Computational Electromagnetics
Week 2



What will be covered today

* Moment Method

e Finite Element Method and Shape
Function



Moment Method

Moment method is one of weighted residual method discussed in the previous class.

Let the problem be stated as:
Lf=g e (15.65)

where L is an operator, f is the unknown function and g is excitation. The problem
becomes; to find f given L and g and the boundary conditions.

Assume
f~Ya,f, ...(15.66)

where f, are the basic functions chosen for the

problem. . . o _
Choose the weight functions w,, for the problem to minimize the residual. Choose

the inner product for the problem.

Let us illustrate the process by giving a simple example.



Moment Method

Solve the following problem by moment method.

_d2f —1+4x2 e (15.673)

dx?

with the domain given as 0 < x < 1 and the boundary conditions are given by

f(o)=f(1)=0 (15.67b)

The exact answer to the problem is

By moment method, substitute (15.66) in (15.65), multiply by w,, and form the
inner product.

<Wm,Lganfn>=<wm,g> ...... (15.68)

where () is the symbol for the inner product.



Moment Method

For the problem, the inner product of 2 functions can be expressed as

1
<[//m ’l//n> = J(//m[//ndx ...... (15.69)
0
Using (15.69) in (15.68) one obtains
1 N 1
J|:WmLZan fn}dX:J‘ngdx ...... (15.70)
0 n=1 0
Now we need to choose the w,, and f, for the problem. This needs some level of skills.
Here we define two sub-sectional basic functions. P()t
(1) Pulse function P(x) 1
Let P(x)=1 X| < 1
2(N +1)
=0 otherwise " (15.71)
X
Figure 15.7 sketches this function. — 1 —

N +1



Moment Method

The center of the pulse function can be shifted to x = x, by defining

1

Plx=x,)=1 X =, < oN+1) e (15.72)

=0 otherwise

(2) Triangle function T(x-x,)
T(x—=x V=1-Ix-x I(N +1 RV R (15.73)
(x=x,)=1—[x=X,|(N +1) X X“‘<N+1
=0 X =X,|> 1
N+1
A T(X_Xn)

Figure 15.8 sketches this function.




Moment Method

After choosing w,, and f,, in (15.70), the result may be written as an algebraic equation

N

2 rmtn=Gn (15.74)
where

1

=l e (15.75)
0
1

O =[woox (15.76)
0

Equation (15.74) yields N equations for the N unknowns «,..

We know that integration, when an impulse function is in the integral, is given by
b

jé(x—xj)f(x)dx:f(xj):fj a<x;<b

=0 Otherwise

Thus we can get away by choosing f, such that L f, is a sum of impulses.



Moment Method

This will be the result if f, =T(x-x,) and L is a second order derivative shown in Figure
15.9

Let us illustrate the calculations by choosing N =2 in (15.66). The weight functions
w, and w,, the basis functions T ;and T, are sketched in Figure 15.10
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Moment Method

o, and a , can be obtained by two algebraic equations.

Lf, =— ddj(zl = —3{5 (x)- 25(X - %) " 5()( _%ﬂ

1 3/6 2 4
Ay = Lf.dx= | =3 6(X)=25| x——=|+O6| X—— | |dx =6
” !).Wl (dx _[ [ (x) (x 6j+ (x 6]} X

3/6
A, = —3{5(x—g)—25(x—£j+5(x—§ﬂdx:—3
6 6 6 6

1 3/6 40
g, = legdx = I<1+ 4X2)jx -
0 176 81

The first equation is

Moy + A, =0,

_ 40

6o, —3a, = sl



Moment Method

Similarly, we can get the second equation
A0y + Aty =0,

76
—3a, +6a, :a ...... (15.79)

Solving a; and o ,, we get

T (15.80)
243 243
So the approximate solution for moment method is
f zle(x—gj+ﬁT2(X—ﬂj ...... (15.81)
243 6) 243 6

The accuracy can be further improved by choosing a larger value for N but the
number of equations will increase as well.



Finite Element Method

Two aspects to the finite element method

(i) A continuous domain is broken up into a finite number of elements. Figure 15.11
shows an example. The discrete points are the vertices of the triangle.

The method aims to find the unknown

potentials at the finite number of discrete
points.

(ii) The second aspect of the finite
element method is in the technique of
generating the algebraic equations.




Finite Element Method
— Variational Principle

Instead of solving the equilibrium equation (15.65) directly, we try to find the function f
that extremizes its ‘functional’ /(f). For a functional the argument itself is a function.
The functional for (15.65), in the language of linear spaces is given by

(f)=(Lf.f)-2(fg) L. (15.82)

provided the operator L is positive definite, which can be satisfied if

(X0 Xo)= (X0 L) (15.83)
(LX,X)>0, for any X

In the above X, X, X, are arbitrary functions that satisfy the same boundary
conditions. Refer to table 15.3 for the common partial differential equations of
electromagnetics and their functionals.



Finite Element Method
— Variational Principle

Let us use an example to illustrate application of (15.82). Figure 15.12 gives a one
dimensional example.

The plate dimensions are assumed to be X1t
large compared to d. Poission’s equation,

- d 0V
which can be simplifies to the one /
dimensional equation — o

d’® _p, ..., (15.85) d=1m €& p,(x)
dx* & V

with the boundary conditions — 0

o0)=0l)=0 - (15.86) / ov

Defining the inner product for the problem as

1
(Wi p,) = jwlwzdx ...... (15.87)
0



Finite Element Method
— Variational Principle

The functional for (15.85) can be written as

(@)= j_%dx_ zjq)(x)/’v_(x)dx ...... (15.88)

0 &

Integrating the first integral on the RHS of (15.88) and using the boundary
conditions (15.86), we get

|(@)_I(d@j i _zj'(p Mg (15.89)

dx £

The function @(x) that minimized (15.89) is the solution of (15.85).

dx_j@(x)pv(x)dx ...... (1590)

0

1
—&

|E(@):%g|(cp):§2 o

Notice that the functional (15.90) is the electric potential energy.



Finite Element Method
— Variational Principle

The potential function @(x) in each i (6) J
element can be expressed by using
linear interpolation: ® ®
D -
_ i ...(15.91
D(x)=;+ X; X (x=%) =+ ) Figure 15.13 Element (e) with end points i and j
Another way of writing (15.91) is
®(x)=N;(x), + N, (x)@, ...(15.92)
where
R EA (15.93a)
COX X
N =S (15.93b)
Xj — X; X
Ni(x) and N (x) are called shape functions. X X X; ]

Figure 15.14 Linear interpolation



Finite Element Method
— Variational Principle

From (15.92) and (15.93)

dd 1 1 1
- — 1)D . = O
™ X,—xi( 1)‘1’|+XJ_XI()<DJ xj—xi( R (15.98)
From (15.90)
J' W CD —®, fdx _[[N (x)D, + Nj(x)CDjlov(x)dx ------ (15.99)
which can be further simplified
o L @ o N e 15.100
I ng D. J.N PV(X)ZJX (OR J.N (X)dx ( )
The total functional can be obtained by summing up the functional for all the elements
_ Z,(e) ...... (15.101)

elements

The algebraic equations are then obtained by minimizing (15.101) with respect to
each of the unknown potentials:

ol
5qu =0, @ (unknown node potential). - (15.102)
k




Finite Element Method
— Solve the problem

Assumed =1, p=1, ¢=1inFigure 15.11 and let the domain be divided into 2
elements as shown in Figure 15.16

For element (1)
) (2) (2)
X, =0 X; ZE @ ® @ >
1 0 1
X
x—-0
N, () =£—=1-2x N (x)=7—=2
~-0 ~_0
2 2
D =y =0; D =D,
1 Qj 1/2 1./2
| :Egl—E—OI (1-2x)dx - j 2xdx
~_0 o 0
2
1/2
X’ Dy
ZCD—O—CD 27 :CD—T

0



Finite Element Method
— Solve the problem

For element (2)

X, =—, X; =1

1-= 1/2 1/2




Finite Element Method
— Solve the problem

For minimum /.

Ue _o, 4a, -2 =0
1
@:g

The exact answer for the problem is:

@ :%X(l_x) ...... (15.105)
q)(lj I (15.106)
2)7 222" 8

The exact answer given in (15.105) coincides with the approximate answer by
finite element method in (15.103); however it may be noted that this is not true
in the entire domain. For example, @(1/4) by exact answer (15.105) is

cp(lj :11(1-1j 3 (15.107)
4 24 4 32



Finite Element Method
— Solve the problem

By finite element method we note that x=1/4 is not an end point of an elementbut it is
in the domain of element(1). In this domain

N;(x)=1-2%, N,(x)=2x

@ (x)=N;(x)®,+N;(x)®,

J
= (1—2x)cD + 2ch3

B T T D B L (15.108)
4 4 4)8 32
The source of the error is obvious, the exact solution shows that the potential
varies quadratically where as the finite element method we used assumed a

linear interpolation. The shape functions are obtained based on (15.94) and are

called First order shape functions. One can define second order shape functions
based on quadratic interpolation.



Questions for the week

1. No questions for the week 2
2. Home work: P15.6 — P15.10



