CHAPTER

On to OpenGL and 3D Computer
Graphics

This is the first technical chapter and done right will get students “into” CG.
To this end keep in mind that, in addition to the introduction to OpenGL and
3D CG, there’s another vital goal to this chapter: to dispel the notion that
CG is a field only for people who would cheerfully face a second-order partial
differential equation in MMA combat and who write recursive subroutines
on the bus home. It’s not! The average CS student is perfectly capable of
an excellent understanding of CG and of creating fine 3D apps provided she
is willing to think a bit in 3D.

Simply following the chapter linearly from start to finish at a pace that
takes most of the class along — you may have to slow down and spend extra
time on certain topics but it’s worth it for this chapter — should be all that’s
needed to get the job done.

1. Section 2.1: Introduces the workhorse program square.cpp. Students
see their first complete OpenGL program and begin trying to relate
its syntax to the black square it draws. This leads in to the very
important next section.

2. Section 2.2: Introduces the viewing box, world coordinates and explains
how a 3D scene is projected to make a 2D image via a synthetic camera
process.

Emphasize the simplicity of the process: objects are drawn in
an imaginary viewing box in world space (in case of orthographic
projection) and projected to the box’s front, which is like a film; the
film is then printed on the OpenGL window part of the screen, which



Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

is like paper. That’s it! There are exactly two spaces involved, world
and screen, and one goes from one to the other via a projection.

Some of our peer textbooks, in addition to world and screen coordinates,
invoke local coordinates, device coordinates, normalized coordinates
and even viewing and projection coordinates. None of these additional
systems are necessary to our mind. We go all the way from this chapter
to projection transformations and rational primitives at the end of the
book without needing anything more than world and screen systems
(it’s the KISS principle).

As a general rule, perform all the book experiments in class. For
Section 2.2 in particular, ask the students to help you do all the
exercises in class as well.

. Section 2.3: A benign section on screen coordinates in the OpenGL

window. The only point to emphasize is the flip in y-axis from world
to screen system.

. Section 2.4: A chance to do some fun experiments on clipping. Point

out that the implementation of clipping might not be as simple as
the “clipping knife” of Figure 2.13 would suggest, because the two new
vertices of the resulting quad must be computed. This is done inside
the pipeline and there’s no need to worry about it now, but it’s worth
noting.

. Section 2.5: Explains that OpenGL is a state machine and that

properties of an object are specified by the states (e.g., color) at
its vertices. These vertex properties are spread into the interior of an
object by interpolation. This section also explains that OpenGL draws
in code order in immediate (or memory-less) mode: as the code is
processed linearly from start to finish, object are drawn and forgotten.

You might want to expand on interpolation a little (or not at all)
depending on the math inclinations of your class. Keep in mind that
Chapter 7 down the road is all about convexity and interpolation.

. Section 2.6: Introduces all the OpenGL drawing primitives. Emphasize

that 2D primitives like polygons should be plane and convex, otherwise
rendering is unpredictable; Experiment 2.19 illustrates this.

. Section 2.7: This is where students see for the first time a curve

being approximated by straight segments. Get in place the general
design principle that all curved objects have to be approximated by
straight and flat ones. Mention the trade-off between the quality of
the approximation (i.e., the fineness of the mesh) and complexity,

. Section 2.8: A first look at 3D with the simple Experiment 2.22. Keep

the description of the z-buffer as simple as possible: primitives are



10.

processed one by one (in code order), and each pixel making up a
primitive has its z-value checked with the current value in its slot in
the z-buffer before it is drawn, ...

The experiments using helix.cpp nicely set up perspective projection.
Emphasize the similarity to orthographic projection — the difference
being only in rays traveling to a point instead of parallely. A logical
consequence is that the shape of the viewing box follows that of parallel
rays while that of the frustum convergent ones. Shoot-and-print is
similar too for both kinds of projection.

Section 2.9: Drawing projects to choose assignments from.

Section 2.10: First assemblage of a curved surface, a hemisphere,
from triangle primitives. Emphasize the do-it-yourself nature of
determining the constituent triangles from the equations for the surface.
WYSIWYG systems like Maya and Studio MAX do simplify the design
process but there’s something to be said for first learning to make
things “by hand” before applying sophisticated tools.

Additional points:

(a)
(b)

The Experimenter software should help run the experiments.

If you come up with interesting modifications of the book experiments
or new ones, as almost certainly you will, then you might want to
include them in your copy of Experimenter for future use. The
introduction to Experimenter tells how to do this.

There is little need for slides in class other than to throw up the book
figures. The mantra is experiment-discuss-repeat.

This is a 3-lecture chapter but do not worry if you go over. It is
worth doing well. If the students are nodding, smiling and making eye
contact at the end of this chapter, then you’ve just made a great start
to teaching them CG.



Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

/
T~

Figure 2.1: Clipping a
triangle to a septagon.

4

Solution to Exercise 2.3
Change glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0) to glOrtho(0.0, 200.0, 0.0,
100.0, -1.0, 1.0).

Solution to Exercise 2.4
If only the z coordinate of a point is changed, then perpendicular
projection takes it to the same point on the viewing face as before.

Solution to Exercise 2.6
Figure 2.1 shows clipping to 7 sides.

Solution to Exercise 2.9
The color will be “mid-way” between (1,0,0) and (0,1,0), which is

(%, %, %) = (0.5,0.5,0), a yellow.

Solution to Exercise 2.19

The corners of the front face are (—5.0,—5.0,—5.0), (5.0,—5.0, —5.0),
(=5.0,5.0,—5.0) and (5.0,5.0,—5.0). The z and y values of the vertices
of the back face are scaled from those on the front by a factor of 20 (=
far/near = 100/5). These vertices are, therefore, (—100.0, —100.0, —100.0),
(100.0,—100.0, —100.0), (—100.0, 100.0, —100.0) and (100.0,100.0, —100.0).



