
Road Vehicle Dynamics Solution Material
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Figure S.2: Influence of damping

S.2 Exercises and Solution of Chapter Road

S.2.1 Cosine-shaped Bump

Problem: Modify the MATLAB-Script (Listing 2.3) and the corresponding function (List-
ing 2.2) so that the displacements of the actuator correspond with a cosine-shaped bump.
Use the function in Listing 2.1 or the relevant statements in it. Note: The vehicle data are de-
fined in the script qcm_data given in Listing 1.2.

Perform simulations with different heights (including negative values) and lengths of the
obstacle. Replace the histogram-plot by the chassis acceleration which, will be provided by
the fourth component of the state derivatives xdot. Keep in mind that valid results presume
positive wheel loads!

Solution: The MATLAB-Script given in Listing S.2 runs the quarter car model across a cosine
shaped obstacle and plots the results.

Listing S.2: Script qcm_obstacle_main.m: Quarter car model crossing an obstacle
1 global g s a b h r0
2 global mC mK mW ThetaK ThetaW
3 global Ts0 cs ds cx cz dx
4 global v_vel o_x0 o_y0 o_type o_width o_height o_length
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5 global z_road fz_wheel
6
7 % vehicle data
8 qcm_data
9

10 % veh. vel. as well as position, type and shape of obstacle
11 v_vel = 30/3.6; % vehicle velocity [km/h --> m/s]
12 o_x0 = 6.0; o_y0=0; % obstacle position [m]
13 o_type = 2; % cosine shaped obstacle [-]
14 o_width =10; % obstacle width [m]
15 o_height= 0.04; % obstacle height [m]
16 o_length= 5; % obstacle length [m]
17
18 % initial states
19 x0 = [ 0; 0; 0; 0; 0; 0];
20
21 % time simulation
22 t0=0; tE=2; [tout,xout] = ode45(@qcm_obstacle_f,[t0,tE],x0);
23
24 % get road height and wheel load
25 zr=zeros(size(tout)); fz=zeros(size(tout)); zcdd=zeros(size(tout));
26 for i=1:length(tout)
27 xp = qcm_obstacle_f(tout(i),xout(i,:)’); zr(i)=z_road; fz(i)=fz_wheel; zcdd(i)=xp(4);
28 end
29
30 % plot results
31 subplot(3,2,1), plot(tout,zr), grid on, xlabel(’time’), legend(’road: z_R ’)
32 subplot(3,2,2), plot(tout,xout(:,2)*180/pi), grid on, xlabel(’time’), legend(’\beta [deg]’)
33 subplot(3,2,3), plot(tout,xout(:,1)), grid on, xlabel(’time’), legend(’chassis: z(t)’)
34 subplot(3,2,4), plot(tout,xout(:,3)*180/pi), grid on, xlabel(’time’), legend(’\phi [deg]’)
35 subplot(3,2,5), plot(tout,fz/1000), grid on, xlabel(’time’), legend(’wheel load F_z [kN]’)
36 subplot(3,2,6), plot(tout,zcdd), grid on, xlabel(’t [s]’), legend(’chassis acc. [m/s^2]’)

The data for the quarter car model are set via the script qcm_data.m. It is provided by List-
ing 1.2 and includes here the computation of the pre-load in the torsional spring that keeps
the knuckle in a steady-state horizontal position. The code lines 12 to 16 define the position,
the type and the shape of the obstacle. Finally, the dynamics of the quarter car model is pro-
vided by the function qcm_obstacle_f which is defined in Listing S.3.

Listing S.3: Function qcm_obstacle_f.m: Dynamics of a quarter car crossing an obstacle
1 function xp = qcm_obstacle_f(t,x)
2 % quarter car model with trailing arm suspension crossing an obstacle
3
4 global g s a b h r0
5 global mC mK mW ThetaK ThetaW
6 global Ts0 cs ds cx cz dx
7 global v_vel o_x0 o_y0 o_type o_width o_height o_length
8 global z_road fz_wheel
9

10 % state variables
11 zC = x(1); betaK = x(2); phiW = x(3); zCd = x(4); betaKd = x(5); phiWd = x(6);
12
13 % obstacle, centered @ o_x0, o_y0
14 sx = v_vel*t; sy=0;
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15 u = obstacle_f(sx-o_x0,sy-o_y0,o_type,o_width,o_height,o_length); z_road = u;
16
17 % torque in revolute joint
18 Ts = - ( Ts0 + cs*betaK + ds*betaKd );
19
20 % tire deflection (static tire radius)
21 rS = h + zC - b + a*sin(betaK) - u ;
22
23 % longitudinal tire force (adhesion assumed)
24 Fx = - cx *( a*(1-cos(betaK)) - rS*phiW ) - dx *( a*sin(betaK)*betaKd - rS*phiWd ) ;
25
26 % vertical tire force (contact assumed)
27 Fz = cz *( r0 - rS ); fz_wheel = Fz;
28
29 % mass matrix
30 Massma=[ mC+mK+mW (s*mK+a*mW)*cos(betaK) 0 ; ...
31 (s*mK+a*mW)*cos(betaK) ThetaK+s^2*mK+a^2*mW 0 ; ...
32 0 0 ThetaW ];
33
34 % vector of generalized forces and torques
35 qgen=[ Fz-(mC+mK+mW)*g+(s*mK+a*mW)*sin(betaK)*betaKd^2 ; ...
36 Ts-(s*mK+a*mW)*cos(betaK)*g+a*(Fx*sin(betaK)+Fz*cos(betaK)); ...
37 -rS*Fx ];
38
39 % state derivatives
40 xp = [ zCd; betaKd; phiWd; Massma\qgen ];
41
42 end

The function obstacle_f, which is defined by Listing 2.1, computes the vertical road height as
a function of the horizontal position of the vehicle or the contact point respectively. Here, the
vehicle moves in longitudinal direction only. That is why the lateral coordinate sy is simply set
to 0 in line 15.
As can be seen from Figure S.3, the impact on the vehicle is more severe at the shorter obstacle.
When crossing the obstacle with a length of L = 2.5m the wheel load becomes negative during
a short time period. In practice, the wheel would lift off here.

S.2.2 Pseudo-random Road

Problem: Use the MATLAB-Script qcm_main.m (Listing 2.3) together with the MATLAB-
Script qcm_data.m given in Listing 1.2 and the corresponding function qcm_f.m (Listing 2.2)
to study the influence of the vehicle velocity on the wheel load.

Perform simulations with different values of the road power spectral density. Again, keep in
mind that valid results presume positive wheel loads!

Solution: The MATLAB-Script given in Listing S.4 performs the simulation for the quarter
car model with a random road input and plots the histogram of the wheel load. Again, the
script qcm_data.m which set the data and is provided by Listing 1.2, is extended by the calcu-
lation of the pre-load in the torsional spring which keeps the knuckle in a horizontal position
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Figure S.3: Quarter car model crossing obstacles with different lengths

in steady state. The function qcm_f, which is given by Listing 2.2, computes the dynamics of
the quarter car model and the road irregularities.

Listing S.4: Script qcm_main.m: Quarter car model on random road
1 global g s a b h r0
2 global mC mK mW ThetaK ThetaW
3 global Ts0 cs ds cx cz dx
4 global v_V Amp Om Psi
5 global z_road fz_wheel
6
7 % vehicle data
8 qcm_data
9

10 v_V = 90/3.6; % vehicle velocity [km/h --> m/s]
11 Phi0 = 2*10e-6; w = 2; % spectral density and waviness
12 Omin=0.0628; Omax=62.83; n=200; % range of frequencies and number of samples
13
14 % calculate amplitudes and random phases
15 dOm = (Omax-Omin)/(n-1); Om = Omin:dOm:Omax; Om0 = 1;
16 Phi = Phi0.*(Om./Om0).^(-w); Amp = sqrt(2*Phi*dOm); Psi = 2*pi*rand(size(Om));
17
18 % initial states: x0 = [ zC; betaK; phiW; zCd; betaKd; phiWd ]
19 x0 = [ 0; 0; 0; 0; 0; 0];
20
21 % simulation interval adjusted to vehicle velocity
22 t0=0; tE=150/v_V;
23 % adjust initial state to road
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24 s_V = v_V*t0; u = sum( Amp.*sin(Om*s_V+Psi) ); x0(1)=u;
25 % perform time simulation
26 [tout,xout] = ode45(@qcm_f,[t0,tE],x0);
27
28 % get road height, wheel load and chassis acceleration
29 zr=zeros(size(tout)); fz=zeros(size(tout)); zdd=zeros(size(tout));
30 for i=1:length(tout)
31 xdot = qcm_f(tout(i),xout(i,:)’); zr(i)= z_road; fz(i)=fz_wheel; zdd(i)=xdot(4);
32 end
33
34 fz_m=mean(fz); fz_std=std(fz); % mean value and standard deviation of wheel load
35 nh=20; [nfz,hfz]=hist(fz,nh); % generate histogram of wheel load
36
37 % generate gaussian density function and adjust to histogramm
38 fzi=linspace(min(fz),max(fz),201);
39 pfz = exp(-(fzi-fz_m).^2./(2*fz_std.^2))./(fz_std*sqrt(2*pi));
40 pfz = pfz * (sum(nfz)*(max(fz)-min(fz))/nh);
41
42 % plot only wheel load histogramm
43 barh(hfz/1000,nfz), colormap(’white’), hold on, plot(pfz,fzi/1000,’k--’,’Linewidth’,2)
44 title([’\sigma_F_z=’,num2str(fz_std),’, v=’,num2str(v_V*3.6),’, \Phi_0=’,num2str(Phi0)])

The results for different vehicle velocities and road power spectral densities are shown in Fig-
ure S.4. In each simulation, the mean value of the wheel load mF z is close to the static wheel
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Figure S.4: Influence of vehicle velocity and road roughness on wheel load

load, which amounts to F s t
z = 2.45 k N here. It can be seen that the standard deviation σF z

of the wheel load increases with the vehicle velocity and the intensity of the road roughness.
At v = 120 k m/h and Φ0 = 4 ∗ 10−6 m 3 a significant number of wheel lift offs occurs, which
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is indicated in the histogram by negative values of the wheel load. Here, the simulation re-
sults are not valid anymore because negative wheel loads are not possible in practice. Note
that running the script qcm_main repeatedly will produce slightly different results because
the MATLAB-Function rand generates each time a new set of random phase angles.

S.3 Exercises and Solution of Chapter Tire

S.3.1 Contact Geometry

Problem: The position of the wheel rotation axis with respect to the earth-fixed system is
defined by the unit vector ey R ,0 = [0.097; 0.995; −0.024]T in a particular driving situation. Cal-
culate the unit vectors ex ,0 and ey ,0 pointing in the direction of the longitudinal and the lateral
tire force as well as the tire camber angle γwhen en ,0 = [0; 0; 1]T defines the track normal.

Solution: The basic approach to the contact geometry, described in section 3.2.1 of the text
book provides in (3.6) and (3.7) the required equations. The code lines

eyR0 = [ 0.097; 0.995; -0.024 ]; % wheel rotation axis
en0 = [ 0.000; 0.000; 1.000 ]; % road normal
nx0 = cross(eyR0,en0); ex0=nx0/norm(nx0) % longitudinal direction
ey0 = cross(en0,ex0) % lateral direction
ga = asin(eyR0’*en0); ga_grad=ga*180/pi % camber angle [rad -> grad]

perform the corresponding computation in MATLAB and will result in

ex ,0 =





0.9953
−0.0970

0



 , ey ,0 =





0.0970
0.9953

0



 , γ=−1.3752◦ (S.13)

S.3.2 Contact Length

Problem: A tire with an unloaded radius of r0 = 0.546 m is exposed to a vertical force of Fz =
35 k N . Calculate the vertical tire stiffness cz and the contact length L if a loaded or static tire
radius of rS = 0.510 m is measured.

Solution: The vertical tire stiffness is simply defined by

cz =
Fz

∆z
=

Fz

r0− rS
=

35 k N

0.546 m −0.510 m
= 972.222 k N /m = 972 222 N /m (S.14)

and the contact length, which was estimated by Equations (3.42), is computed as

L = 2
p

r0∆z = 2
Æ

r0 (r0− rS ) = 2
p

0.546 m (0.546 m −0.510 m ) = 0.28 m (S.15)

Wheel load and tire radius indicate a truck tire. That is why stiffness and contact length are
comparatively large.
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