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Figure 2.1
PFD for AN production. (From El-Halwagi, M.M., Pollution Prevention through Process Integration: 
Systematic Design Tools, Academic Press, San Diego, CA, 1997, p. 87. With permission.)
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Figure 2.2
Historical data for plant operation. (From El-Halwagi, M.M., Process Integration, Academic Press, San 
Diego, CA, 2006, p. 42. With permission.)
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Figure 2.3
A product washing operation (a) for the abvoe and (b) for the below.
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Figure 2.4
A product washing operation represented in concentration versus load diagram. (From Chem. Eng. Sci., 
49, Wang, Y.P. and Smith, R., Wastewater minimisation, 981–1006, 1994. Copyright 1994, with permis-
sion from Elsevier.)
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An extraction operation.
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Figure 2.6
Concentration versus load diagrams for Example 2.3: (a) Scenario 1, (b) Scenario 2, and 
(c) Scenario 3—limiting solvent profile.
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Figure 2.7
A simplified PFD for a hydrogen-consuming unit. (Reprinted with permission from Alves, J.J. and 
Towler, G.P., Analysis of refinery hydrogen distribution systems, Ind. Eng. Chem. Res., 41, 5759–5769, 
2002. Copyright 2002 American Chemical Society.)
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Figure 2.8
Identification of hydrogen sink and source. (From Adv. Environ. Res., 6, Hallale, N. and Liu, F., Refinery 
hydrogen management for clean fuels production, 81–98, 2001. Copyright 2001, with permission from 
Elsevier.)
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Figure 2.9
PFD of a refinery hydrogen network (stream flowrate given in million standard cubic feet/day—
MMscfd; its hydrogen purity is given in parenthesis). (From Adv. Environ. Res., 6, Hallale, N. and 
Liu, F., Refinery hydrogen management for clean fuels production, 81–98, 2001. Copyright 2001, with 
permission from Elsevier.)
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Figure 2.10
Mixing of solutions with different density.
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PFD of a metal degreasing process. (Reproduced from Kazantzi, V. and El-Halwagi, M.M., Chem. Eng. 
Prog., 101(8), 28, 2005. With permission. Copyright 2005 American Institute of Chemical Engineers 
(AIChE).)
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Figure 2.12
PFD of a papermaking process. (Reproduced from Kazantzi, V. and El-Halwagi, M.M., Chem. Eng. 
Prog., 101(8), 28, 2005. With permission. Copyright 2005 American Institute of Chemical Engineers 
(AIChE).)
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Figure 2.13
Tire-to-fuel process. (From El-Halwagi, M.M., Pollution Prevention through Process Integration: 
Systematic Design Tools, Academic Press, San Diego, CA, 1997, p. 97. With permission.)
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Figure 2.14
A Kraft pulping process (basis: 1 h; T refers to ton; values in parenthesis indicate methanol concentration in ppm). (From Hamad, A.A. et al., Systematic integration of 
source reduction and recycle reuse for cost-effective compliance with the cluster rules, in AIChE Annual Meeting, Miami, FL, 1995. With permission.)
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Figure 2.15
Tricresyl phosphate manufacturing process (stream flowrates given in kg/s; values in parenthesis indicate 
cresol concentration in ppm). (From Hamad, A.A. et al., Optimal design of hybrid separation systems 
for in-plant waste reduction, in Proceedings of the Fifth World Congress of Chemical Engineering, San 
Diego, CA, Vol. III, pp. 453–458, 1996. With permission.)
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Figure 2.16
Water-using scheme for the bleaching section in a textile plant. (From Ujang, Z. et al., Water Sci. 
Technol., 46, 77, 2002. With permission.)
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Figure 2.17
A magnetic tape process. (From Dunn, R.F. et al., Selection of organic solvent blends for environmental 
compliance in the coating industries, in Griffith, E.D., Kahn, H., and Cousins, M.C. eds., Proceedings 
of the First International Plant Operations and Design Conference, Vol. III, pp. 83–107, AIChE, New 
York, 1995. With permission.)
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Figure 2.18
A refinery hydrogen network (numbers represent the total gas flowrate in mol/s and impurity concentra-
tion in mol%). (Reprinted with permission from Alves, J.J. and Towler, G.P., Analysis of refinery hydro-
gen distribution systems, Ind. Eng. Chem. Res., 41, 5759 , 2002. Copyright 2002 American Chemical 
Society.)
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Figure 2.19
Usage of UPW in a wafer fabrication process.
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Figure 2.20
Vinyl acetate manufacturing process (numbers represent AA stream flowrate; values in parenthesis rep-
resent water concentrations in AA streams). (From El-Halwagi, M.M., Process Integration, Academic 
Press, San Diego, CA, 2006, p. 56. With permission.)


