by substitution: 

 

Species Mole fraction Moles 
4CH  0.029 0.22 

2H O  0.479 3.62 
CO  0.024 0.18 

2H  0.389 2.94 

2CO  0.079 0.60 
Total 1.000 7.56 

 
There is an increase in the total number of moles on reaction. 
 
  



 

Solution to problem 2.7 

The first step is to calculate an expression for the equilibrium constant. At a temperature of 298 

K we can write: 

 
0

,298
298lnR

g
G

R K
T

−∆
=  

Substitute: 

 298
134,300 8.314ln
298.15

K−
=  

Solving the equation gives: ( )24
298 2982.954 10 or ln 54.18K K−= × = − . The temperature 

dependence of K is given by: 

 ( ) 0

2
ln R

g

K H
T R T

∂ ∆
=
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The temperature dependence of the enthalpy of reaction must be determined. The relationship is: 

 
( )0

R
P

H
C

T

∂ ∆
= ∆

∂
 

The solid heat capacities are given. The heat capacity of CO2 is obtained from the appendix. 

( )
2

2 5 2 9 3
CO

J22.22 5.97 10 3.459 10 7.475 10
mol KPC T T T− − −= + × − × + ×



 

The difference is: 

 ( ) ( ) ( )
2 3CO CaO CaCOP P P PC C C C∆ = + −  

Substitute the numbers: 

5
2 5 2 9 3

2
8.35 10 J18.24 3.021 10 3.459 10 7.475 10

mol KPC T T T
T

− − − ×
∆ = − + × − × + × +



 

Substitute into: 



 

 ( )0

298 298

T T

R Pd H C dT∆ = ∆∫ ∫  

Substitute, solve and simplify: 

( )
5

0 5 2 2 5 3 9 4 8.35 10 J1.879 10 18.24 1.511 10 1.165 10 1.869 10
molRH T T T T

T
− − − ×

∆ = × − + × − × + × −  

We must substitute again into the expression: 

 ( ) ( )
0

298 2
298

ln ln
T

R

g

HK K dT
R T
∆

= + ∫  

Substitute, solve and simplify: 

( )
4 4

3 7 2 11 3
2

2.26 10 5.022 10ln 33.07 2.194ln( ) 1.817 10 7.01 10 7.493 10K T T T T
T T

− − −× ×
= − − + × − × + × +

The equilibrium constant is expressed in terms of the activities of the species at equilibrium: 

 2

3

CaO CO

CaCO

a a
K

a

 
=   
 

 

The activities of the solids are equal to one. At low pressure the activity of carbon dioxide can be 

approximated by the partial pressure, therefore: 

 
2COK P=  

At a temperature of 1000 K, the equilibrium constant has a value of  

 
2

2
CO 3.192 10 bar 31.92 kPaK P −≡ = × ≡  

When the pressure equals 1 bar, then it follows that 1K = . Substitute into the expression for K 

and solve for the temperature. The answer is 1199 KT = . 


