
Chapter 2 Arithmetic of Finite Fields

1. We adopt the convention that the degree of the zero polynomial is−∞. For any
two polynomials f(x), g(x), we then have deg(f(x)g(x)) = deg f(x)+deg g(x).
Moreover, we can include the case r(x) = 0 in the case deg r(x) < deg g(x).

(a) Let m = deg f(x) and n = deg g(x). Since the result is trivial for n = 0
(constant non-zero polynomials g(x)), we assume that n > 1, and proceed by
induction on m. If m < n, we take q(x) = 0 and r(x) = f(x). So consider
m > n, and assume that the result holds for all polynomials f1(x) of degrees
< m. If a and b are the leading coefficients of f and g, we construct the
polynomial f1(x) = f(x)− (a/b)xm−ng(x). Clearly, deg f1(x) < m, and so by
the induction hypothesis, f1(x) = q1(x)g(x) + r1(x) for some polynomials q1
and r1 with deg r1 < deg g. But then, f(x) = (q1(x)+(a/b)xm−n)g(x)+r1(x),
that is, we take q(x) = q1(x) + (a/b)xm−n and r(x) = r1(x).

In order to prove the uniqueness of the quotient and the remainder polyno-
mials, suppose that f(x) = q(x)g(x)+r(x) = q̄(x)g(x)+ r̄(x) with both r and
r̄ having degrees less than deg g. But then, (q(x) − q̄(x))g(x) = r̄(x) − r(x).
If r 6= r̄, then the right side is a non-zero polynomial of degree less than n,
whereas the left side, if non-zero, is a polynomial of degree > n. This contra-
diction indicates that we must have q = q̄ and r = r̄.

(b) Since r(x) = f(x)− q(x)g(x), any common divisor of f(x) and g(x) di-
vides r(x) and so gcd(g(x), r(x)) too. Likewise, f(x) = q(x)g(x) + r(x) implies
that any common divisor of g(x) and r(x) divides f(x) and so gcd(f(x), g(x))
too. In particular, gcd(f, g)| gcd(g, r) and gcd(g, r)| gcd(f, g). If both these
gcds are taken as monic polynomials, they must be equal.

(c) We follow a procedure similar to the Euclidean gcd of integers. We gener-
ate three sequences ri(x), ui(x), vi(x) maintaining the invariance ui(x)f(x) +
vi(x)g(x) = ri(x) for all i > 0. We initialize the sequences as r0(x) = f(x),
u0(x) = 1, v0(x) = 0, r1(x) = g(x), u1(x) = 0, v1(x) = 1. Subsequently,
for i = 2, 3, 4, . . . , we compute the quotient qi(x) and ri(x) of Euclidean
division of ri−2(x) by ri−1(x). We also update the u and v sequences as
ui(x) = ui−2(x) − qi(x)ui−1(x) and vi(x) = vi−2(x) − qi(x)vi−1(x). The al-
gorithm terminates, since the r sequence consists of polynomials with strictly
decreasing degrees. If j is the smallest index for which rj(x) = 0, then
gcd(f(x), g(x)) = rj−1(x) = uj−1(x)f(x) + vj−1(x)g(x).

(d) Let d(x) = gcd(f(x), g(x)) = u(x)f(x) + v(x)g(x) for some polynomials
u, v. For any polynomial q(x), we have d(x) = (u(x)−q(x)g(x))f(x)+(v(x)+
q(x)f(x))g(x). In particular, we can take q(x) = u(x) quot g(x), and assume

27

28 Computational Number Theory

that deg u < deg g in the Bézout relation d = uf + vg. But then, deg vg =
deg v+deg g = deg(d− uf) 6 max(deg d, deg uf) = deg uf = deg u+deg f <
deg g + deg f , that is, deg v < deg f .

2. The statement is false: x5 + x+ 1 = (x2 + x+ 1)(x3 + x2 + 1).

3. Let θ be a root of x4 + 1, that is, θ4 + 1 = 0, that is, θ4 = −1. But then,
x4 +1 = x4− θ4 = (x2− θ2)(x2 + θ2) = (x− θ)(x+ θ)(x2 + θ2) = (x− θ)(x+
θ)(x2 − θ6) = (x− θ)(x+ θ)(x− θ3)(x+ θ3). Therefore, x4 + 1 splits in Q(θ).

4. (a) x, x + 1, x2 + x + 1, x3 + x+ 1, x3 + x2 + 1, x4 + x + 1, x4 + x3 + 1, x4 +
x3 + x2 + x+ 1.
(b) x, x+1, x+2, x2+1, x2+x+2, x2+2x+2, x3+2x+1, x3+2x+2, x3+x2+
2, x3+x2+x+2, x3+x2+2x+1, x3+2x2+1, x3+2x2+x+1, x3+2x2+2x+2.
(c) x, x+1, x+2, x+3, x+4, x2+2, x2+3, x2+x+1, x2+x+2, x2+2x+3, x2+
2x+4, x2+3x+3, x2+3x+4, x2+4x+1, x2+4x+2, x3+x+1, x3+x+4, x3+
2x+1, x3+2x+4, x3+3x+2, x3+3x+3, x3+4x+2, x3+4x+3, x3+x2+1, x3+
x2+2, x3+x2+x+3, x3+x2+x+4, x3+x2+3x+1, x3+x2+3x+4, x3+x2+
4x+1, x3+x2+4x+3, x3+2x2+1, x3+2x2+3, x3+2x2+x+3, x3+2x2+x+
4, x3+2x2+2x+2, x3+2x2+2x+3, x3+2x2+4x+2, x3+2x2+4x+4, x3+3x2+
2, x3+3x2+4, x3+3x2+x+1, x3+3x2+x+2, x3+3x2+2x+2, x3+3x2+2x+
3, x3+3x2+4x+1, x3+3x2+4x+3, x3+4x2+3, x3+4x2+4, x3+4x2+x+1, x3+
4x2+x+2, x3+4x2+3x+1, x3+4x2+3x+4, x3+4x2+4x+2, x3+4x2+4x+4.

5. (a) We have the following gcd computations in F2[x]:

gcd(x8 + x+ 1, x2 + x) = 1,

gcd(x8 + x+ 1, x4 + x) = x2 + x+ 1,

that is, x8 + x+ 1 is not irreducible (see Algorithm 3.1). We also have:

gcd(x8 + x3 + 1, x2 + x) = 1,

gcd(x8 + x3 + 1, x4 + x) = 1,

gcd(x8 + x3 + 1, x8 + x) = x3 + x+ 1,

that is, x8 + x3 + 1 is not irreducible.
(b) The statement is true. No binomial or quadrinomial (of degree > 1) in
F2[x] can be irreducible, since such a polynomial has the root 1, that is, the
factor x+1. An irreducible trinomial in F2[x] must be of the form xn+xr +1
for 1 6 r 6 n − 1. Since xn + xr + 1 is irreducible if and only if its opposite
xn+xn−r+1 is irreducible, it suffices to restrict our attention to 1 6 r 6 n/2.
For n = 8, the polynomials corresponding to r = 1 and r = 3 are reducible by
Part (a). Finally, x8+x2+1 = (x4+x+1)2 and x8+x4+1 = (x2+x+1)4.

6. (a) One can see that f(x) has no roots in F5 and so no linear factors in F5[x].
Therefore, if f(x) is reducible in F5[x], it must be a product of two monic
irreducible quadratic factors. Exercise 2.4(c) supplies the list of all monic
irreducible quadratic polynomials in F5[x]. One can check that f(x) is not the
product of any two of them (repeated factors should also be considered). A
better way is to compute gcd(x4 + x+ 4, x25 − x) = 1 (see Algorithm 3.1).

Solutions Manual 29

(b) We have α + β = 2θ3 + θ2 + 2, and α − β = 2θ3 + 4θ2 + θ + 1. Their
product is αβ = 2θ5 + 4θ4 + 4θ3 + 2θ + 2 = 2θ4(θ + 2) + 4θ3 + 2θ + 2 =
−2(θ+4)(θ+2)+4θ3+2θ+2 = 3(θ+4)(θ+2)+4θ3+2θ+2 = 4θ3+3θ2+1.
In order to compute α/β, we first make an extended gcd calculation to get
(4θ2+2θ+4)β+f(θ) = 1, that is, β−1 = 4θ2+2θ+4. Therefore, α/β = (2θ3+
3θ+4)(4θ2+2θ+4) = 3θ5+4θ4+2θ2+1 = −(3θ+4)(θ+4)+2θ2+1 = 4θ2+4θ.

7. (a)
(

7
19

)
= (−1)(7−1)(19−1)/4

(
19
7

)
= −

(
19
7

)
= −

(
5
7

)
= −(−1)(5−1)(7−1)/4

(
7
5

)

= −
(
7
5

)
= −

(
2
5

)
= −(−1) = +1, so 7 is a quadratic residue modulo 19. But

19 ≡ 3 (mod 4), so −7 is a quadratic non-residue modulo 19. Thus, x2 − 7 is
reducible modulo 19, whereas x2 + 7 is irreducible modulo 19.
(b) We take f(x) = x2+7, that is, θ2+7 = 0, that is, θ2 = −7 = 12. Since the
binary expansion of 11 is (1011)2, the left-to-right exponentiation algorithm
proceeds as follows. The product is initialized to 1.

Bit Operation Product

1 Sqr 1
Mul 2θ + 3

0 Sqr (2θ + 3)2 = 4θ2 + 12θ + 9 = 4× 12 + 12θ + 9 = 12θ

1 Sqr (12θ)2 = 144× θ2 = 11× 12 = 18
Mul 18× (2θ + 3) = 17θ + 16

1 Sqr (17θ+16)2 = 289θ2 + 544θ + 256 = 4× 12 + 12θ + 9 = 12θ
Mul (12θ)(2θ + 3) = 24θ2 + 36θ = 5× 12 + 17θ = 17θ + 3

We conclude that (2θ + 3)11 = 17θ + 3.

8. Let α = (α0, α1, . . . , αN−1) and β = (β0, β1, . . . , βN−1) be the two operands.
The sum γ = α+ β is stored in the words (γ0, γ1, . . . , γN−1).

For i = 0, 1, . . . , N − 1, set γi = αi XOR βi.

The schoolbook multiplication γ = αβ can be implemented as follows.

Initialize γi = 0 for i = 0, 1, 2, . . . , 2N − 1.
For j = 0, 1, 2, . . . , N − 1, repeat: {

For k = 0, 1, 2, . . . , w − 1, repeat: {
If the k-th bit in the word βj is 1, then: {

For i = 0, 1, 2, . . . , N − 1, repeat: {
XOR γi+j with LEFT-SHIFT(αi, k).
XOR γi+j+1 with RIGHT-SHIFT(αi, w − k).

}
}

}
}

The left-to-right comb multiplication starts by initializing a 2N -word prod-
uct γ to zero. Inside the loop, γ is left-shifted by one bit. Since the final product
γ must fit in 2N words, this shifting is restricted to 2N words only, that is,
the carry from the most significant word must be zero and is ignored.

30 Computational Number Theory

Initialize γi = 0 for i = 0, 1, 2, . . . , 2N − 1.
For bit position k = w − 1, w − 2, . . . , 1, 0 (in that order), repeat: {

For j = 0, 1, 2, . . . , N − 1, repeat: {
If the k-th bit in βj is 1, then: {

For i = 0, 1, 2, . . . , N − 1, XOR γi+j with αi.
}

}
If k > 0, LEFT-SHIFT γ by one bit (ignore carry from γ2N−1).

}

Modular reduction and extended Euclidean gcd are based on Euclidean
division. Suppose that we want to divide a polynomial a(x) ∈ F2[x] of degree
c by a non-zero polynomial b(x) of degree d. Thus, a is stored usingM = ⌈c/w⌉
words a0, a1, . . . , aM−1, and b using N = ⌈d/w⌉ words b0, b1, . . . , bN−1.

Initialize the quotient to the zero polynomial (of degree m− n).
While (c > d), repeat: {

Let s = c quot w (word index) and t = c rem w (bit position).
If the t-th bit in the s-th word of a is 1, then: {

Set r = c− d, i = r quot w, and k = r rem w.
Set the k-th bit in the i-th word of the quotient polynomial to 1.
For j = 0, 1, 2, . . . , N − 1, repeat: {

XOR ai+j with LEFT-SHIFT(bj , k).
XOR ai+j with RIGHT-SHIFT(bj , w − k).

}
}
Decrement c by 1.

}
Copy a to the remainder polynomial.

9. (a) Use the binomial theorem, 2 ≡ 0 (mod 2), and a2i = ai for all i.

(b) Initialize the square to zero. For i = 0, 1, 2, . . . , n − 1, set the 2i-th bit
of the square to one if ai = 1. Squaring can be done in linear (in n) time. A
general multiplication (schoolbook or comb-based) takes quadratic time.

(c) We use a window of size t. For simplicity, t should divide the bit size w of
a word. If w = 32 or 64, natural choices for t are 2, 4, 8. For each t-bit pattern
(at−1at−2 . . . a1a0), the 2t-bit pattern (0at−10at−2 . . . 0a10a0) is precomputed
and stored in a table of size 2t. In the squaring loop, t bits of the operand are
processed simultaneously. For a t-bit chunk in the operand, the square is read
from the precomputed table and XOR-ed with the output with an appropriate
shift. Note that the precomputed table is an absolutely constant table, that
is, independent of the operand.

10. We first extract the coefficients of x255 through x233 from γ3:

µ = RIGHT-SHIFT(γ3, 41).

Solutions Manual 31

We then make these bits in γ3 zero as follows:

γ3 is AND-ed with the constant integer 0x1FFFFFFFFFF.

What remains is to add µf1 = µ(x74 + 1) = x64(x10µ) + µ to γ. Since µ is a
23-bit value, this is done as follows:

γ1 is XOR-ed with LEFT-SHIFT(µ, 10),

γ0 is XOR-ed with µ.

11. (a) An element of F21223 is represented by 1223 bits, that is, by ⌈1223/64⌉ = 20
words. A product of two elements in F21223 is a polynomial of degree 6 2444
and fits in ⌈2445/64⌉ = 39 words. Let γ0, γ1, . . . , γ38 be such an intermediate
product. We need to divide this by the defining polynomial x1223 + x255 + 1.
For r = 38, 37, . . . , 20 (in that order), we eliminate the entire γr as follows.
Let µ be the 64-bit pattern stored in γr. After setting γr = 0, we also need to
XOR x64r−1223µ(x255 + 1) with γ. Since x64r−1223µ(x255 + 1) = x64r−968µ +
x64r−1223µ = x64(r−16)+56µ+ x64(r−20)+57µ, we do the following:

γr−16 is XOR-ed with LEFT-SHIFT(µ, 56),

γr−15 is XOR-ed with RIGHT-SHIFT(µ, 8),

γr−20 is XOR-ed with LEFT-SHIFT(µ, 57),

γr−19 is XOR-ed with RIGHT-SHIFT(µ, 7).

Then, we have to reduce the coefficients of x1279 through x1223 in γ19 to zero.
These bits are extracted as

µ = RIGHT-SHIFT(γ19, 7).

We then set these bits to zero:

AND γ19 with the constant word 0x7F.

Finally, we should add µ(x255 + 1) = x3×64x63µ+ µ to γ:

γ3 is XOR-ed with LEFT-SHIFT(µ, 63),

γ4 is XOR-ed with RIGHT-SHIFT(µ, 1),

γ0 is XOR-ed with µ.

(b) An element of F2571 requires ⌈571/64⌉ = 9 words. An intermediate prod-
uct γ is of degree 6 2 × 570 = 1140, and requires ⌈1141/64⌉ = 18 words.
For r = 17, 16, . . . , 9 (in that order), we store µ = γr, set γr = 0, and add
µx64r−571(x10 + x5 + x2 + 1) = x64(r−9)+15µ + x64(r−9)+10µx64(r−9)+7µ +
x64(r−9)+5µ to γ. This involves the following bit-wise operations:

γr−9 is XOR-ed with LEFT-SHIFT(µ, 15),

γr−8 is XOR-ed with RIGHT-SHIFT(µ, 49),

γr−9 is XOR-ed with LEFT-SHIFT(µ, 10),

32 Computational Number Theory

γr−8 is XOR-ed with RIGHT-SHIFT(µ, 54),

γr−9 is XOR-ed with LEFT-SHIFT(µ, 7),

γr−8 is XOR-ed with RIGHT-SHIFT(µ, 57),

γr−9 is XOR-ed with LEFT-SHIFT(µ, 5),

γr−8 is XOR-ed with RIGHT-SHIFT(µ, 59).

Finally, we need to handle γ8 (coefficients of x575 through x571). This is done
by first remembering

µ = RIGHT-SHIFT(γ8, 59),

AND-ing γ8 with the constant 0x7FFFFFFFFFFFFFF, and adding (x10 +
x5 + x2 +1)µ to γ. Since γ is only a 5-bit word, the last task is performed as:

γ0 is XOR-ed with LEFT-SHIFT(µ, 10),

γ0 is XOR-ed with LEFT-SHIFT(µ, 5),

γ0 is XOR-ed with LEFT-SHIFT(µ, 2),

γ0 is XOR-ed with µ.

12. (a) We require 39 32-bit words to store an element of F21223 , and 77 32-bit
words to store an intermediate product. The reduction algorithm follows.

For r = 76, 75, . . . , 39 (in that order), repeat: {
Set µ = γr and γr = 0.
γr−31 is XOR-ed with LEFT-SHIFT(µ, 24).
γr−30 is XOR-ed with RIGHT-SHIFT(µ, 8).
γr−39 is XOR-ed with LEFT-SHIFT(µ, 25).
γr−38 is XOR-ed with RIGHT-SHIFT(µ, 7).

}
Set µ = RIGHT-SHIFT(γ38, 7), and AND γ38 with 0x7F.
γ7 is XOR-ed with LEFT-SHIFT(µ, 31).
γ8 is XOR-ed with RIGHT-SHIFT(µ, 1).
γ0 is XOR-ed with µ.

(b) We have ⌈571/32⌉ = 18 and ⌈1141/32⌉ = 36.

For r = 35, 34, . . . , 18 (in that order), repeat: {
Set µ = γr and γr = 0.
γr−18 is XOR-ed with LEFT-SHIFT(µ, 15).
γr−17 is XOR-ed with RIGHT-SHIFT(µ, 17).
γr−18 is XOR-ed with LEFT-SHIFT(µ, 10).
γr−17 is XOR-ed with RIGHT-SHIFT(µ, 22).
γr−18 is XOR-ed with LEFT-SHIFT(µ, 7).
γr−17 is XOR-ed with RIGHT-SHIFT(µ, 25).
γr−18 is XOR-ed with LEFT-SHIFT(µ, 5).
γr−17 is XOR-ed with RIGHT-SHIFT(µ, 27).

}

Solutions Manual 33

Set µ = RIGHT-SHIFT(γ17, 27), and AND γ17 with 0x7FFFFFF.
γ0 is XOR-ed with LEFT-SHIFT(µ, 10).
γ0 is XOR-ed with LEFT-SHIFT(µ, 5).
γ0 is XOR-ed with LEFT-SHIFT(µ, 2).
γ0 is XOR-ed with µ.

13. Initialize the u sequence as u0 = β and u1 = 0. The rest of the extended
gcd algorithm remains the same. Now, the extended gcd loop maintains the
invariance uiβ

−1α+ vif = ri (where f is the defining polynomial). If rj = 1,
we have ujβ

−1α ≡ 1 (mod f), that is, βα−1 = uj .

14. (a) By Fermat’s little theorem, α2n−1 = 1, so α−1 = α2n−2.
(b) The exponentiation algorithm follows.

Initialize prod = 1.
For i = 2, 3, 4, . . . , n− 1, repeat: { Set α = α2, and prod = prod× α.}

15. (a) We have α22k−1 = α(2k−1)(2k+1) = (α2k−1)2
k

α2k−1. Moreover, α22k+1−1 =

α22k+1−2+1 = (α22k−1)2α.
(b) The following algorithm resembles left-to-right exponentiation.

Let n− 1 = (ns−1ns−2 . . . n1n0)2 with ns−1 = 1.
Initialize prod = α and k = 1.
/* Loop for computing α2n−1−1 */
For i = s− 2, s− 3, . . . , 2, 1, 0, repeat: {

/* Here, k = (ns−1ns−2 . . . ni+1)2, and prod = α2k−1 */

Set t = prod. /* Remember α2k−1 */

For j = 1, 2, . . . , k, set prod = prod2. /* prod = (α2k−1)2
k

*/

Set prod = prod× t. /* prod = α22k−1 = (α2k−1)2
k

α2k−1 */
Set k = 2k. /* k = (ns−1ns−2 . . . ni+10)2 */
If (ni = 1) { /* (ns−1ns−2 . . . ni+1ni)2 = (ns−1ns−2 . . . ni+10)2 + 1 */

Set prod = prod2 × α and k = k + 1.
}

}
Return prod2.

(c) Let Ni = (ns−1ns−2 . . . ni)2. The number of squares (in the field) per-
formed by the loop is 6 (Ns−1+Ns−2+ · · ·+N1)+(s−1) =

⌊
(n− 1)/2s−1

⌋
+

⌊
(n− 1)/2s−2

⌋
+· · ·+⌊n/2⌋+(s−1) 6 (n−1)(1

2s−1 +
1

2s−2 +· · ·+ 1
2)+(s−1) 6

(n−1)+(s−1) 6 n+s. The number of field multiplications performed by the
loop is 6 2s. The algorithm of Exercise 2.14(b), on the other hand, performs
about n square and n multiplication operations in the field. Since s ≈ lg n,
the current algorithm is expected to be faster than the algorithm of Exer-
cise 2.14(b) (unless n is too small).

16. Since (α2n−1

)2 = α2n = α by Fermat’s little theorem, α2n−1

is a square root
of α. Let β1, β2 be square roots of α, that is, β2

1 = β2
2 = α. Raising to the

(2n−1)-th power gives β2n

1 = β2n

2 , that is, β1 = β2.

34 Computational Number Theory

17. (a) See Exercise 2.16.

(b) Let α = a0 + a1θ + a2θ
2 + · · · + an−1θ

n−1. Take A0(θ) =
∑k

i=0 a2iθ
i,

where k = (n− 1)/2 if n is odd, or (n− 2)/2 if n is even. Also take A1(θ) =
∑l

i=0 a2i+1θ
i, where l = (n− 3)/2 if n is odd, or (n− 2)/2 if n is even.

(c) We have
√
α = A0(θ)+

√
θA1(θ). We precompute

√
θ (for example, using

Part (a)). The polynomials A0, A1 can be easily extracted from the bit pattern
of α using bit-wise operations. A precomputation table (the inverse of the
table in Exercise 2.9(c)) can speed up this construction. After this, we have
one multiplication (by the precomputed

√
θ) and one addition in the field.

18. We have x ≡ x× 1 ≡ x(x1223 + x255) ≡ (x612 + x128)2 (mod f(x)).

19. (a) If both n, k are even, then xn+xk+1 = (xn/2+xk/2+1)2 is not irreducible.
(b) We have θ = θ × 1 = θ(θn + θk) = (θ(n+1)/2 + θ(k+1)/2)2.
(c) We have:

θ = θn+1 + θ × θk

⇒
√
θ = θ(n+1)/2 +

√
θ × θk/2

⇒
√
θ(θk/2 + 1) = θ(n+1)/2

⇒
√
θ(θk/2 + 1)2 =

√
θ(θk + 1) =

√
θ × θn = θ(n+1)/2(θk/2 + 1)

⇒
√
θ = θ−(n−1)/2(θk/2 + 1).

(d) We can similarly derive that
√
θ = θ−(k−1)/2(θn/2 + 1) in this case.

20. Under Kawahara et al.’s encoding, an element a = a0 + a1θ + a2θ
2 + · · · +

an−1θ
n−1 is represented by two bit arrays. With a packing of w bits per

word, the high-order bit array is represented as (a
(hi)
0 , a

(hi)
1 , . . . , a

(hi)
N−1), where

N = ⌈n/w⌉. Likewise, the low-order bit array for a is represented by N words

(a
(lo)
0 , a

(lo)
1 , . . . , a

(lo)
N−1). Let us call these word arrays as a(hi) and a(lo). An

arithmetic operation accepts as input two word arrays representing each input,
and outputs two word arrays representing the output.

The code for addition uses two temporary words h and l:

For i = 0, 1, 2, . . . , N − 1, repeat: {
Set h = a

(hi)
i XOR b

(hi)
i , and l = a

(lo)
i XOR b

(lo)
i .

Set c
(hi)
i = l OR (h XOR a

(lo)
i).

Set c
(lo)
i = h OR (l XOR a

(hi)
i).

}

The subtraction a− b can be similarly handled:

For i = 0, 1, 2, . . . , N − 1, repeat: {
Set h = a

(hi)
i XOR b

(lo)
i , and l = a

(lo)
i XOR b

(hi)
i .

Set c
(hi)
i = l OR (h XOR a

(lo)
i).

Set c
(lo)
i = h OR (l XOR a

(hi)
i).

}

Solutions Manual 35

Schoolbook multiplication handles three cases based on the multiplier co-
efficient bj . If bj = 0, nothing needs to be done. If bj = 1, then xjb is added to
a. Finally, if bj = 2, then xjb is subtracted from a. We use the above addition
and subtraction codes. Let us denote the k-th bit of a word u as (u)k. Also,
let LEFT-SHIFT3(b, k) denote the word-by-word left shift by k bits in both
the high- and low-order arrays of b. Since the representation of 0 is (1, 1),
we assume that LEFT-SHIFT3 packs the vacant positions with 1 bits. Right
shifts are analogously defined.

Initialize c
(hi)
i = c

(lo)
i = 111 . . . 1 = 2w − 1 for i = 0, 1, 2, . . . 2N − 1.

For j = 0, 1, 2, . . . , N − 1, repeat: {
For k = 0, 1, 2, . . . , w − 1, repeat: {
If (b

(hi)
j)k = 0 and (b

(lo)
j)k = 1, then: {

Add LEFT-SHIFT3(b, k) to (c
(hi)
j , . . . , c

(hi)
j+N−1), (c

(lo)
j , . . . , c

(lo)
j+N−1).

Add RIGHT-SHIFT3(b, w − k) to (c
(hi)
j+1, . . . , c

(hi)
j+N), (c

(lo)
j+1, . . . , c

(lo)
j+N).

} else if (b
(hi)
j)k = 1 and (b

(lo)
j)k = 0, then: {

Subtract LEFT-SHIFT3(b, k) from (c
(hi)
j , . . . , c

(hi)
j+N−1),(c

(lo)
j , . . . , c

(lo)
j+N−1).

Subtract RIGHT-SHIFT3(b,w−k) from (c
(hi)
j+1, . . . , c

(hi)
j+N),(c

(lo)
j+1, . . . , c

(lo)
j+N).

}
}

}

21. Each bit array of an element of F3509 requires ⌈509/64⌉ = 8 words. An
intermediate product requires two bit arrays each with ⌈1017/64⌉ = 16
words. First, note that −x64r−509(−x318 − x191 + x127 + 1) = x64(r−3)+1 +
x64(r−5)+2− x64(r−6)+2− x64(r−8)+3. Moreover, −(−x318− x191 + x127 +1) =
x4×64+62 + x2×64+63− x1×64+63− 1. In the following algorithm, we reduce an
intermediate product c by the defining polynomial. We use Kawahara et al.’s
formulas for addition and subtraction of word pairs. Here, LEFT-SHIFT3 and
RIGHT-SHIFT3 are defined as in the solution of Exercise 2.20.

For r = 15, 14, . . . , 8 (in that order), repeat: {
Set h = c

(hi)
r , l = c

(lo)
r , and c

(hi)
r = c

(lo)
r =0xFFFFFFFFFFFFFFFF.

Add (LEFT-SHIFT3(h, 1),LEFT-SHIFT3(l, 1)) to (c
(hi)
r−3, c

(lo)
r−3).

Add (RIGHT-SHIFT3(h, 63),RIGHT-SHIFT3(l, 63)) to (c
(hi)
r−2, c

(lo)
r−2).

Add (LEFT-SHIFT3(h, 2),LEFT-SHIFT3(l, 2)) to (c
(hi)
r−5, c

(lo)
r−5).

Add (RIGHT-SHIFT3(h, 62),RIGHT-SHIFT3(l, 62)) to (c
(hi)
r−4, c

(lo)
r−4).

Subtract (LEFT-SHIFT3(h, 2),LEFT-SHIFT3(l, 2)) from (c
(hi)
r−6, c

(lo)
r−6).

Subtract (RIGHT-SHIFT3(h, 62),RIGHT-SHIFT3(l, 62)) from (c
(hi)
r−5, c

(lo)
r−5).

Subtract (LEFT-SHIFT3(h, 3),LEFT-SHIFT3(l, 3)) from (c
(hi)
r−8, c

(lo)
r−8).

Subtract (RIGHT-SHIFT3(h, 61),RIGHT-SHIFT3(l, 61)) from (c
(hi)
r−7, c

(lo)
r−7).

}
Set h = RIGHT-SHIFT3(c

(hi)
7 , 61), and l = RIGHT-SHIFT3(c

(lo)
7 , 61).

36 Computational Number Theory

OR c
(hi)
7 and c

(lo)
7 with 0xE000000000000000.

Add (LEFT-SHIFT3(h, 62),LEFT-SHIFT3(l, 62)) to (c
(hi)
4 , c

(lo)
4).

Add (RIGHT-SHIFT3(h, 2),RIGHT-SHIFT3(l, 2)) to (c
(hi)
5 , c

(lo)
5).

Add (LEFT-SHIFT3(h, 63),LEFT-SHIFT3(l, 63)) to (c
(hi)
2 , c

(lo)
2).

Add (RIGHT-SHIFT3(h, 1),RIGHT-SHIFT3(l, 1)) to (c
(hi)
3 , c

(lo)
3).

Subtract (LEFT-SHIFT3(h, 63),LEFT-SHIFT3(l, 63)) from (c
(hi)
1 , c

(lo)
1).

Subtract (RIGHT-SHIFT3(h, 1),RIGHT-SHIFT3(l, 1)) from (c
(hi)
2 , c

(lo)
2).

Subtract (h, l) from (c
(hi)
0 , c

(lo)
0).

22. The integers in the range 0 through pn − 1 have unique n-digit p-ary repre-
sentations. In order to do arithmetic on integers of these forms, we first need
to unpack the operands and extract their p-ary digits. After the operation, we
need to pack the p-ary digits back to an integer. I shortly illustrate the notion
of packing and unpacking for the special cases p = 2 and p = 3.

The packing and unpacking overheads, if incurred frequently, adds non-
negligible overhead to the arithmetic routines, and should be avoided. In short,
this packed representation is not a very efficient way of storing field elements.
There is, however, a small benefit of this packed representation. Suppose that
we represent Fpn as Fpuv = Fp(θ, ψ), where θ is of degree u over Fp, and ψ is
of degree v over Fpu . Expanding an element α ∈ Fpn to the base pu (identified
with ψ) expresses α as an Fpu -linear combination of 1, ψ, ψ2, . . . , ψv−1. Each
coefficient in this expansion is an integer between 0 through pu−1, and stands
for an element of Fpu represented in base p. This construction works for an
arbitrarily long tower of field extensions, and we do not require specialized
complicated data structures for storing elements of any field in the tower.

If p = 2, the integer representing a field element stores the bits (coefficients
of θi) in itself. There is no need for explicit packing and unpacking. Word-wise
operations apply directly to the words of the operand integers.

For p = 3, the situation is different. Let an integer α ∈ {0, 1, 2, . . . , 3n− 1}
stand for an element of F3n = F3(θ) (for a suitable θ). The ternary digits of
α are conceptually the coefficients of θi for i = 0, 1, 2, . . . , n− 1. However, we
have been using Kawahara et al.’s representation of elements of F3n . Therefore,
extracting the ternary digits of α needs to be followed by a conversion of the
digit streams to two word arrays α(hi) and α(lo) of size N = ⌈n/w⌉, where w
is the number of bits per word. The unpacking procedure is described now.

Initialize α(hi) and α(lo) to strings of Nw one bits.
For i = 0, 1, 2, . . . , n− 1, repeat: {

Set j = ⌊i/w⌋ (word index), and k = i rem w (bit index).
Retrieve the next ternary coefficient as c = α rem 3.
Delete c from α by setting α = ⌊α/3⌋.
If c = 1, change the k-th bit of α

(hi)
j to 0,

else if c = 2, change the k-th bit of α
(lo)
j to 0.

}

Solutions Manual 37

The packing procedure accepts α(hi) and α(lo) as input, and produces an
integer α ∈ {0, 1, 2, . . . , 3n − 1} as output.

Initialize α = 0.
For j = N − 1, N − 2, . . . , 1, 0, repeat: {

For k = w − 1, w − 2, . . . , 1, 0, repeat: {
Set α = 3α.
If (c

(hi)
j)k = 0 and (c

(lo)
j)k = 1, set α = α+ 1.

else if (c
(hi)
j)k = 1 and (c

(lo)
j)k = 0, set α = α+ 2.

}
}

23. Addition: O(n log p).
Subtraction: O(n log p).
Raw multiplication (without reduction): O(n2 log2 p).
Reduction: O(n2 log2 p).
Euclidean gcd: O(n2 log2 p).

24. Let us represent elements of Fpn in a basis β0, β1, . . . , βn−1. Take an element
α = a0β0 + a1β1 + a2β2 + · · · + an−1βn−1 with each ai ∈ Fp. We then have
api = ai for all i. Therefore, α

p = a0β
p
0 + a1β

p
1 + a2β

p
2 + · · ·+ an−1β

p
n−1. If we

precompute and store each βp
i as an Fp-linear combination of β0, β1, . . . , βn−1,

computing αp can be finished in O(n2) time.

If β0, β1, β2, . . . , βn−1 constitute a normal basis of Fpn over Fp with βi =

βpi

, then we have βp
i = β(i+1) remn. Therefore, the p-th power exponentiation

of (a0, a1, . . . , an−1) is the cyclic shift (an−1, a0, a1, . . . , an−2). That is, p-th
power exponentiation with respect to a normal basis is very efficient.

25. (a) By Fermat’s little theorem, (αr)p−1 = 1. Now, use Proposition 2.28.

(b) Since αr ∈ Fp, its inverse (α
r)−1 is computed in the field Fp. This involves

integer arithmetic only, and can be efficiently done, particularly if p is small.
Moreover, αr−1 = αp+p2+ ···+pn−1

= αpαp2· · · αpn−1

. Since p-th power expo-
nentiation is efficiently computable, one easily gets αp, αp2

= (αp)p, αp3

=

(αp2

)p, and so on. We finally need to multiply (αr)−1 with αr−1.

26. (a) Computing (a0+a1θ)(b0+b1θ) involves the three Fq-multiplications a0b0,
a1b1 and (a0 + a1)(b0 + b1). We have (a0 + a1θ)(b0 + b1θ) = (a0b0) + ((a0 +
a1)(b0 + b1)− a0b0 − a1b1)θ + (a1b1)θ

2.

(b) We first write the input operands as (a0 + a1θ) + (a2)θ
2 and (b0 + b1θ) +

(b2)θ
2. The first level of Karatsuba–Ofman multiplication involves computing

the three products (a0+a1θ)(b0+b1θ), a2b2 and (a0+a2+a1θ)(b0+b2+b1θ),
of which only one (a2b2) is an Fq-multiplication. Applying a second level of
Karatsuba–Ofman multiplication on (a0 + a1θ)(b0 + b1θ) requires three Fq-
multiplications: a0b0, a1b1, and (a0 + a1)(b0 + b1). Likewise, computing (a0 +
a2+a1θ)(b0+b2+b1θ) involves three Fq-multiplications: (a0+a2)(b0+b2), a1b1,
and (a0 + a1 + a2)(b0 + b1 + b2). Finally, note that the product a1b1 appears

38 Computational Number Theory

in both the second-level Karatsuba–Ofman multiplications, and needs to be
computed only once.
(c) The first level of Karatsuba–Ofman multiplication involves three prod-
ucts of degree-one polynomials, each requiring three Fq-multiplications in the
second level.
(d) Let us write the input operands as (a0+a1θ+a2θ

2)+(a3+a4θ)θ
3 and (b0+

b1θ+b2θ
2)+(b3+b4θ)θ

3. In the first level of Karatsuba–Ofman multiplication,
we need the three products (a0 + a1θ + a2θ

2)(b0 + b1θ + b2θ
2) (requiring

six Fq-multiplications by Part (b)), (a3 + a4θ)(b3 + b4θ) (requiring three Fq-
multiplications by Part (a)), and ((a0+a3)+(a1+a4)θ+a2θ

2)((b0+b3)+(b1+
b4)θ+ b2θ

2) (requiring six Fq-multiplications again by Part (b)). However, the
Fq-product a2b2 is commonly required in the first and the third of these three
first-level products, and needs to be computed only once.
(e) The first level of Karatsuba–Ofman multiplication involves three products
of degree-two polynomials, each requiring six Fq-multiplications by Part (b).

27. By Fermat’s little theorem,
(

αpn−1
)p

= αpn

= α. If β is a p-th root of α, we

have βp = α, that is, β = βpn

= (βp)p
n−1

= αpn−1

.

28. Write α = a0 + a1θ+ a2θ
2 + · · ·+ an−1θ

n−1 = A0(θ
p)+ θA1(θ

p)+ θ2A2(θ
p)+

· · · + θp−1Ap−1(θ
p), where Ai(x) = ai + ai+px + ai+2px

2 + · · · . But then,
p
√
α = A0(θ) +

p
√
θA1(θ) +

p
√
θ2A2(θ) + · · · + p

√
θp−1Ap−1(θ). We precompute

p
√
θi for i = 0, 1, 2, . . . , p− 1. Extraction of the polynomials Ai(θ) is easy from

the sequence a0, a1, a2, . . . , an−1.

29. Verify that (x467 + x361 − x276 + x255 + x170 + x85)3 ≡ x (mod f(x)), and
(−x234 + x128 − x43)3 ≡ x2 (mod f(x)).

30. Let us represent F8 = F2(θ), where θ
3+ θ+1 = 0. The minimal polynomial is

0 is x, and that of 1 is x+1. The conjugates of θ are θ, θ2 and θ4 = θ(θ+1) =
θ2 + θ. For all these three elements, the minimal polynomial is x3 + x + 1.
For the three remaining elements of F8 (that is, θ + 1, θ2 + 1, θ2 + θ + 1),
the minimal polynomial is x3 + x2 + 1 (this is the only other cubic monic
irreducible polynomial in F2[x]).

31. Computing modulo the polynomial θ4 + θ + 4 gives:

α = 2θ3 + 3θ + 4,

α5 = 4θ3 + 4θ2 + 3,

α25 = 3θ2,

α125 = 4θ3 + 3θ2 + 2θ + 3.

Therefore, the minimal polynomial of α over F5 is

(x− α)(x− α5)(x− α25)(x− α125) = x4 + 2x2 + 3x+ 1.

For β, we have the following calculations:

β = θ2 + 2θ + 3,

Solutions Manual 39

β5 = 3θ3 + 4θ2 + θ + 4,

β25 = 3θ3 + θ2 + 4,

β125 = 4θ3 + 4θ2 + 2θ + 1,

that is, the minimal polynomial of β over F5 is

(x− β)(x− β5)(x− β25)(x− β125) = x4 + 3x3 + 3x2 + 4x+ 1.

32. We represent F16 as F2(θ), where θ
4 + θ + 1 = 0. The order of the group F∗

16

is 15, that is, every element α ∈ F∗
16 has order 1, 3, 5, or 15. We have θ 6= 1,

θ3 6= 1, and θ5 = θ(θ+ 1) = θ2 + θ 6= 1. Thus, θ is a primitive element of F16.
We claim that γ = θ3 is a normal element of F16. For the proof, note that

γ = θ3,

γ2 = θ6 = θ2(θ + 1) = θ3 + θ2,

γ4 = θ6 + θ4 = θ4(θ2 + 1) = (θ + 1)(θ2 + 1) = θ3 + θ2 + θ + 1,

γ8 = θ6 + θ4 + θ2 + 1 = (θ2 + 1)(θ + 1) + θ2 + 1 = θ(θ2 + 1) = θ3 + θ.

This means that





γ
γ2

γ4

γ8




 =






0 0 0 1
0 0 1 1
1 1 1 1
0 1 0 1











1
θ
θ2

θ3




 .

The change-of-basis matrix has determinant one modulo 2, that is, the con-
jugates of γ are linearly independent over F2.

Since ord θ = 15, we have ord(θ3) = 15/ gcd(3, 15) = 5, that is, θ3 is not a
primitive element of F16.

33. Represent F27 = F33 as F3(θ), where θ
3 + 2θ + 1 = 0. The order of F∗

27 is
27 − 1 = 2 × 13, that is, it suffices to compute α2 and α13 = α × α4 × α8 in
order to determine whether α ∈ F∗

27 is primitive. Let us take α = θ. We have

α2 = θ2,

α4 = θ4 = θ(θ + 2) = θ2 + 2θ,

α8 = θ4 + 4θ3 + 4θ2 = (θ + 1)(θ + 2) + θ2 = 2θ2 + 2.

Therefore, θ13 = θ8×θ4×θ = (2θ2+2)(θ2+2θ)θ. Simplification using θ3 = θ+2
gives θ13 = 2. Since θ2 6= 1 and θ13 6= 1, we conclude that θ is a primitive
element of F27.

We then claim that β = θ2 + 2 is a normal element of F27. To this effect,
we compute:

β = θ2 + 2

β3 = θ6 + 2 = (θ + 2)2 + 2 = θ2 + θ,

β9 = θ6 + θ3 = θ3(θ3 + 1) = (θ + 2)θ = θ2 + 2θ.

40 Computational Number Theory

Therefore,




β
β3

β9



 =





2 0 1
0 1 1
0 2 1









1
θ
θ2





The determinant of the transformation matrix is 2× (1− 2) ≡ 1 6≡ 0 (mod 3).
But β is not a primitive element of F27, since we can show that β13 = 1.

34. Represent F25 = F5(θ), where θ
2 + 2 = 0. We now show that α = θ + 1 is a

primitive normal element of F25.
The order of F∗

25 is 24 = 23 × 3. It therefore suffices to show that α24/2 =
α12 6= 1 and α24/3 = α8 6= 1. We have

α2 = θ2 + 2θ + 1 = 2θ + 4,

α4 = 4θ2 + θ + 1 = θ + 3,

α8 = θ2 + θ + 4 = θ + 2.

Therefore, α8 6= 1. Moreover, α12 = α8×α4 = (θ+2)(θ+3) = θ2+1 = 4 6= 1.
We now compute

α5 = α× α4 = (θ + 1)(θ + 3) = θ2 + 4θ + 3 = 4θ + 1.

It then follows that
(
α
α5

)

=

(
1 1
1 4

)(
1
θ

)

.

The determinant of the transformation matrix is 4 − 1 6≡ 0 (mod 5), that is,
α is a normal element of F∗

25.

35. We claim that 2 is a primitive element in F29. The size of F∗
29 is 28 = 22 × 7,

so it suffices to show that 214 6≡ 1 (mod 29) and 24 6≡ 1 (mod 29). Since
29 ≡ 5 (mod 8), we have

(
2
29

)
= −1, and so by Euler’s criterion, 2(29−1)/2 ≡

214 ≡ −1 (mod 29). On the other hand, 24 ≡ 16 6≡ 1 (mod 29).

36. (a) The monic linear irreducible polynomials over F4 are x, x+1, x+θ, x+θ+1.
The products of any two (including repetition) of these polynomials are the
reducible monic quadratic polynomials—there are ten of them: x2, x2 + 1,
x2+θ+1, x2+θ, x2+x, x2+θx, x2+(θ+1)x, x2+(θ+1)x+θ, x2+θx+(θ+1),
and x2+x+1. The remaining six monic quadratic polynomials are irreducible:
x2 + x+ θ, x2 + x+ (θ + 1), x2 + θx+ 1, x2 + θx+ θ, x2 + (θ + 1)x+ 1, and
x2 + (θ + 1)x+ (θ + 1).
(b) Let us use the polynomial x2+x+θ to represent F16. That is, F16 = F4(ψ),
where ψ2 + ψ + θ = 0. Let us take two elements

α = (a3θ + a2)ψ + (a1θ + a0),

β = (b3θ + b2)ψ + (b1θ + b0)

in F16. The formula for their sum is simple:

α+ β = [(a3 + b3)θ + (a2 + b2)]ψ + [(a1 + b1)θ + (a0 + b0)].

Solutions Manual 41

The product involves reduction with respect to both θ and ψ.

αβ = [(a3θ+a2)(b3θ+b2)]ψ
2+[(a3θ+a2)(b1θ+b0)+(a1θ+a0)(b3θ+b2)]ψ+

[(a1θ+a0)(b1θ+b0)]

= [(a3b3+a3b2+a2b3)θ+(a3b3+a2b2)]ψ
2+

[(a3b1+a3b0+a2b1+a1b3+a1b2+a0b3)θ+(a3b1+a2b0+a1b3+a0b2)]ψ+

[(a1b1+a1b0+a0b1)θ+(a1b1+a0b0)]

= [(a3b3+a3b2+a2b3)θ+(a3b3+a2b2)](ψ+θ)+

[(a3b1+a3b0+a2b1+a1b3+a1b2+a0b3)θ+(a3b1+a2b0+a1b3+a0b2)]ψ+

[(a1b1+a1b0+a0b1)θ+(a1b1+a0b0)]

=
[

(a3b3+a3b2+a3b1+a3b0+a2b3+a2b1+a1b3+a1b2+a0b3)θ+

(a3b3+a3b1+a2b2+a2b0+a1b3+a0b2)
]

ψ+
[

(a3b3+a3b2+a2b3)θ
2+(a3b3+a2b2+a1b1+a1b0+a0b1)θ+(a1b1+a0b0)

]

=
[

(a3b3+a3b2+a3b1+a3b0+a2b3+a2b1+a1b3+a1b2+a0b3)θ+

(a3b3+a3b1+a2b2+a2b0+a1b3+a0b2)
]

ψ+
[

(a3b2+a2b3+a2b2+a1b1+a2b0+a0b1)θ+(a3b3+a3b2+a2b3+a1b1+a0b0)
]

(c) We have |F∗
16| = 15 = 3× 5, ψ3 = (θ + 1)ψ + θ 6= 1 and ψ5 = θ 6= 1, so ψ

is a primitive element of F16.
(d) We have the following powers of γ = (θ + 1)ψ + 1:

γ = (θ + 1)ψ + 1,

γ2 = (θ)ψ + (θ),

γ4 = (θ + 1)ψ + (θ),

γ8 = (θ)ψ.

Thus, the minimal polynomial of γ over F2 is (x+γ)(x+γ2)(x+γ4)(x+γ8) =
x4 + x3 + x2 + x+ 1.
(e) The minimal polynomial of γ over F4 is (x+γ)(x+γ4) = (x+(θ+1)ψ+1)
(x+ (θ + 1)ψ + θ) = x2 + (θ + 1)x+ 1.

37. (a) The conjugates of θ are

θ,

θ2,

θ4,

θ8 = θ2(θ3 + 1) = θ5 + θ2,

θ16 = θ10 + θ4 = θ4(θ3 + 1) + θ4 = θ7 = θ4 + θ, and

θ32 = θ8 + θ2 = θ2(θ3 + 1) + θ2 = θ5.

42 Computational Number Theory

(b) It suffices to compute θh only for h|63. Now, θ 6= 1, θ3 6= 1, θ7 = θ(θ3+1) =
θ4 + θ 6= 1, and θ9 = θ3(θ3 + 1) = θ6 + θ3 = 1. Therefore, the order of θ is 9,
that is, θ is not a primitive element of F∗

64.
Alternatively, by Part (a), θ32 = θ5, that is, θ27 = 1, that is, ord θ divides

27 and so is smaller than 64− 1 = 63.
(c) We have θ6 + θ3 + 1 = 0, that is, (θ3)2 + (θ3) + 1 = 0, that is, fθ3,2(x) =
x2 + x+ 1.

If you choose, you may go as computers would do, that is, write α = θ3,
and then show that α2 = θ3 +1 and α4 = θ6 +1 = θ3 = α, so that fθ3,2(x) =
(x− α)(x− α2) = (x+ θ3)(x+ θ3 + 1) = x2 + x+ 1.

38. (a) By construction, θ itself is a root of x2 + x + 2. Its other root is θ3 =
−θ(θ + 2) = −θ2 − 2θ = θ + 2− 2θ = −θ + 2 = 2θ + 2.
(b) Since x2 + x + 2 is irreducible over Z3, it has no roots modulo 3 and so
no roots modulo 32 = 9 too.
(c) The order of F∗

9 is 9− 1 = 8 = 23. We have θ4 = (θ + 2)2 = θ2 + θ + 1 =
−θ − 2 + θ + 1 = −1 = 2 6= 1, that is, θ is a primitive element of F9.
(d) Suppose not. Then, it has one root α (in fact, both the roots) in F9, that
is, θ = α2. But then θ4 = α8 = 1 (since α ∈ F∗

9), that is, θ is not a primitive
element of F9, a contradiction.
(e) We have ψ16 = (ψ2)8 = θ8 = 1, that is, ψ is not primitive in F81.
(f) The conjugates of ψ over F3 are ψ, ψ3 = θψ, ψ9 = θ3ψ3 = θ4ψ = 2ψ and
ψ27 = 8ψ3 = 2θψ. Therefore, the minimal polynomial of ψ over F3 is

(x− ψ)(x− θψ)(x− 2ψ)(x− 2θψ)

= (x− ψ)(x+ ψ)(x− θψ)(x+ θψ)

= (x2 − ψ2)(x2 − θ2ψ2)

= (x2 − θ)(x2 − θ3)
= x4 − (θ + θ3)x2 + θ4

= x4 − (θ + 2θ + 2)x2 + 2 = x4 − 2x2 + 2 = x4 + x2 + 2.

There are other ways of arriving at this polynomial. First, note that θ2+θ+2 =
0 and ψ2 = θ. Combining these two equations gives ψ4 + ψ2 + 2 = 0, that is,
ψ is a root of the polynomial x4 + x2 + 2 ∈ F3[x]. The degree of ψ (over F3)
is four, so x4 + x2 + 2 has to be irreducible modulo 3. Finally, since ψ cannot
satisfy two different monic irreducible polynomials in F3[x] of degree four, the
minimal polynomial of ψ over F3 has to be x4 + x2 + 2.

39. We have

γ = θ + 1,

γ2 = θ2 + 1,

γ4 = θ4 + 1,

γ8 = θ8 + 1 = θ3(θ2 + 1) + 1 = θ5 + θ3 + 1 = θ3 + θ2,

γ16 = θ6 + θ4 = θ(θ2 + 1) + θ4 = θ4 + θ3 + θ.

Solutions Manual 43

Therefore, (γ γ2 γ4 γ8 γ16)
t
= T (1 θ θ2 θ3 θ4)

t
, where T is the

5× 5 transformation matrix whose determinant is

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 0 0 0
1 0 1 0 0
1 0 0 0 1
0 0 1 1 0
0 1 0 1 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

≡

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0 0
1 0 1 0 0
1 0 0 0 1
0 0 1 1 0
0 1 0 1 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

(adding to the topmost row all of the remaining rows)

≡

∣
∣
∣
∣
∣
∣
∣

0 1 0 0
0 0 0 1
0 1 1 0
1 0 1 1

∣
∣
∣
∣
∣
∣
∣

(expanding about the topmost row)

≡

∣
∣
∣
∣
∣
∣

1 0 0
0 0 1
1 1 0

∣
∣
∣
∣
∣
∣

(expanding about the leftmost column)

≡
∣
∣
∣
∣

0 1
1 0

∣
∣
∣
∣

(expanding about the topmost row)

≡ 1 (mod 2).

Therefore, γ is a normal element of F32.

40. (a) As in Exercise 2.34, we represent F25 = F5(θ) with θ
2+2 = 0. We compute

Zech logarithms to the primitive base α = θ + 1. First, we list powers of α.

i 0 1 2 3 4 5 6 7
αi 1 θ + 1 2θ + 4 θ θ + 3 4θ + 1 3 3θ + 3

i 8 9 10 11 12 13 14 15
αi θ + 2 3θ 3θ + 4 2θ + 3 4 4θ + 4 3θ + 1 4θ

i 16 17 18 19 20 21 22 23
αi 4θ + 2 θ + 4 2 2θ + 2 4θ + 3 2θ 2θ + 1 3θ + 2

The Zech logarithm table for F25 follows.

i 0 1 2 3 4 5 6 7 8 9 10 11
zi 18 8 21 1 17 16 12 10 4 14 9 2

i 12 13 14 15 16 17 18 19 20 21 22 23
zi − 15 23 5 20 3 6 11 13 22 19 7

44 Computational Number Theory

(b) Represent F27 = F3(θ) with θ3 + 2θ + 1 = 0 as in Exercise 2.33, and
compute Zech logarithms to the base θ.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
zi 13 9 21 1 18 17 11 4 15 3 6 10 2

i 13 14 15 16 17 18 19 20 21 22 23 24 25
zi − 16 25 22 20 7 23 5 12 14 24 19 8

(c) The Zech logarithms in F29 to the primitive base 2 are:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13
zi 1 5 22 10 21 2 12 18 16 24 23 9 3 27

i 14 15 16 17 18 19 20 21 22 23 24 25 26 27
zi − 14 19 26 13 15 8 11 6 25 17 7 20 4

41. As in Exercise 2.32, we represent F16 = F2(φ) with φ4 + φ + 1 = 0. The
representation of F16 in Exercise 2.36 is F16 = F2(θ)(ψ), where θ

2 + θ+1 = 0
and ψ2 + ψ + θ = 0. We need to compute the change-of-basis matrix from
the polynomial basis (1, φ, φ2, φ3) to the composite basis (1, θ, ψ, θψ). To that
effect, we note that φ satisfies x4 + x + 1 = 0, and obtain a root of this
polynomial in the second representation. Squaring ψ2 + ψ + θ = 0 gives ψ4 +
ψ2+θ2 = 0, that is, ψ4+(ψ2+ψ+θ)+ψ+(θ2+θ) = 0, that is, ψ4+ψ+1 = 0.
We consider the linear map µ taking φ to ψ, and obtain:

µ(1) = 1,

µ(φ) = ψ,

µ(φ2) = ψ2 = ψ + θ,

µ(φ3) = ψ(ψ + θ) = ψ2 + ψθ = θ + ψ + ψθ.

Therefore, the change-of-basis matrix is

T =






1 0 0 0
0 0 1 0
0 1 1 0
0 1 1 1






42. We iteratively find elements β0, β1, . . . , βn−1 to form an Fp-basis of Fpn . Ini-
tially, any non-zero element of Fpn can be taken as β0, so the number of choices
is pn − 1. Now, suppose that i linearly independent elements β0, β1, . . . , βi−1

are chosen. The number of all possible Fp-linear combinations of these i el-
ements is exactly pi. We choose any βi which is not a linear combination of
β0, β1, . . . , βi−1, that is, the number of choices for βi is exactly p

n − pi.
43. Consider the tower of extensions Fp ⊆ Fp(α) ⊆ Fpn . Then, d = deg fα(x) is

the Fp-dimension of Fp(α), whereas n is the Fp-dimension of Fpn . Thus, d|n.
44. Both the parts follow from the following result.

Solutions Manual 45

Claim: Let d = gcd(m,n). Then, g decomposes in F2m [x] into a product of d
irreducible polynomials each of degree n/d.

Proof Take any root α ∈ Fp of g. The conjugates of α over Fpm are α, αpm

,

α(pm)2 , . . . , α(pm)t−1

, where t is the smallest integer for which α(pm)t = α. On

the other hand, deg g = n, and g is irreducible over Fp, implying that αpk

= α
if and only if k is a multiple of n. Therefore, mt ≡ 0 (mod n). The smallest
positive integral solution for t is n/d. That is, the degree of α over Fpm is
exactly n/d. Since this is true for any root of g, the claim is established. •

45. Let f(x) = a1x
e1 + a2x

e2 + · · · + atx
et with e1, e2, . . . , et ∈ N0 distinct from

one another, and with each ai ∈ F∗
pn . Then, f ′(x) = a1e1x

e1−1 + a2e2x
e2−1 +

· · · + atetx
et−1, that is, f ′(x) = 0 if and only if each ei is divisible by p. Let

us write ei = pǫi for i = 1, 2, . . . , t. Moreover, by Fermat’s little theorem,

ap
n

i = ai for all i. It then follows that f(x) = g(x)p, where g(x) = ap
n−1

1 xǫ1 +

ap
n−1

2 xǫ2 + · · ·+ ap
n−1

t xǫt ∈ Fpn [x].

46. We have (x + α)q − (x + α) = xq + αq − x − α = xq − x, since αq = α for
all α ∈ Fq. But q is odd, so (x+ α)q − (x+ α) = (x+ α)((x+ α)(q−1)/2 − 1)
((x+ α)(q−1)/2 + 1).

47. For any α ∈ Fq, we have α
q = α, and so (x+α)q+(x+α) = xq+αq+x+α =

xq + x. Let g(x) = (x + α) + (x + α)2 + (x + α)4 + · · · + (x + α)2
n−1

. Then,

g(x)2 = (x+α)2+(x+α)4+ · · ·+(x+α)2
n−1

+(x+α)2
n

, so g(x)(g(x)+1) =
g(x)2 + g(x) = (x+ α)2

n

+ (x+ α) = (x+ α)q + (x+ α) = xq + x.

48. Let q−1 = pe11 p
e2
2 · · · pett be the complete prime factorization of q−1. We then

proceed as follows to compute the order h of α ∈ F∗
q .

Initialize h = 1.
For i = 1, 2, . . . , t, repeat: {

Let r = (q − 1)/peii , and compute β = αr.
While (β 6= 1), repeat: { Multiply h by pi, and set β = βpi . }

}
Return h.

49. For any γ ∈ F∗
pn , the order h = ord γ divides pn − 1. In particular, p 6 | h.

Therefore, the order of γp is h/ gcd(h, p) = h/1 = h.

50. Take any primitive element γ of Fpn . By Exercise 2.49, all its n conjugates

γ, γp, γp
2

, . . . , γp
n−1

have the same order, and are again primitive. Finally,
there are φ(pn − 1) primitive elements in F∗

pn .

51. By Fermat’s little theorem, there exists exactly d solutions of xd = 1 in Fq for
any d|(q− 1) (use a proof as in Theorem 1.57). Therefore, for i ∈ {1, 2, . . . , r}
and for 1 6 ui 6 ei, there are exactly pui

i − pui−1
i elements of order exactly

equal to pui
i . On the other hand, there is a unique element of order p0i . Any

element α ∈ F∗
q can be decomposed uniquely as α = α1α2 · · ·αr with order of

αi equal to p
ui
i for all i. But then, the order of α is

∏r
i=1 p

ui
i , and there exist

46 Computational Number Theory

exactly
∏r

i=1 δi elements of F∗
q of this order, where δi = pui

i − pui−1
i if ui > 0,

or 1 if ui = 0. It therefore follows that
∑

α∈F∗
q

ordα =
∑

u1,u2,...,ur

pu1
1 pu2

2 · · · pur
r δ1δ2 · · · δr

=

r∏

i=1

[

1 +

ei∑

ui=1

(p2ui
i − p2ui−1

i)

]

=

r∏

i=1

p2ei+1
i + 1

pi + 1
.

52. F∗
q contains exactly (q−1)/2 quadratic residues and exactly (q−1)/2 quadratic

non-residues. If α = β2 (with β ∈ F∗
q) is a quadratic residue, then α(q−1)/2 =

βq−1 = 1. Every element of F∗
q satisfies xq−1 − 1 = (x(q−1)/2 − 1)(x(q−1)/2 +

1) = 0, and the quadratic residues are roots of the first factor. Therefore, the
quadratic non-residues α must satisfy α(q−1)/2+1 = 0, that is, α(q−1)/2 = −1.

53. If α is a t-th power residue, then βt = α for some β ∈ F∗
q . But then, α

(q−1)/d =

(βt)(q−1)/d = (βq−1)t/d = 1 by Fermat’s little theorem.
Proving the converse requires more effort. Let γ be a primitive element

in F∗
q . Then, an element γi is a t-th power residue if and only if γi = (γy)t

for some y, that is, the congruence ty ≡ i (mod q − 1) is solvable for y,
that is, gcd(t, q − 1)|i. Thus, the values of i ∈ {0, 1, 2, . . . , q − 2} for which γi
is a t-th power residue are precisely 0, d, 2d, . . . , (q−1

d − 1)d, that is, there are
exactly (q−1)/d t-th power residues in F∗

q . All these t-th power residues satisfy

x(q−1)/d = 1. But then, since x(q−1)/d − 1 cannot have more than (q − 1)/d
roots, no t-th power non-residue can satisfy x(q−1)/d = 1.

54. If q = 2n, take x = 0 and y = a2
n−1

. So assume that q is odd, and write the
given equation as x2 = α− y2. As y ranges over all values in Fq, the quantity
y2 ranges over a total of (q+1)/2 values (zero, and all the quadratic residues),
that is, α− y2 too assumes (q + 1)/2 distinct values. Not all these values can
be quadratic non-residues, since there are only (q − 1)/2 non-residues in Fq.

55. If gcd(r, q − 1) = 1, then ur + v(q − 1) = 1 for some u, v ∈ Z, that is,
(γu)r = γ, that is, γu is a root of xr−γ. Conversely, let δ ∈ F∗

q satisfy δr = γ.
Let e = ord δ. But then, q − 1 = ord γ = e/ gcd(e, r). Moreover, e|(q − 1). So
we must have e = q − 1 and gcd(e, r) = 1, that is, gcd(r, q − 1) = 1.

56. Suppose that there is an isomorphism µ : Q(
√
2) → Q(

√
3). Let µ(

√
2) =

a + b
√
3 with a, b ∈ Q. If b = 0, then µ(a) = µ(

√
2) = a, violating that

µ is injective, so b 6= 0. But then, 2 = µ(2) = µ(
√
2)2 = (a + b

√
3)2 =

(a2 +3b2) + 2ab
√
3. Since b 6= 0, we must have a = 0, that is, 3b2 = 2, that is,

b =
√

2/3, a contradiction to the fact that b is rational.

57. Take F = Q, and f(x) = x2 + 1. The two roots of f are θ = i and ψ = −i.
Since −i ∈ Q(i) and i ∈ Q(−i), we have Q(θ) = Q(ψ) in this case.

Now, take F = Q and f(x) = x3− 2. The three roots of f are θ = 3
√
2,ψ =

3
√
2ω, and φ = 3

√
2ω2, where 3

√
2 is the real cube root of 2, and ω = 1+i

√
3

2 is a
primitive third root of unity. We have Q(θ) ⊆ R and Q(ψ) 6⊆ R, that is, these
two extensions, although isomorphic, are distinct as sets.

Solutions Manual 47

58. (a) Let t be the smallest positive integer for which αpt

= α. The minimal
polynomial fα(x) ∈ Fp[x] of α is of degree t, and t divides n. Therefore,

(x− α)(x− αp)(x− αp2

) · · · (x− αpn−1

) = fα(x)
n/t ∈ Fp[x].

Now, observe that Tr(α) is the negative of the coefficient of xn−1, and N(α)
is (−1)n times the constant term in fα(x)

n/t.

(b) If α ∈ Fp, then α
pi

= α for all i ∈ N0.

(c) For any α, β ∈ Fpn and for any i ∈ N0, we have (α + β)p
i

= αpi

+ βpi

,

and (αβ)p
i

= αpi

βpi

.
(d) If α = γp − γ, then by additivity of the trace function, we have Tr(α) =

Tr(γp)−Tr(γ) = (γp+γp
2

+γp
3

+ · · ·+γpn

)− (γ+γp+γp
2

+ · · ·+γpn−1

) = 0,
since γp

n

= γ by Fermat’s little theorem.
Conversely, suppose that Tr(α) = 0. It suffices to show that the polynomial

xp − x − α has at least one root in Fpn . Since xp
n − x is the product of all

monic linear polynomials in Fpn [x], the number of roots of xp − x − α is the
degree of the gcd of xp − x − α with xp

n − x. In order to compute this gcd,
we compute xp

n − x modulo xp− x−α. But xp ≡ x+α (mod xp− x−α), so

xp
n − x ≡ (x+ α)p

n−1 − x
≡ xp

n−1

+ αpn−1 − x
≡ (x+ α)p

n−2

+ αpn−1 − x
≡ xp

n−2

+ αpn−2

+ αpn−1 − x
≡ · · ·
≡ x+ α+ αp + αp2

+ · · ·+ αpn−2

+ αpn−1 − x
≡ Tr(α)

≡ 0 (mod xp − x− α).

Therefore, gcd(xp − x − α, xpn − x) = xp − x − α, that is, α = γp − γ for p
distinct elements of Fpn .

59. (a) This is the same as Exercise 2.58(d) for p = 2.

(b) Let γ = α21 +α23 +α25 + · · ·+α2n−2

. Then, γ2 = α22 +α24 +α26 + · · ·+
α2n−1

, so γ2 + γ = α2 +α22 +α23 + · · ·+αpn−1

= Tr(α) +α = α. The sum of
the two roots of x2 + x+ α is 1, so the other solution of x2 + x = α is γ + 1.
(c) Rewrite the equation as x2 + b

ax + c
a = 0. Substitute x = b

ay to get

(ba)
2y2 + (ba)

2y + c
a = 0, that is, y2 + y = α, where α = ca

b2 . By Part (a), this
equation is solvable if and only if Tr(α) = 0. If so, the solutions for y are γ
and γ + 1 (see Part (b)). Thus, the solutions for x are x = b

aγ and b
a (γ + 1).

60. (a) If α = γ2k, then x2 = α has a solution x = γk. Conversely, if x2 = α
has a solution β = γk, then α = β2 = γ2k = γ(2k) rem (q−1). Since q is odd,
(2k) rem (q − 1) is even.
(b) If k is even, then l = k/2. If k is odd, then l = [k + (q − 1)]/2. Another
(less efficient) formula is l ≡ kq/2 (mod q − 1).

48 Computational Number Theory

61. (a) Let θ0, θ1, . . . , θn−1 constitute an Fp-basis of Fpn . Let Ai denote the i-th
column of A (for i = 0, 1, 2, . . . , n − 1). Suppose that a0A0 + a1A1 + · · · +
an−1An−1 = 0. Let α = a0θ0 + a1θ1 + · · ·+ an−1θn−1. Since a

p
i = ai for all i,

we then have a0 Tr(θiθ0) + a1 Tr(θiθ1) + · · ·+ an−1 Tr(θiθn−1) = Tr(θi(a0θ0 +
a1θ1+· · ·+an−1θn−1)) = Tr(θiα) = 0 for all i. Since θ0, θ1, . . . , θn−1 constitute
a basis of Fpn over Fp, it follows that Tr(βα) = 0 for all β ∈ Fpn . If α 6= 0,
this in turn implies that Tr(γ) = 0 for all γ ∈ Fpn . But the polynomial

x + xp + xp
2

+ · · · + xp
n−1

can have at most pn−1 roots. Therefore, we must
have α = 0. But then, by the linear independence of θ0, θ1, . . . , θn−1, we
conclude that a0 = a1 = · · · = an−1 = 0, that is, the columns of A are linearly
independent, that is, ∆(θ0, θ1, . . . , θn−1) 6= 0.

Conversely, if θ0, θ1, . . . , θn−1 are linearly dependent, then a0θ0 + a1θ1 +
· · ·+ an−1θn−1 = 0 for some a0, a1, . . . , an−1 ∈ Fp, not all zero. But then, for
all i ∈ {0, 1, 2, . . . , n−1}, we have a0θiθ0+a1θiθ1+ · · ·+an−1θiθn−1 = 0, that
is, a0 Tr(θiθ0) + a1 Tr(θiθ1) + · · ·+ an−1 Tr(θiθn−1) = 0, that is, the columns
of A are linearly dependent, that is, ∆(θ0, θ1, . . . , θn−1) = 0.

(b) The (i, j)-th entry of B tB is θiθj + θpi θ
p
j + · · · + θp

n−1

i θp
n−1

j = Tr(θiθj).

Finally, note that detA = (detB)2.
(c) Consider the van der Monde matrix

V (λ0, λ1, . . . , λn−1) =










1 1 1 · · · 1
λ0 λ1 λ2 · · · λn−1

λ20 λ21 λ22 · · · λ2n−1

...
...

... · · ·
...

λn−1
0 λn−1

1 λn−1
2 · · · λn−1

n−1










.

If λi = λj , the determinant of this matrix is 0. It therefore follows that

detV (λ0, λ1, . . . , λn−1) = ±
∏

06i<j6n−1

(λi − λj).

If we take θi = θi in Part (b), we see that B t = V (θ, θp, θp
2

, . . . , θp
n−1

).
Finally, detB = detB t , and detA = (detB)2.

62. The following function inverts a(x) ∈ F2[x] modulo f(x) ∈ F2[x].

EucInv2(a,f) = \

r2 = Mod(1,2) * f; r1 = Mod(1,2) * a; \

v2 = Mod(0,2); v1 = Mod(1,2); \

while (poldegree(r1) > 0, \

r = r2 % r1; q = (r2 - r) / r1; v = v2 - q * v1;

r2 = r1; r1 = r; v2 = v1; v1 = v; \

); \

return(lift(v1))

EucInv2(x^6+x^3+x^2+x, x^7+x^3+1)

63. The binary inverse algorithm for inverting a modulo f follows.

Solutions Manual 49

BinInv2(a,f) = \

r1 = Mod(1,2) * a; r2 = Mod(1,2) * f; u1 = Mod(1,2); u2 = Mod(0,2); \

while (1, \

while(polcoeff(r1,0)==Mod(0,2), \

r1 = r1 / (Mod(1,2) * x); \

if (polcoeff(u1,0) == Mod(1,2), u1 = u1 + f); \

u1 = u1 / (Mod(1,2) * x); \

if (poldegree(r1) == 0, return(lift(u1))); \

); \

while(polcoeff(r2,0)==Mod(0,2), \

r2 = r2 / (Mod(1,2) * x); \

if (polcoeff(u2,0) == Mod(1,2), u2 = u2 + f); \

u2 = u2 / (Mod(1,2) * x); \

if (poldegree(r2) == 0, return(lift(u2))); \

); \

if (poldegree(r1) >= poldegree(r2), \

r1 = r1 + r2; u1 = u1 + u2, \

r2 = r2 + r1; u2 = u2 + u1 \

) \

)

BinInv2(x^6+x^3+x^2+x, x^7+x^3+1)

64. In the following code, we first write a function to remove k factors of x from

u modulo f . This does not take into account any special form of the defining
polynomial f . The function for inverting a modulo f follows this function.

rmx2(u,k,f) = \

while (k > 0, \

if (polcoeff(u,0) == Mod(1,2), u = u + f); \

u = u / (Mod(1,2) * x); k--; \

); \

return(lift(u))

AlmInv2(a,f) = \

k = 0; \

r1 = Mod(1,2) * a; r2 = Mod(1,2) * f; \

u1 = Mod(1,2); u2 = Mod(0,2); \

while (1, \

while(polcoeff(r1,0)==Mod(0,2), \

k++; r1 = r1 / (Mod(1,2) * x); u2 = u2 * (Mod(1,2) * x); \

if (poldegree(r1) == 0, return(rmx2(u1,k,f))); \

); \

while(polcoeff(r2,0)==Mod(0,2), \

k++; r2 = r2 / (Mod(1,2) * x); u1 = u1 * (Mod(1,2) * x); \

if (poldegree(r2) == 0, return(rmx2(u2,k,f))); \

); \

if (poldegree(r1) >= poldegree(r2), \

r1 = r1 + r2; u1 = u1 + u2, \

r2 = r2 + r1; u2 = u2 + u1 \

) \

)

50 Computational Number Theory

AlmInv2(x^6+x^3+x^2+x, x^7+x^3+1)

65. The following GP/PARI function accepts as input the element a(x) that we
want to invert, the characteristic p, and the defining polynomial f(x). The
extension degree is obtained from f .

EucInv(a,p,f) = \

r2 = Mod(1,p) * f; r1 = Mod(1,p) * a; \

v2 = Mod(0,p); v1 = Mod(1,p); \

while (poldegree(r1) > 0, \

r = r2 % r1; q = (r2 - r) / r1; \

v = v2 - q * v1; \

r2 = r1; r1 = r; v2 = v1; v1 = v; \

); \

return(lift(v1/polcoeff(r1,0)))

EucInv(x^6+x^3+x^2+x, 2, x^7+x^3+1)

EucInv(9*x^4+7*x^3+5*x^2+3*x+2, 17, x^5+3*x^2+5)

66. The following GP/PARI function accepts as input the element a(x) that we want

to invert, the characteristic p, and the defining polynomial f(x).

BinInv(a,p,f) = \

local(r1,r2,u1,u2); \

r1 = Mod(1,p) * a; r2 = Mod(1,p) * f; \

u1 = Mod(1,p); u2 = Mod(0,p); \

while (1, \

while(polcoeff(r1,0)==Mod(0,p), \

r1 = r1 / (Mod(1,p) * x); \

if (polcoeff(u1,0) != Mod(0,p), \

u1 = u1 - (polcoeff(u1,0) / polcoeff(f,0)) * f \

); \

u1 = u1 / (Mod(1,p) * x); \

if (poldegree(r1) == 0, return(lift(u1/polcoeff(r1,0)))); \

); \

while(polcoeff(r2,0)==Mod(0,p), \

r2 = r2 / (Mod(1,p) * x); \

if (polcoeff(u2,0) != Mod(0,p), \

u2 = u2 - (polcoeff(u2,0) / polcoeff(f,0)) * f

); \

u2 = u2 / (Mod(1,p) * x); \

if (poldegree(r2) == 0, return(lift(u2/polcoeff(r2,0)))); \

); \

if (poldegree(r1) >= poldegree(r2), \

c = polcoeff(r1,0)/polcoeff(r2,0); r1 = r1 - c*r2; u1 = u1 - c*u2, \

c = polcoeff(r2,0)/polcoeff(r1,0); r2 = r2 - c*r1; u2 = u2 - c*u1 \

) \

)

A couple of calls of this function follow.

Solutions Manual 51

BinInv(x^6+x^3+x^2+x, 2, x^7+x^3+1)

BinInv(9*x^4+7*x^3+5*x^2+3*x+2, 17, x^5+3*x^2+5)

67. First, we need a function to remove the desired (k) factors of x from a poly-

nomial u modulo the defining polynomial f . Let p be the characteristic of the
field, and a the element to be inverted.

rmx(u,k,p,f) = \

while (k > 0, \

if (polcoeff(u,0) != Mod(0,p), \

c = polcoeff(u,0) / polcoeff(f,0); \

u = u - c * f; \

); \

u = u / (Mod(1,p) * x); k--; \

); \

return(lift(u))

AlmInv(a,p,f) = \

k = 0; \

r1 = Mod(1,p) * a; r2 = Mod(1,p) * f; u1 = Mod(1,p); u2 = Mod(0,p); \

while (1, \

while(polcoeff(r1,0)==Mod(0,p), \

k++; \

r1 = r1 / (Mod(1,p) * x); u2 = u2 * (Mod(1,p) * x); \

if (poldegree(r1) == 0, return(rmx(u1/polcoeff(r1,0),k,p,f))); \

); \

while(polcoeff(r2,0)==Mod(0,p), \

k++; \

r2 = r2 / (Mod(1,p) * x); u1 = u1 * (Mod(1,p) * x); \

if (poldegree(r1) == 0, return(rmx(u2/polcoeff(r2,0),k,p,f))); \

); \

if (poldegree(r1) >= poldegree(r2), \

c = polcoeff(r1,0) / polcoeff(r2,0); r1 = r1 - c*r2; u1 = u1 - c*u2, \

c = polcoeff(r2,0) / polcoeff(r1,0); r2 = r2 - c*r1; u2 = u2 - c*u1 \

) \

)

AlmInv(x^6+x^3+x^2+x, 2, x^7+x^3+1)

AlmInv(9*x^4+7*x^3+5*x^2+3*x+2, 17, x^5+3*x^2+5)

68. We now rewrite the function isnormal so that it takes two arguments: the

element a in the field, and the defining polynomial f .

isnormal(a,f) = \

n = poldegree(f); \

M = matrix(n,n); \

for (i=1,n, \

for (j=0,n-1, M[i,j+1] = polcoeff(a,j)); \

a = (a^2) % f; \

); \

if(matdet(M)==Mod(1,2), print("normal");1, print("not normal");0)

52 Computational Number Theory

69. First, we write two functions for computing the trace and the norm of a ∈ Fpn .

The characteristic p and the defining polynomial f are also passed to these
functions. The extension degree n is determined from f .

abstrace(p,f,a) = \

local(n,s,u); \

f = Mod(1,p) * f; \

a = Mod(1,p) * a; \

n = poldegree(f); \

s = u = a; \

for (i=1,n-1, \

u = lift(Mod(u,f)^p); \

s = s + u; \

); \

return(lift(s));

absnorm(p,f,a) = \

local(n,t,u); \

f = Mod(1,p) * f; \

a = Mod(1,p) * a; \

n = poldegree(f); \

t = u = a; \

for (i=1,n-1, \

u = lift(Mod(u,f)^p); \

t = (t * u) % f; \

); \

return(lift(t));

The following statements print the traces and norms of all elements of F64 =
F2(θ), where θ

6 + θ + 1 = 0.

f = x^6 + x + 1;

p = 2;

for (i=0,63, \

a = 0; t = i; \

for (j=0, 5, c = t % 2; a = a + c * x^j; t = floor(t/2)); \

print("a = ", a, ", Tr(a) = ", abstrace(p,f,a), ", N(a) = ", absnorm(p,f,a)) \

)

