Chapter 2 Home Problem Solutions

2.1 A) SFG for the simple, one-compartment drug infusion system:

Ri, 1/Vy C 1/s C 1 C
_KL
C (1/Vg)
—(s) = Transfer function.

Rin S + K]_

B) Let Riy(t) = R,0(1), .. Ris(s) = R,, and by inverse LT tables: c(t) = (R/V B)e’KLt, t>0.

C) Let Ry (t) = RqU(1): .~.R;,(s) = Ry/s, and by inverse LT tables: c(t) = (R¢/Kp)( 1 — e_KLt), t>0. The css = R/K as
t —> oo,

2.2 LTI system described by 2™ order ODE:
y+ 7y + 10y = x(t)

A) y[p2 + 7p + 10] =x(t); factoring, we find: y[(p + 2)(p + 5)] =x. Thus p; =-2, p, =-5.

B) Use Laplace transforms, find xfer function:

Y 1

—) = ————

X (s+2)(s+5)
a b

Let x(t) = &(t), s0 X(s) = 1. The inverse Laplace transform table gives us:

1

y(t) = e — e
(5-2)

b a

C) Now let there be a step input, x(t) = 10U(t), so X(s) = 10/s: The inverse Laplace transform is:

10 1
yit) = —[1 + ———GBe ™ =27 = 1[1-1/35¢* —2¢™)]
2)(5) (2-5)
a b

2.3 A) There are two compartments: Vg liters of blood, Vg, liters of extracellular fluid.



The ODEs describing the system are:

CpVp = K 3Cs — Kppe(Cg — Cg) + Ry, Wg/min.

CeVe = + Kppe(Cp — Cg) ug/min.

These ODEs can be rewritten in terns of concentrations:

Cp = — Ca(Kyip + Kppe)/ Vs + Ce(Kppe/Vp) + Rip/Ve  (Ug/D)/min.

Ce + Ca(Kppe/Ve) — Ce(Kpge/VE) (ug/l)/min.

This system and its linear SFG is illustrated on Page 2B.

B) Consider the system to be in the DC steady state, so Cgz & Cg = 0. Thus we can write:

Cg(Kyig + Kppe)/Ve — Ce(Kpee/Ve) = Rin/Vp

CB(KDBE/ VE) - CE(KDBE/ VE) =0
The second equation above tells us that Cz = Cg in the SS. The first equation can easily be solved for Cg in
the

SS:

CBSS = CESS = Rd /KLBA (Rd is the IV dl‘lp rate in j.Lg/mln)

C) A bolus injection gives the PK system’s impulse response. First we use Mason’s rule to obtain the

Cs
system’s transfer function, — (s), and note that R, (t) = R,0(t), SO R;,(s) = R,. The Cg transfer function is,
Rin
after some algebra:
Cs (1/Ve)(1/s)[1 = (—Kpge/(VE $))]

Ri 1 — {—(Kig + Kpgp)/ (Vg s) — Kppe/(Vg s) + KDBEZ/ (VEVs 32)} + {~(Kig + Kpge)/(Ves) X —Kpge/(VEs)}

(Ro/Vpg) (s + Kppe /VE)
Cg(s) =

$* +s [(Kig + Kpge)/ Ve + Kppe/Ve] + [(Kis + Kpge)/ Vi X Kpge/Ve — KDBEZ/ (VEVp)]

Subbing numbers:
a

R,0.33333 (s + 0.06667) R,0.33333 (s + 0.06667)
Cg(s) = , Factoring the denominator, Cg(s) =
s* + $[0.73333] + 0.02222 (s +1.4325)(s +0.03412)
c b



0.33333 a—b a—c
The inverse Laplace transform yields: Cy(t) = R, ———{ 0.03255¢ %% — (=1.3658)e +**" }
1.39838
c—b
2.4 An underdamped, quadratic LPF is described by the second-order ODE:

y + QEa)y + @y = x(0)

A) Find the root locations in the complex s-plane: Laplace Xform the ODE:

Y(s)[s* + 2Em,) s + m,”] = X(s): The complex-conjugate roots (poles) of the denominator are thus:

s, sy =—Eoy 2% VEE®D) - 40,7) <0 =—Em, joN(1—E) = —0.5%]0.8660 (poles lie in the left-half
s-plane). The filter’s Xfer function is thus:

Y(s) 1 1

X(s) [s*+ QEmys + @] 5T+ Is + 1

B) The filter’s unit step response can be found by inverse Laplace Xform tables:

1 1 1 e ! 1-¢
Y(s) = — Coy=— {1 - sinfo,V1 —E*t +¢] }, where ¢ = tan™" [
s [+ 8my)s + o] o, V1-¢ g

]

C) The filter’s unit impulse is:

1 e—au)n t

Y(s) = —— . Inverse transforming: y(t) = (1/m,) sin[@,V1 —&2 t]

[s* + 1s + 1] V1 -8

o, = 1175, E=0.5, 50 y(t) = 1.1547 ¢ "' sin[0.866 t], so y(t) = 1.1547 ¢ " sin[0.866 t]

2.5 Alternative ODE form for an underdamped, quadratic LPF:

y + 2ay + (b2 + az)y = x(t)
Note o, = (b* +a%), & 2Ew,) = 2a,s0 a= o,&, and ®,” = b* + 0,°8* — thus b* = 0, (1 - &) > b=w,N1 - &
A) The filter's Xfer function is:

Y(s) 1

= 2a =1, (b*+a%) = 0.7500 + 0.25 = 1, thus the denom.is:s*> + s + 1
X(s)  s* + 2as +(b*+ad)




The denominator roots (poles) are at: s;,s, = -0.5+% V1 -4 = —0.5+j 0.8660.
B) The input is a unit step: x(t) = U(t), thus X(s) = 1/s:
1 V1 -

Y(s) = ———: By LT tables: y(t) = {1 — 1.1547 ¢ > sin[0.8660t + 0]}, ¢ = tan™"
s[s*> + s + 1] €

=60°

C) The input is a unit impulse, so X(s) = 1. From tables:

y(t) = 1.1547 ¢ ' sin[0.866 t]

2.6 A hyperbolic capacitor discharge waveform results when a capacitor charged to V, is allowed to
discharge through a nonlinear (square law) conductance beginning at time t = 0. Kirchoff's current law for
this simple circuit is simply: C\./C + BV.® =0. This ODE can be linearized and solved as Bernouilli’'s
Equation. Since the hyperbolic waveform for V. — « at t = 0, we delay the start of V(t) by t, seconds. This
yields a hyperbolic waveform section given by V(t) = (C/B)/(t + T,), for T,<t < oo, T, = C/(BV,). Thus V(0) =

Vo.
This simple nonlinear circuit is the core of an analog instantaneous pulse frequency demodulator

(IPFD) invented by the author; cf. Northrop, R.B. & H.M. Horowitz. 1966. An instantaneous pulse frequency
demodulator for neurophysiological applications. Proc. Symp. Biomed. Engrg. I, Milwaukee, Wisc. I Biomedical

Instrumentation, Paper 1-1, pp 5-8.

2.7 To create a logarithmic hyperbolic capacitor discharge waveform used for generating a log(IPFD), a
nonlinear conductance of the form, i, = [C k log;,e]10V" is used. e =2.71828, k is a constant, and V. is

the capacitor voltage at time t.

28A) det[2 31=8+3=11 B) [100] C) [10 6]
-1 4] det|2 3 5| =1[9-5]=4 det|3 4 15| = 1[48 —90] + 6[18 —20] =
—54,
l41 3] 5 6 21]

2.11 Solve the simultaneous equations using Cramer’s Rule:

A) 3X1 —5X2 =0

X, +%=2 A=[3-5]=3+5=8 x,=[0-5|/A = 10/8, x,=[3 0]/A =6/8
L1 1] 2 1] L1 2]



B) 2x; +x,+5x3+ x4=5

X; + Xo — 3%3 — 4x4 = —1 21 5 1]
3%+ 6% —2x:+x,=8 A= |1 1 -3 4| =...
2X; +2%; 2X3— 3%y =2 36 2 1]
2 2 2 -3]
212 y + 5y + 2y =1(t) > x;= 0x; +%x; .
. A=l0 1] B=[0], x=Ax+Br
Xy = —2X, — 5%, + 1(t) -2 -5 L1]
213 2y + 3y +y=r+2r> y +15y + 0.5y = 05r + r
a ap b| bz b() =0
The state equations are: x; = 0x; + X, +(0.5)r
X, = =0.5x; =1.5%, +[1—1.5(0.5)]r Hence A=[ 0 1] & B =[ 05 |
[-0.5 -1.5] [-0.25]
214 y +3y +2y = 3r +5r + r Where: y=x;, X; =X,
a  a by by by
\
. —4
X = + X0 + (5-3x3)r HenceA =[0 1] & B =[-4]
. -5 +12 -2 -3] L+7]
Xy = —2X; —3X; + [(1 —2%x3) - 3(5 -3x3)] r
+7
s—38 s—38
2.15 A)H(s) = = Real zero at s = +8, two real poles on the LH s-plane ats =—1 & s =
2.
s?+3s+2 (s+ D)(s+2) System is stable.
s+ 1
B) —————— Real zero at s = —1. Two complex-conjugate poles in the left-hand s-plane at s; = —3/2 — 2 j\/ 3
and
s> +3s+3  System is stable. ;=312 +% N3
s+ 1
C) ————— Real zero at s = —1. Two real poles; one at s; = —3.7913, one at s, = + 0.7913 in the RH s-plane.
s +3s —3 System is unstable.
s+ 1
D) ————— Real zero at s = —1. Two real poles; one at s; = +3.7913 in the RH s-plane, one at s, =—0.7913.
s> —3s —3  System is unstable.
s—1
E) ———— Real zero at s = +1. Real poles at s = —4 and s = + 1, System is unstable.
s* +3s—4



—K(s+8)
2.16 The SISO linear feedback system’s loop gain is: A (s) =

(s—1)(s+6)
A) Considering the FB system’s root locus diagram, it is stable for two poles in the LH s-plane this is when
the RH plane pole locus branch crosses the origin From Eq. B.5 in the text, the gain must be greater than:

6x1
=0.75

K.>
8

B) No, one CL system pole is always in the RH s-plane.

2.17 Using Mason’s rule:

abc abc
XY = =
1 —[-d —e —bf] + [-d X —€] 1+d+e+bf +de

2.18 The 2120 LS is described by the ODEs:

S| —a; X; +apx; + by

X, = a3 X1l —apx, + by
A) The SFG is on Page 6B.

B) Find X,/U, using Mason’s rule:

(bl/s)[l - (_322/5)] b1 (S + 322)
Xl/Ul = =
1 - [—a“/s - 322/5 + 321312/82] + [—a“/s X —322/8] 52 + s [a“ + 322] + aj1a2 — az1a12
(bao/s)[1 = (—a/s)] ba(s +ay1)
C) Xz/Uz = =
1 — [—ap/s — an/s + axap/s’] + [—ay/s X —axn/s] s* + s[ay +an] +ajan— aapn
(ba/s)(arofs) bajp
D) Xl/Uz = =
1 - [—a“/s — a22/s + a21a12/sz] + [—a“/s X —azz/S] S2 + S [a“ + 322] + ajaxp —azap
(bi/s)(azi/s) bjay
E) Xy/U, = =
1 - [—a“/s — a22/s + a21a12/sz] + [—a“/s X —azz/S] S2 + S [a“ + 322] + ajaxp —azap
2.19 InSS: X1 =0= —a11X; +apXy +b1U1 b1U1 = a1 X1 —ap Xy
L] %
X2 =0= ayx; —apx, +bU, byU, =—a5 x| +an X,



Solve using Cramer’s rule: A= |a11 —a12|

—dz; axpn | = arrdxn —azadp
Xiss = |bjU; —ap| la;, bU, |
b U,  ay | by aU; +bya;Us | —a;; byU, | a;; bUs + a, b, Uy
A arrdxp —az ap A arrdxn —aap

2.20 A) From the SFG of Fig. P2.20, show X,(s)/U;(s) — 0 for an ideally-decoupled system. There are no
cofactors. Note that the bottom dashed feedback path has gain —a,;*, not —a,*.

¢ by by (1/8)as (1/5) + ¢1by by (1/5)(—ag*)by 'by(1/5)
Xz/Ul =

1 — [—ap/s —axn/s + apay/s’ — ap* by by(1/5%) ag; —(Py — a;1%)by " by(1/8) — (P, — a5*) by ' by(1/s)
— ay* by ba(1/5%)ag] + {(=ay1/s)(=axn/s) + [—(P) — a; )by by(1/s) X (P, — a*) by ' by(1/5)] +
(—ap® by by(1/5%) ag1)(—ag1* by ba(1/5%)ar)}
Reducing the Denominator, D(s): We remove asterisks for ideal decoupling:
D(s)=1 —[—ay/s — axn/s + apan/s® — ap(1/s) ay; — (Py — a;1)(1/s) — (P; — an)(1/s) — arn(1/sH)a;0]

+ {+anan/s) + (Pr—a;)(Py — an)(1/57) + ap’as *(1/s%) }

Reducing the numerator, N(s):

N(s) = cjan/s” —cjay /s = 0, Thus X,/U, = 0, x, is decoupled from input 1.

2.21 A) See Page 7B for NLSFG:
B) See Page 7B for Decoupled system NLSFG.
C) ODEs for the perfectly-tuned, decoupled system, where: K,* = K,,,, Vi, * = Vi, Ko1* = Ko, Kpp* = Ky,
b;*=b,, & by*=b,. Thus we have:
u =b 7 [FPrx; +av; + Ko x° = Kip X + Vi xi/ (K + %))]
U =by " [-Paxy + 2y va + Kia Xp = Kop = Vi Xy /(K + X1)]

Thus:
x; = a; vy — P x; + Ky Xl2 + Vi Xi/(Kip + x1) = Kip %0 = Vi Xi/(Kiy + Xp) — K01X12 +Kpx, = a; vy —Pix

Xp= 4 Vs — Kpp + Kppxo = Vi xi/(Kiy + x1) = Paxo = KXo + Vi Xi/(Kin + 1) + Ko = apv, — Pox,



D) Decoupling controllers for pharmacokinetic drug administration systems are not too effective, because
the drug concentrations are non-negative, and 100% effective operation of this kind of controller requires

that certain states go negative.



