
Chapter 2. Digital Data
Representation

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
1

Overview

• Representation of numbers, characters and
other forms of information are represented on
computers using binary data

• 2.1 Representation of Numbers

• 2.2 Representation of Alphabet and Control
Characters

• 2.3 Error Detection and Correction

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
2

2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary
and Decimal Numbers

– A decimal number has base 10 and digit values of
0, 1, 2, …, 9

 Example:

– A binary number has base 2 and digit values of 0
and 1

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
3

2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary
and Decimal Numbers

– Conversion of an unsigned binary number to a
decimal number: compute the sum using the base
representation of the binary number

 Example:

 A binary integer with N binary digits (called bits) can
represent an unsigned decimal integer from 0 to 2N-1

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
4

2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and
Decimal Numbers
– Conversion of an unsigned decimal number to a binary

number
 Repeated subtraction method

1. Look for the highest power of 2 that is smaller than the decimal
number

2. Subtract that power of 2 from the decimal number

3. Take the result of the subtraction in Step 2 as the decimal number

4. If the decimal number is zero or meet another stopping criterion, go to
Step 5; otherwise, go back to Step 1

5. Construct the binary number by filling 1 in each digit position where
the power of 2 is used in the subtraction in Step 2 and 0 in each digit
position where the power of 2 is not used in the subtraction in Step 2

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
5

2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary
and Decimal Numbers

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
6

2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary
and Decimal Numbers

– Example 2.1: Use the repeated subtraction
method to convert the decimal number 123.45
into a binary number with four binary digits after
the decimal point

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
7

2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and
Decimal Numbers

– Example 2.1
� or �

� or � �

� or � � �

� or � � �

�

� or � � �

� � �

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
8

2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and Decimal Numbers
– Example 2.1

1.45 − 2� = 0.45 or
123.45
= 1 × 2� + 1 × 2� + 1 × 2� + 1 × 2� + 0 × 2� + 1 × 2� + 1 × 2� + 0.45
0.45 − 2�� = 0.20 or123.45 = 1 × 2� + 1 × 2� + 1 × 2� + 1 × 2� + 0 × 2� +
1 × 2� + 1 × 2� + 0 × 2�� + 1 × 2�� + 0.20
0.20 − 2�� = 0.075 or
123.45
= 1 × 2� + 1 × 2� + 1 × 2� + 1 × 2� + 0 × 2� + 1 × 2� + 1 × 2� + 0 × 2��

+ 1 × 2�� + 1 × 2�� + 0.075
0.075 − 2�� = 0.0125 or
123.45
= 1 × 2� + 1 × 2� + 1 × 2� + 1 × 2� + 0 × 2� + 1 × 2� + 1 × 2� + 0 × 2��

+ 1 × 2�� + 1 × 2�� + 1 × 2�� + 0.0125
The binary number: 1111011.0111

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
9

2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and
Decimal Numbers
– Conversion of an unsigned decimal number to a

binary number
 The division remainder method: for the integer part of the

decimal number
1. Divide the decimal number by 2, obtain the remainder of the

division, and take the quotient of the division as the next
decimal number

2. If the decimal number is zero, go to Step 3; otherwise, go back
to Step 1

3. Construct the binary number by reading the division
remainders from the last step to the first step of Step 1
performed

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
10

2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and
Decimal Numbers
– Conversion of an unsigned decimal number to a

binary number
 The division remainder method: for the fractional part of the

decimal number
1. Multiply the decimal number by 2, obtain the unit digit of the

multiplication product, and take the fractional part of the
multiplication product as the next decimal number

2. If the decimal number is zero or a required number of digits
after the decimal point is obtained, go to Step 3; otherwise, go
back to Step 1

3. Construct the binary number by reading the unit digit of the
multiplication product from the first step to the last step of
Step 1 performed

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
11

2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary
and Decimal Numbers

– Example 2.2: Use the division remainder method
to convert the decimal number 123.45 into a
binary number with five binary digits after the
decimal point

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
12

2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and
Decimal Numbers
– Example 2.2: for the integer part

or �

�

or
� � �

� � �

or
� � � �

or
� � � � �

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
13

2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and
Decimal Numbers
– Example 2.2: for the integer part

or
� � � � � �

or

� � � � � � �

or

� � � � � �

�

� � � � � � �

the binary integer is 1111011

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
14

2.1 Representation of Numbers

• 2.1.1 Conversion between Unsigned Binary and Decimal Numbers
– Example 2.2: for the factional part

0.45 × 2 = �. 90 or 0.45 = � + 0.90 × 2�� = � × 2�� + 0.90 × 2�� (note
that the unit digit is highlighted in bold)
0.90 × 2 = �. 80 or
0.45 = 0 × 2�� + 0.90 × 2�� = 0 × 2�� + � + 0.80 × 2��× 2��

= 0 × 2�� + � × 2�� + 0.80 × 2��

0.80 × 2 = �. 60 or
0.45 = 0 × 2�� + 1 × 2�� + 0.80 × 2��

= 0 × 2�� + 1 × 2�� + � + 0.60 × 2�� × 2��

= 0 × 2�� + 1 × 2�� + � × 2�� + 0.60 × 2��

0.60 × 2 = �. 20 or
0.45 = 0 × 2�� + 1 × 2�� + 1 × 2�� + 0.60 × 2��

= 0 × 2�� + 1 × 2�� + 1 × 2�� + � + 0.20 × 2�� × 2��

= 0 × 2�� + 1 × 2�� + 1 × 2�� + � × 2�� + 0.20 × 2��

the binary number is 0.0111

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
15

2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers
– 2.1.2.1 Signed Magnitude Method

 Use the left-most bit of a binary integer to represent the sign: 0 for
the positive sign and 1 for the negative sign

 A N-bit binary integer can represent any value in the range
��� ���

 To perform the addition of two signed integers using the signed
magnitude method, we need to process the sign bit separately
from the number bits

 Example: perform the addition of one positive integer and one
negative integer
o Determine which integer has the smaller magnitude (the smaller integer

in the number bits)
o Perform the subtraction of the smaller integer from the larger integer

using the number bits
o Assign the sign of the larger integer as the sign of the subtraction result

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
16

2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.1 Signed Magnitude Method

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
17

2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.2 One’s Complement Method

 Diminished complement: given an integer a with base b
and N digits, the diminished complement of a is

 Example: given a decimal integer 43 with base 10 and 3
digits, the diminished complement of 43 is

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
18

2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers
– 2.1.2.2 One’s Complement Method
 One’s complement method uses the diminished

complement to represent a negative integer: 156 – 43

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
19

2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.2 One’s Complement Method

 Given a binary integer 0101 with base 2 and 4 digits,
the diminished complement of 0101 is

 The diminished complement of a binary integer is easy
to implement in digital circuits by simply flipping each
bit

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
20

2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.2 One’s Complement Method

 A binary integer with N bits can represent a signed
integer in the range of
with the left-most bit indicating the sign (the left-most
bit of 0 for a positive integer and the left-most bit of 1
for a negative integer)

 both 0000 and 1111 represent zero in one’s
complement method

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
21

2.1 Representation of Numbers

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
22

2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.2 One’s Complement Method

 The addition of two binary integers is carried out in the
following steps:

1. Represent the binary integers using one’s complement
methods

2. Perform the addition of the binary integers represented by
one’s complement method

3. Perform the end carry around to obtain the result

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
23

2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers
– 2.1.2.2 One’s Complement Method
 Example 2.3: Perform the addition of one positive 4-bit

binary integer and one negative 4-bit binary integer, 0100 –
0011 (4 – 3), using one’s complement method

1. Represent – 0011 using its diminished complement 1100

2. 0100

+ 1100 (the diminished complement of 0011)

= 10000

3. End carry around

0000

+ 1

= 0001

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
24

2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers
– 2.1.2.2 One’s Complement Method
 Example 2.4: Perform the addition of one positive 4-bit

binary integer and one negative 4-bit binary integer, 0011 –
0100 (3 – 4), using one’s complement method
o Represent -0100 using its diminished complement 1011

o 0011

+ 1011 (the diminished complement of 0100)

= 1110

o 1110

+ 0

= 1110

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
25

2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.3 Two’s Complement Method

 The most common method used on computers

 Use the complement which is defined by for an
integer a with base b and N digits

 Two’s complement is one’s complement plus one

 Example: the complement of 0101 is

 Obtain the complement of a binary integer in digital
circuits by flipping each bit and then adding 1

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
26

2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.3 Two’s Complement Method

 Using N bits, two’s complement method can represent
signed integers in the range

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
27

2.1 Representation of Numbers

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
28

2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.3 Two’s Complement Method

 The addition of two signed integers with N bits
represented by two’s complement method is
performed in the following steps:

1. Represent the binary integers using two’s complement
methods

2. Perform the addition of the binary integers represented by
two’s complement method

3. Discard the carry-out beyond N bits

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
29

2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers
– 2.1.2.3 Two’s Complement Method
 Example 2.5: Perform the addition of one positive 4-bit

integer and one negative 4-bit integer, 0100 – 0011 (4 –
3), using two’s complement method.
o Represent – 0011 by its complement 1101. In Step 2, we

perform the addition:

o 0100

+ 1101 (the complement of 0011)

= 10001

o Drop the carry-out bit 1 beyond 4 bits and obtain 0001 as the
result

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
30

2.1 Representation of Numbers

• 2.1.2 Representation of Signed Integers

– 2.1.2.3 Two’s Complement Method

 Example 2.6: Perform the addition of one positive 4-bit
integer and one negative 4-bit integer, 0011 – 0100 (3 –
4), using two’s complement method.
o Represent -0100 by its complement 1100. In Step 2, we

perform the addition:

o 0011

+ 1100 (the complement of 0100)

= 1111

o There is no carry-out, and the result is 1111 which is -1

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
31

2.1 Representation of Numbers

• 2.1.3 Representation of Signed Floating Point
Numbers

– A floating point number is represented using the
sign bit (0 for the positive sign and 1 for the
negative sign), bits for the exponent, and bits for
the fractional part of the floating point number
which is called significand

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
32

2.1 Representation of Numbers

• 2.1.3 Representation of Signed Floating Point
Numbers

– The number of bits used for the exponent
determines the range of numbers that can be
represented

– The number of bits used for the significand
determines the precision of the number that is
represented

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
33

2.1 Representation of Numbers

• 2.1.3 Representation of Signed Floating Point
Numbers

– Biased exponent representation

 Example: 5 bits for an exponent can represent a value in the
range [0, 31], and value near the middle of the range, e.g.,
16, is used as the bias value for a 5-bit exponent

 A biased exponent larger than the bias value represents a
positive exponent, and a biased exponent smaller than the
bias value represents a negative exponent

 The exponent is obtained by subtracting the bias value from
the biased exponent

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
34

2.1 Representation of Numbers

• 2.1.3 Representation of Signed Floating Point
Numbers

– Biased exponent representation

 The exponent value of 3 is represented by the biased
exponent which is 16 +3 = 19 or 10000 + 11 = 10011

 The exponent value of -1 is represented by the biased
exponent which is 16 – 1 = 15 or 10000 – 1 = 1111

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
35

2.1 Representation of Numbers

• 2.1.3 Representation of Signed Floating Point
Numbers

– Normalization

 , ,
represents 100.01

 Normalization requires that the left-most bit of the
significand must be 1

 With normalization, 100.01 can be represented by

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
36

2.2 Representation of Alphabet and
Control Characters

• Text and control information is represented on
computers by using codes for alphabet, number,
control and other characters

• ASCII (American Standard Code for Information
Interchange) character codes that use 8 bits

• A code itself uses 7 bits, and the left-most bit (the
8th bit) is used as the parity bit

• Example: the character code for letter A is 65 or
1000001. If the parity bit is 0, the complete code
for letter A is 01000001

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
37

2.2 Representation of Alphabet and
Control Characters

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
38

2.3 Error Detection and Correction

• Detecting and correcting errors are required
for reliable data storage and transmission

• The parity bit method can detect an odd
number of errors, but cannot detect an even
number of errors or identify where errors
occur to correct errors

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
39

2.3 Error Detection and Correction

• The Hamming distance of two codes is the
number of bits in which two codes are different

• Example
– 1000001 (65) along with its parity bit 0 produces the

ASCII code 01000001 for letter A
– 1000011 (67) along with its parity 1 produces the

ASCII code 11000011 for letter C
– The two codes:

01000001
11000011
differ in two bit positions and have the Hamming distance of 2

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
40

2.3 Error Detection and Correction

• For a code system such as ASCII, the minimum
Hamming distance, Dmin, is the smallest distance
among all pairs of codes in the code system

• If the number of bit errors that occur to a code is
no more than Dmin, the errors can be detected
– Dmin is the smallest Hamming distance among all pairs

of valid codes
– The code with no more than Dmin bits of errors is

different from any valid codes in the system
– Detect the presence of error(s) in a given code if the

given code is different from any valid code in the
system

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
41

2.3 Error Detection and Correction

• Correct error(s) in a given code to the valid
code that is closest the given code with
error(s) in the Hamming distance

• Dmin of a code system must be 2p + 1 to
correct p bits of errors

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
42

2.3 Error Detection and Correction

• Determine how many check bits are required to
detect and correct errors

• Detect and correct 1 bit of error

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
43

2.3 Error Detection and Correction

• Determine how many check bits are required to
detect and correct errors

– Example 2.7: Determine the number of check bits
needed for a code with 4 data bits in order to
detect and correct 1 bit of error

m = 4

Comparing the values of 5 + k and 2k, we obtain k ≥ 3

Let k = 3

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
44

2.3 Error Detection and Correction

• Hamming algorithm to construct Hamming codes
1. Number n bit positions from right to left, starting with 1
2. Let each bit position which is a power of 2 be a check bit,

let other bits as data bits, and put in the values of data
bits

3. Write each bit position as the sum of the numbers that
are powers of 2, using the highest power of 2 first, and
then determine which bit positions each check bit
contributes to the sum of the numbers for these bit
positions

4. Use the parity bit to determine the value of each check
bit by considering the values at bit positions where the
check bit contributes to the sum of numbers

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
45

2.3 Error Detection and Correction

• Example 2.8: Construct the Hamming code
with data bits 0100, using the Hamming
algorithm and the even parity bit

– From Example 2.7, we need 3 check bits for 4 data
bits and totally 7 bits for the code

– Step 1: number 7 bit positions

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
46

2.3 Error Detection and Correction

• Example 2.8

– Step 2: let bit positions 1, 2 and 4 as the check
bits, and put in the values of data bits 0100

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
47

2.3 Error Detection and Correction

• Example 2.8
– Step 3: write each bit position as the sum of the

numbers that are powers of 2
1 = 1

2 = 2

3 = 1 + 2

4 = 4

5 = 1 + 4

6 = 2 + 4

7 = 1 + 2 + 4

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
48

2.3 Error Detection and Correction

• Example 2.8

– Step 4: compute the value of each check bit using
the even parity

the even parity bit at bit position 1 is 0

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
49

2.3 Error Detection and Correction

• Example 2.8

– Step 4: compute the value of each check bit using
the even parity

the even parity bit at bit position 2 is 1

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
50

2.3 Error Detection and Correction

• Example 2.8

– Step 4: compute the value of each check bit using
the even parity

the even parity bit at bit position 4 is 1

the Hamming code is 0101010

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
51

2.3 Error Detection and Correction

• Example 2.9: Detect and correct a 1-bit error
in a code 0101110. Note that the code
0101110 is produced by introducing a 1-bit
error to the Hamming code 0101010 from
Example 2.8 at bit position 3

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
52

2.3 Error Detection and Correction

• Example 2.9

– A 1-bit error at bit position 1, 3, 5 or 7, using the
check bit at position 1

– A 1-bit error at bit position 2, 3, 6 or 7, using the
check bit at position 2

– No 1-bit error at bit positions 4, 5, 6 and 7, using
the check bit at position 4,

– A 1-bit error at position 3 is detected

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
53

2.3 Error Detection and Correction

• Example 2.9

– Use the sum of the bit positions of the check bits
that indicate an error

 Check bits 1 and 2 indicates an error, 1 + 2 = 3

 The 1-bit error occurs at bit position 3

NONG YE and TERESA WU
Developing Windows-based and Web-enabled

Information Systems
54

