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Overview

• Representation of numbers, characters and 
other forms of information are represented on 
computers using binary data

• 2.1 Representation of Numbers

• 2.2 Representation of Alphabet and Control 
Characters

• 2.3 Error Detection and Correction
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2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary 
and Decimal Numbers

– A decimal number has base 10 and digit values of 
0, 1, 2, …, 9

 Example: 

– A binary number has base 2 and digit values of 0 
and 1
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2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary 
and Decimal Numbers

– Conversion of an unsigned binary number to a 
decimal number: compute the sum using the base 
representation of the binary number

 Example: 

 A binary integer with N binary digits (called bits) can 
represent an unsigned decimal integer from 0 to 2N-1
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2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and 
Decimal Numbers
– Conversion of an unsigned decimal number to a binary 

number
 Repeated subtraction method 

1. Look for the highest power of 2 that is smaller than the decimal 
number

2. Subtract that power of 2 from the decimal number

3. Take the result of the subtraction in Step 2 as the decimal number

4. If the decimal number is zero or meet another stopping criterion, go to 
Step 5; otherwise, go back to Step 1

5. Construct the binary number by filling 1 in each digit position where 
the power of 2 is used in the subtraction in Step 2 and 0 in each digit 
position where the power of 2 is not used in the subtraction in Step 2
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2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary 
and Decimal Numbers
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2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary 
and Decimal Numbers

– Example 2.1: Use the repeated subtraction 
method to convert the decimal number 123.45 
into a binary number with four binary digits after 
the decimal point
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2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and 
Decimal Numbers

– Example 2.1
� or �

� or � �

� or � � �

� or � � �

�

� or � � �

� � �
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2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and Decimal Numbers
– Example 2.1

1.45 − 2� = 0.45 or
123.45
= 1 × 2� + 1 × 2� + 1 × 2� + 1 × 2� + 0 × 2� + 1 × 2� + 1 × 2� + 0.45
0.45 − 2�� = 0.20 or123.45 = 1 × 2� + 1 × 2� + 1 × 2� + 1 × 2� + 0 × 2� +
1 × 2� + 1 × 2� + 0 × 2�� + 1 × 2�� + 0.20
0.20 − 2�� = 0.075 or
123.45
= 1 × 2� + 1 × 2� + 1 × 2� + 1 × 2� + 0 × 2� + 1 × 2� + 1 × 2� + 0 × 2��

+ 1 × 2�� + 1 × 2�� + 0.075
0.075 − 2�� = 0.0125 or
123.45
= 1 × 2� + 1 × 2� + 1 × 2� + 1 × 2� + 0 × 2� + 1 × 2� + 1 × 2� + 0 × 2��

+ 1 × 2�� + 1 × 2�� + 1 × 2�� + 0.0125
The binary number: 1111011.0111
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2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and 
Decimal Numbers
– Conversion of an unsigned decimal number to a 

binary number
 The division remainder method: for the integer part of the 

decimal number
1. Divide the decimal number by 2, obtain the remainder of the 

division, and take the quotient of the division as the next 
decimal number  

2. If the decimal number is zero, go to Step 3; otherwise, go back 
to Step 1

3. Construct the binary number by reading the division 
remainders from the last step to the first step of Step 1 
performed
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2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and 
Decimal Numbers
– Conversion of an unsigned decimal number to a 

binary number
 The division remainder method: for the fractional part of the 

decimal number
1. Multiply the decimal number by 2, obtain the unit digit of the 

multiplication product, and take the fractional part of the 
multiplication product as the next decimal number  

2. If the decimal number is zero or a required number of digits 
after the decimal point is obtained, go to Step 3; otherwise, go 
back to Step 1

3. Construct the binary number by reading the unit digit of the 
multiplication product from the first step to the last step of 
Step 1 performed
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2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary 
and Decimal Numbers

– Example 2.2: Use the division remainder method 
to convert the decimal number 123.45 into a 
binary number with five binary digits after the 
decimal point
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2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and 
Decimal Numbers
– Example 2.2: for the integer part

or �

�

or
� � �

� � �

or
� � � �

or 
� � � � �
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2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and 
Decimal Numbers
– Example 2.2: for the integer part

or
� � � � � �

or 

� � � � � � �

or

� � � � � �

�

� � � � � � �

the binary integer is 1111011
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2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and Decimal Numbers
– Example 2.2: for the factional part

0.45 × 2 = �. 90 or 0.45 = � + 0.90 × 2�� = � × 2�� + 0.90 × 2�� (note 
that the unit digit is highlighted in bold)
0.90 × 2 = �. 80 or
0.45 = 0 × 2�� + 0.90 × 2�� = 0 × 2�� + � + 0.80 × 2��× 2��

= 0 × 2�� + � × 2�� + 0.80 × 2��

0.80 × 2 = �. 60 or
0.45 = 0 × 2�� + 1 × 2�� + 0.80 × 2��

= 0 × 2�� + 1 × 2�� + � + 0.60 × 2�� × 2��

= 0 × 2�� + 1 × 2�� + � × 2�� + 0.60 × 2��

0.60 × 2 = �. 20 or 
0.45 = 0 × 2�� + 1 × 2�� + 1 × 2�� + 0.60 × 2��

= 0 × 2�� + 1 × 2�� + 1 × 2�� + � + 0.20 × 2�� × 2��

= 0 × 2�� + 1 × 2�� + 1 × 2�� + � × 2�� + 0.20 × 2��

the binary number is 0.0111 
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2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers
– 2.1.2.1 Signed Magnitude Method

 Use the left-most bit of a binary integer to represent the sign: 0 for 
the positive sign and 1 for the negative sign

 A N-bit binary integer can represent any value in the range 
��� ���

 To perform the addition of two signed integers using the signed 
magnitude method, we need to process the sign bit separately 
from the number bits

 Example: perform the addition of one positive integer and one 
negative integer
o Determine which integer has the smaller magnitude (the smaller integer 

in the number bits)
o Perform the subtraction of the smaller integer from the larger integer 

using the number bits
o Assign the sign of the larger integer as the sign of the subtraction result
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2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.1 Signed Magnitude Method 
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2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.2 One’s Complement Method

 Diminished complement: given an integer a with base b
and N digits, the diminished complement of a is 

 Example: given a decimal integer 43 with base 10 and 3 
digits, the diminished complement of 43 is 
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2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers
– 2.1.2.2 One’s Complement Method
 One’s complement method uses the diminished 

complement to represent a negative integer: 156 – 43
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2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.2 One’s Complement Method

 Given a binary integer 0101 with base 2 and 4 digits, 
the diminished complement of 0101 is 

 The diminished complement of a binary integer is easy 
to implement in digital circuits by simply flipping each 
bit

NONG YE and TERESA WU
Developing Windows-based and Web-enabled 

Information Systems
20



2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.2 One’s Complement Method

 A binary integer with N bits can represent a signed 
integer in the range of 
with the left-most bit indicating the sign (the left-most 
bit of 0 for a positive integer and the left-most bit of 1 
for a negative integer)

 both 0000 and 1111 represent zero in one’s 
complement method
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2.1 Representation of Numbers
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2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.2 One’s Complement Method

 The addition of two binary integers is carried out in the 
following steps:

1. Represent the binary integers using one’s complement 
methods

2. Perform the addition of the binary integers represented by 
one’s complement method

3. Perform the end carry around to obtain the result
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2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers
– 2.1.2.2 One’s Complement Method
 Example 2.3: Perform the addition of one positive 4-bit 

binary integer and one negative 4-bit binary integer, 0100 –
0011 (4 – 3), using one’s complement method

1. Represent – 0011 using its diminished complement 1100

2. 0100

+ 1100 (the diminished complement of 0011)

= 10000

3. End carry around

0000

+      1

= 0001
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2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers
– 2.1.2.2 One’s Complement Method
 Example 2.4: Perform the addition of one positive 4-bit 

binary integer and one negative 4-bit binary integer, 0011 –
0100 (3 – 4), using one’s complement method
o Represent -0100 using its diminished complement 1011

o 0011

+ 1011 (the diminished complement of 0100)

= 1110

o 1110

+      0

= 1110
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2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.3 Two’s Complement Method

 The most common method used on computers

 Use the complement which is defined by for an 
integer a with base b and N digits

 Two’s complement is one’s complement plus one

 Example: the complement of 0101 is 

 Obtain the complement of a binary integer in digital 
circuits by flipping each bit and then adding 1
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2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.3 Two’s Complement Method

 Using N bits, two’s complement method can represent 
signed integers in the range 
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2.1 Representation of Numbers
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2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.3 Two’s Complement Method

 The addition of two signed integers with N bits 
represented by two’s complement method is 
performed in the following steps:

1. Represent the binary integers using two’s complement 
methods

2. Perform the addition of the binary integers represented by 
two’s complement method

3. Discard the carry-out beyond N bits
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2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers
– 2.1.2.3 Two’s Complement Method
 Example 2.5: Perform the addition of one positive 4-bit 

integer and one negative 4-bit integer, 0100 – 0011 (4 –
3), using two’s complement method.
o Represent – 0011 by its complement 1101. In Step 2, we 

perform the addition:

o 0100

+ 1101 (the complement of 0011)

= 10001

o Drop the carry-out bit 1 beyond 4 bits and obtain 0001 as the 
result
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2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.3 Two’s Complement Method

 Example 2.6: Perform the addition of one positive 4-bit 
integer and one negative 4-bit integer, 0011 – 0100 (3 –
4), using two’s complement method.
o Represent -0100 by its complement 1100. In Step 2, we 

perform the addition:

o 0011

+ 1100 (the complement of 0100)

= 1111

o There is no carry-out, and the result is 1111 which is -1
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2.1 Representation of Numbers

• 2.1.3 Representation of Signed Floating Point 
Numbers

– A floating point number is represented using the 
sign bit (0 for the positive sign and 1 for the 
negative sign), bits for the exponent, and bits for 
the fractional part of the floating point number 
which is called significand
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2.1 Representation of Numbers

• 2.1.3 Representation of Signed Floating Point 
Numbers

– The number of bits used for the exponent 
determines the range of numbers that can be 
represented

– The number of bits used for the significand
determines the precision of the number that is 
represented
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2.1 Representation of Numbers

• 2.1.3 Representation of Signed Floating Point 
Numbers

– Biased exponent representation

 Example: 5 bits for an exponent can represent a value in the 
range [0, 31], and  value near the middle of the range, e.g., 
16, is used as the bias value for a 5-bit exponent

 A biased exponent larger than the bias value represents a 
positive exponent, and a biased exponent smaller than the 
bias value represents a negative exponent

 The exponent is obtained by subtracting the bias value from 
the biased exponent
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2.1 Representation of Numbers

• 2.1.3 Representation of Signed Floating Point 
Numbers

– Biased exponent representation

 The exponent value of 3 is represented by the biased 
exponent which is 16 +3 = 19 or 10000 + 11 = 10011

 The exponent value of -1 is represented by the biased 
exponent which is 16 – 1 = 15 or 10000 – 1 = 1111
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2.1 Representation of Numbers

• 2.1.3 Representation of Signed Floating Point 
Numbers

– Normalization

 , ,
represents 100.01 

 Normalization requires that the left-most bit of the 
significand must be 1

 With normalization, 100.01 can be represented by 
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2.2 Representation of Alphabet and 
Control Characters

• Text and control information is represented on 
computers by using codes for alphabet, number, 
control and other characters

• ASCII (American Standard Code for Information 
Interchange) character codes that use 8 bits 

• A code itself uses 7 bits, and the left-most bit (the 
8th bit) is used as the parity bit

• Example: the character code for letter A is 65 or 
1000001. If the parity bit is 0, the complete code 
for letter A is 01000001
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2.2 Representation of Alphabet and 
Control Characters
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2.3 Error Detection and Correction

• Detecting and correcting errors are required 
for reliable data storage and transmission

• The parity bit method can detect an odd 
number of errors, but cannot detect an even 
number of errors or identify where errors 
occur to correct errors
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2.3 Error Detection and Correction

• The Hamming distance of two codes is the 
number of bits in which two codes are different

• Example
– 1000001 (65) along with its parity bit 0 produces the 

ASCII code 01000001 for letter A
– 1000011 (67) along with its parity 1 produces the 

ASCII code 11000011 for letter C
– The two codes:

01000001
11000011
differ in two bit positions and have the Hamming distance of 2
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2.3 Error Detection and Correction

• For a code system such as ASCII, the minimum 
Hamming distance, Dmin, is the smallest distance 
among all pairs of codes in the code system

• If the number of bit errors that occur to a code is 
no more than Dmin, the errors can be detected
– Dmin is the smallest Hamming distance among all pairs 

of valid codes
– The code with no more than Dmin bits of errors is 

different from any valid codes in the system
– Detect the presence of error(s) in a given code if the 

given code is different from any valid code in the 
system
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2.3 Error Detection and Correction

• Correct error(s) in a given code to the valid 
code that is closest the given code with 
error(s) in the Hamming distance

• Dmin of a code system must be 2p + 1 to 
correct p bits of errors
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2.3 Error Detection and Correction

• Determine how many check bits are required to 
detect and correct errors

• Detect and correct 1 bit of error
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2.3 Error Detection and Correction

• Determine how many check bits are required to 
detect and correct errors

– Example 2.7: Determine the number of check bits 
needed for a code with 4 data bits in order to 
detect and correct 1 bit of error

m = 4

Comparing the values of 5 + k and 2k, we obtain k ≥ 3 

Let k = 3
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2.3 Error Detection and Correction

• Hamming algorithm to construct Hamming codes
1. Number n bit positions from right to left, starting with 1
2. Let each bit position which is a power of 2 be a check bit, 

let other bits as data bits, and put in the values of data 
bits

3. Write each bit position as the sum of the numbers that 
are powers of 2, using the highest power of 2 first, and 
then determine which bit positions each check bit 
contributes to the sum of the numbers for these bit 
positions

4. Use the parity bit to determine the value of each check 
bit by considering the values at bit positions where the 
check bit contributes to the sum of numbers
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2.3 Error Detection and Correction

• Example 2.8: Construct the Hamming code 
with data bits 0100, using the Hamming 
algorithm and the even parity bit

– From Example 2.7, we need 3 check bits for 4 data 
bits and totally 7 bits for the code

– Step 1: number 7 bit positions 
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2.3 Error Detection and Correction

• Example 2.8

– Step 2: let bit positions 1, 2 and 4 as the check 
bits, and put in the values of data bits 0100 
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2.3 Error Detection and Correction

• Example 2.8
– Step 3: write each bit position as the sum of the 

numbers that are powers of 2 
1 = 1

2 = 2

3 = 1 + 2

4 = 4

5 = 1 + 4

6 = 2 + 4

7 = 1 + 2 + 4
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2.3 Error Detection and Correction

• Example 2.8

– Step 4: compute the value of each check bit using 
the even parity

the even parity bit at bit position 1 is 0
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2.3 Error Detection and Correction

• Example 2.8

– Step 4: compute the value of each check bit using 
the even parity

the even parity bit at bit position 2 is 1
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2.3 Error Detection and Correction

• Example 2.8

– Step 4: compute the value of each check bit using 
the even parity

the even parity bit at bit position 4 is 1

the Hamming code is 0101010 
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2.3 Error Detection and Correction

• Example 2.9: Detect and correct a 1-bit error 
in a code 0101110. Note that the code 
0101110 is produced by introducing a 1-bit 
error to the Hamming code 0101010 from 
Example 2.8 at bit position 3
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2.3 Error Detection and Correction

• Example 2.9

– A 1-bit error at bit position 1, 3, 5 or 7, using the 
check bit at position 1

– A 1-bit error at bit position 2, 3, 6 or 7, using the 
check bit at position 2

– No 1-bit error at bit positions 4, 5, 6 and 7, using 
the check bit at position 4,

– A 1-bit error at position 3 is detected
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2.3 Error Detection and Correction

• Example 2.9

– Use the sum of the bit positions of the check bits 
that indicate an error

 Check bits 1 and 2 indicates an error, 1 + 2 = 3

 The 1-bit error occurs at bit position 3
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