
Chapter 2 – Data Extraction 
for Resource Conservation
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Introduction

Data extraction – most crucial step for any resource 
conservation activity

Once the data is wrongly extracted, we might end 
up synthesising a sub-optimum resource 
conservation network (RCN). 

 Limiting data needed for process sinks and sources:

Quantity aspect – flowrate

Quality aspects:
Mass integration-based RCN – impurity concentration 

Property integration – linearised operator for property mixing 
rule



Segregation for material 
sources
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Heuristic 1

Keep material sources segregated to maximise their 
recovery potential. 
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Ex 2.1 – Water minimisation in 
Acrylonitrile (AN) production
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Ex 2.1 – Process description

AN is produced in a fluidised-bed reactor (2 atm & 
450ºC) via vapour-phase ammoxidation of 
propylene.  

 The reaction is single-pass, with almost complete 
conversion of propylene, with following 
stoichiometry 

 Effluent from the reactor is cooled and partially 
condensed.  The off-gas from the condenser is sent 
to a scrubber for purification; while its condensate 
to the biotreatment facility. 

O3HNHCO5.1NHHC 233
catalyst

2363  
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Ex 2.1 – Process description
 Fresh water is used as the scrubbing agent in the scrubber, 

before the tail gas may be sent for disposal.  

 The bottom product from the scrubber is sent to a decanter 
when it is separated into aqueous (sent to the biotreatment 
facility) & organic layers, which is fractionated in a mild 
vacuumed distillation column.  The column is induced by a 
steam-jet ejector where steam condensate is produced (sent 
to biotreatment).  

 Distillation column bottom also produces wastewater that is 
sent to the biotreatment facility. 

 Due to increased customer demand, the plant authority is 
exploring opportunity to increase the plant overall AN 
throughput.  
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Ex 2.1 – Process description
 The stoichiometry equation reveals that water is a by-

product for AN production  increased AN production 
leads to increased wastewater flowrate to the biotretment 
facility, which is operated at full hydraulic capacity.  

 Any increase of production capacity is only possible upon 
the debottlenecking of the biotreatment facility, either by: 
 reducing the total wastewater flowrate, or 
 installing another biotreatment unit (an expensive strategy).  

 It is decided to approach the problem by reducing the total 
wastewater flowrate, by carrying out water recovery 
between its process sinks and sources. 

 Task: identify water sinks & sources in order to carry out a 
water recovery scheme for the process.  

 Note: ammonia (NH3) concentration is the main concern for 
water recovery (i.e. the quality index for this case). 
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Ex 2.1 – Identification of sources
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Ex 2.1 – Identification of sources

 Following Heuristic 1, the individual streams that 
contribute to the terminal wastewater stream are 
segregated as water sources for recovery: 

distillation bottom (0.1 kg/s; 0 ppm)

off gas condensate (5.0 kg/s; 14 ppm)

 aqueous layer from the decanter (5.9 kg/s; 25 ppm)

 steam condensate from steam-jet ejector (1.4 kg/s; 34 
ppm)



Extraction of limiting data for 
material sink for concentration-

based RCN
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Heuristics 2 & 3

Minimise flowrate for a sink to reduce the overall 
fresh resource intake. 

Maximise the inlet concentration for a sink to 
maximise material recovery.
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Ex 2.2 – AN production
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Ex 2.2 – technical constraints 
i. Scrubber

 5.8 ≤ flowrate of wash feed (kg/s) ≤ 6.2

 0.0 ≤ NH3 content of wash feed (ppm) ≤ 10.0

ii. Boiler feed water 
 NH3 content = 0.0 ppm

 AN content = 0.0 ppm

iii. Decanter
 10.6 ≤ feed flowrate (kg/s) ≤ 11.1

iv. Distillation column
 5.2 ≤ feed flowrate (kg/s) ≤ 5.7

 0.0 ≤ NH3 content of feed (ppm) ≤ 30.0

 80.0 ≤ AN content of feed (wt%) ≤ 100.0

Upper bound

Lower bound

Upper bound

Lower bound
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Ex 2.2 – Limiting water data

Water sinks, SKj Flowrate Concentration

j Stream FSKj (kg/s) CSKj (ppm)

1 Boiler feed water (BFW) 1.2 0

2 Scrubber 5.8 10

Water sources, SRi Flowrate Concentration

i Stream FSRi (kg/s) CSRi (ppm)

1 Distillation bottoms 0.8 0

2 Off-gas condensate 5.0 14

3 Aqueous layer 5.9 25

4 Ejector condensate 1.4 34



Data extraction for hydrogen-
consuming units in refinery
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Refinery hydrogen recovery 

 Typical hydrogen-consuming units are 
hydrotreating and hydrocracking processes.

Purge Recycle Fresh H2

makeup 

Amine 
unit 

High pressure 
flash separator  

Liquid 
hydrocarbon 

feed
Reactor 

H2S

Liquid product
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Identification of H2 sinks & sources

Purge (FP, CP)Recycle (FR, CR) Fresh H2 makeup 
(FM, CM)

Amine 
unit 

High pressure 
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Liquid 
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feed
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Liquid product

Hydrogen sink 
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Identification of H2 sinks & sources

Hydrogen sink:

Flowrate: FSK = FM + FR

 impurity concentration:

where FSK, FM and FR are the respective flowrates of the 
hydrogen sink, make-up and recycle streams; with their 
respective impurity concentrations of CSK, CM and CR.

Hydrogen source:

Flowrate: FSK = FR + FP

Concentration: CSK = FR = FP

RM

RRMM
SK

FF

CFCF
C





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Ex 2.4 – Refinery H2 network 

Fresh H2

source

Unit A
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Fuel

Recycle
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Recycle
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Purge 
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Purge 
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Ex 2.4 – Refinery H2 network

Make-up 
stream 

Recycle 
stream 

Purge 
stream 

Hydrogen 
sink

Hydrogen 
source

Unit A

Flowrate (MMscfd) 90 310 40 400 350

Concentration (%) 1 9 9 7.20 9

Unit B

Flowrate (MMscfd) 110 490 10 600 500

Concentration (%) 1 15 15 12.43 15



Data extraction for property 
integration



4/16/2018 Process Integration for Resource Conservation Data ext. - 23

Property integration

 Density of the mixture (ρM) is given by:

or the generic form

 A generic form of the linearised mixing rule is given as:  

ψM(PM) = i xiψi(Pi)

Mixing 

operation

Mixture 

(FM, VM, rM)

Solution A

(FA, VA, rA)

Solution B

(FB, VB, rB)

B

B

A

A

M

111


xx 


i i

ix

M

1
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Property integration

 Example: Mixing of liquid of different density

 1 kg liquid A of 1000 kg/m3 (ρA) 

 1 kg liquid B of 1500 kg/m3 (ρB)

Mixture density (ρM) = 1/1000 + 1/1500 = 2/ρM

 ρM = 1200 kg/m3

 If we work on the operator of density: 

Liquid A: ψA = 1/1000 = 0.001 

Liquid B: ψB = 1/1500 = 0.0067

Density operator of mixture, ψM(PM) = i xiψi(Pi)

ψM = 0.5(0.001) + 0.5(0.0067) = 0.000833 

 ρM = 1200 kg/m3
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Property of mixture Mixing rule Operator Reference

Density,
Shelley and El-
Halwagi (2000)

Reid Vapor Pressure,
Shelley and El-
Halwagi (2000)

Material content,

Shelley and El-
Halwagi (2000); 
El-Halwagi et al. 

(2002)

Electric resistivity,
Kazantzi and El-
Halwagi (2004)

Viscosity, Qin et al. (2004)

Paper reflectivity,
El-Halwagi et al. 

(2002)


i i

ix
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Reported linearised mixing rule 
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Heuristic 4

Choose the property operator of the sink that is 
furthest from that of the fresh resource. 
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Ex 2.5 – Metal degreasing 

(Shelley & El-Halwagi, 2002)

Is this the 
solvent sink?

Thermal processing, solvent 
regeneration and makeup Degreasing unit Metal 

finishing

To flare

To flare

Organic 
additives

Degreased 
metal

Absorber bottoms 
(to boiler fuel)

5.0 kg/s

2.0 kg/s

Metal

Regenerated solvent

Offgas

Condensate I 
(to waste disposal)
4.0 kg/s, 6 atm

A
b

so
rp

tio
n

 
u

n
it

Condensate II 
(to waste disposal)
3.0 kg/s, 2.5 atm

Fresh solvent
2.0 atm
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Ex 2.5 – Metal degreasing

 The fresh solvent has an RVP value of 2.0 atm.  

 The following process constraints on flowrate and 
RVP values are to be complied for the process 
sinks, i.e.:

 Degreasing unit:

Flowrate of solvent = 5.0 kg/s

2.0 ≤ RVP of solvent (atm) ≤ 3.0

 Absorption unit:

Flowrate of solvent = 2.0 kg/s

2.0 ≤ RVP of solvent (atm) ≤ 4.0
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Ex 2.5 – Metal degreasing

Operator values for sources: 

Fresh solvent - 2.71 atm1.44

Condensate I - 13.20 atm1.44

Condensate II - 3.74 atm1.44

Operator values for sinks: 

2.71 ≤ ψ for degreasing unit (atm1.44) ≤ 4.86

2.71 ≤ ψ for absorption unit (atm1.44) ≤ 7.36
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Ex 2.5 – Metal degreasing

Sink FSKj (kg/s) ySKj (atm1.44)

Degreasing unit 5 4.86

Absorption unit 2 7.36

Source FSRi (kg/s) ySRi (atm1.44)

Condensate I 4 13.20

Condensate II 3 3.74

Fresh solvent To be determined 2.71



In-class exercise(s)
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P2.5 – N2 recovery 

RESIN 
PREMIXING

SLURRY 
PREMIXING

DISPERSION COATING DRYING

N2 N2

Base film

AdditivesResins

Dispersants 
and lubricants

Magnetic 
pigments

Solvent

Binders

Decomposed 
organics

Gaseous emission
FD = 8.5 kg/s

0.93% solvent

F1 = 3.0 kg/s
C1 = 1.90% F2 = 5.5 kg/s

C2 = 0.40%

Dry tape 
product

MEMBRANE

(El-Halwagi, 1997)

Is this the N2 source?
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P2.6 – refinery H2 network

CRUFresh H2SRU

NHT

HCU

CNHT DHT

Fuel Fuel

41.6 
30.0%

69.3 
27.0%

277.2 
17.9%

304.9 
17.9%

512.8

97.0 
25.0%

69.3 
25.0%

623.8 
7.0%

277.2 
5.0%

415.8 
20.0%

138.6

762.4 
6.6%

Units FR

(mol/s)
CR

(mol%)

HCU 1732.6 25.0

NHT 41.6 25.0

CNHT 415.8 30.0

DHT 277.2 27.0

Flowrate and concentration of 
recycle streams in all units:

Tasks: Identify the limiting data 
in order to carry out a hydrogen 
recovery analysis 
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P2.6 – solution

j
Sinks, 

SKj

FSKj 

(mol/s)
CSKi 

(mol%)
i

Sources, 
SRi

FSRj 

(mol/s)
CSRi 

(mol%)

1 HCU 2495.0 19. 39 1 HCU 1801.9 25.0

2 NHT 180.2 21.15 2 NHT 138.6 25.0

3 CNHT 720.7 24.86 3 CNHT 457.4 30.0

4 DHT 554.4 22.43 4 DHT 346.5 27.0

5 SRU 623.8 7.0

6 CRU 415.8 20.0



4/16/2018 Process Integration for Resource Conservation Data ext. - 35

P2.7 – wafer fabrication process

 Large amount of ultrapure water (UPW) is consumed in a 
wafer fabrication plant that consist of wet processing section 
(Wet), lithography, combined chemical and mechanical 
processing (CMP), & miscellaneous operations (Etc.). 

 Water quality in considering water recovery is resistivity (R) 
that reflects the total ionic content in the aqueous streams, 
with property mixing rule:

UPW
2000 t/h (18 MΩm) Wet

(7 – 18) MΩm

Lithography
(8 – 15) MΩm

CMP
(10 – 18) MΩm

Etc
(5 – 12) MΩm

500 t/h 

450 t/h 

700 t/h 

350 t/h 

250 t/h (1.0 MΩm)

200 t/h (2.0 MΩm)

350 t/h (3.0 MΩm)

200 t/h (2.0 MΩm)

280 t/h (0.5 MΩm)

300 t/h (0.1 MΩm)


i i

i

R

x

RM

1
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P2.7 – technical info
Operator values for UPW = 0.0556 MΩ-1.m-1

Operator values for sources: 
Wet I - 1 MΩ-1.m-1

Wet II - 0.5 MΩ-1.m-1

Lithography - 0.3333 MΩ-1.m-1

CMP I - 10 MΩ-1.m-1

CMP II – 0.5 MΩ-1.m-1

Etc - 2 MΩ-1.m-1

Operator values for sinks: 
0.0556 ≤ ψ for Wet (MΩ-1.m-1) ≤ 0.1429

0.0667 ≤ ψ for Lithography (MΩ-1.m-1) ≤ 0.1250

0.0556 ≤ ψ for CMP (MΩ-1.m-1) ≤ 0.1000

0.0833 ≤ ψ for Etc (MΩ-1.m-1) ≤ 0.2000

Wet
Rmin = 7 MΩ.m  ψ = 0.1429 MΩ-1.m-1

Rmax = 18 MΩ.m  ψ = 0.0556 MΩ-1.m-1


i i

i

R

x

RM

1
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P2.7 – solution
Sink FSKj (kg/s) ySKj (MΩ-1.m-1)

Wet (SK1) 500 0.1429

Litography (SK2) 450 0.1250

CMP (SK3) 700 0.1000

Etc (SK4) 350 0.2000

Source FSRi (kg/s) ySRi (MΩ-1.m-1)

Wet I (SR3) 250 1

Wet II (SR4) 200 0.5

Litography (SR5) 350 0.3333

CMP I (SR6) 300 10

CMP II (SR7) 200 0.5

Etc (SR8) 280 2


