
Computational Electromagnetics
Week 2

Instructor:
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What will be covered today

• Moment Method

• Finite Element Method and Shape 
Function
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Moment Method
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Moment method is one of weighted residual  method  discussed in the previous class.
Let the problem be stated as:

where L is an operator, f is the unknown function and g is excitation. The problem 
becomes; to find f given L and g and the boundary conditions.

Assume
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where fn are the basic functions chosen for the 
problem.
Choose the weight functions  wm for the problem to minimize the residual. Choose 
the inner product for the problem. 

Let us illustrate the process by giving a simple example.



Moment Method
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Solve the following problem by moment method.

with the domain given as 0 < x < 1 and the boundary conditions are given by  

By moment method, substitute (15.66) in (15.65), multiply by wm and form the 
inner product. 
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The exact answer to the problem is
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where   is the symbol for the inner product. 
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Moment Method
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For the problem, the inner product of 2 functions can be expressed as

Using (15.69) in (15.68) one obtains

(1) Pulse function  P(x)

Now we need to choose the wm and fn for the problem. This needs some level of skills.
Here we define two sub-sectional basic functions.

Figure 15.7 sketches this function.
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Moment Method
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The center of the pulse function can be shifted  to x = xn by defining

(2) Triangle function  T(x-xn)

Figure 15.8 sketches this function.
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Moment Method
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After choosing wm and fn in (15.70), the result may be written as an algebraic equation

where

Equation (15.74) yields N equations for the N unknowns n. 
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We know that integration, when an impulse function is in the integral, is given by
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Thus we can get away by choosing fn such that L fn is a sum of impulses.



Moment Method
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This will be the result if fn =T(x-xn) and L is a second order derivative shown in Figure 
15.9

Let us illustrate the calculations by choosing N =2 in (15.66). The weight functions 
w1 and w2, the basis functions T 1and T2 are sketched in Figure 15.10
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Moment Method
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1 and  2 can be obtained by two algebraic equations.

The first equation is

. . . . . . (15.78)
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Moment Method
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Solving 1 and  2, we get
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Similarly, we can get the second equation
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So the approximate solution for moment method is
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The accuracy can be further improved by choosing a larger value for N but the 
number of equations will increase as well.



Finite Element Method 
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Two aspects to the finite element method

(ii) The second aspect of the finite 
element method is in the technique of 
generating the algebraic equations. 

(i) A continuous domain is broken up into a finite number of elements. Figure 15.11 
shows an example. The discrete points are the vertices of the triangle.

 e

The method aims to find the unknown 
potentials at the finite number of discrete 
points.



Finite Element Method 
– Variational Principle
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provided the operator L is positive definite, which can be satisfied if 

. . . . . . (15.82)

Instead of solving the equilibrium equation (15.65) directly, we try to find the function f
that extremizes its ‘functional’ I(f). For a functional the argument itself is a function. 
The functional for (15.65), in the language of linear spaces is given by 

In the above X, X1, X2 are arbitrary functions that satisfy the same boundary 
conditions. Refer to table 15.3 for the common partial differential equations of 
electromagnetics and their functionals.
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Finite Element Method 
– Variational Principle
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Let us use an example to illustrate application of (15.82).  Figure 15.12 gives a one 
dimensional example.

with the boundary conditions
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The plate dimensions are assumed to be 
large compared to d. Poission’s equation, 
which can be simplifies to the one 
dimensional equation
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Finite Element Method 
– Variational Principle
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The functional for (15.85) can be written as

The function (x) that minimized (15.89) is the solution of (15.85).

Integrating the first integral on the RHS of (15.88) and using the boundary 
conditions (15.86), we get
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Notice that the functional (15.90) is the electric potential energy.
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Finite Element Method 
– Variational Principle
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The potential function (x) in each 
element can be expressed by using 
linear interpolation:

Figure 15.13 Element (e) with end points i and j
. . . (15.91)

Figure 15.14 Linear interpolation

. . . (15.92)
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Another way of writing (15.91) is 
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Ni(x) and Nj(x) are called shape functions.



Finite Element Method 
– Variational Principle

16

From (15.92) and (15.93)
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From (15.90)

which can be further simplified
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The total functional can be obtained by summing up the functional for all the elements
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The algebraic equations are then obtained by minimizing (15.101) with respect to 
each of the unknown potentials:
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Finite Element Method 
– Solve the problem
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Assume d = 1,  = 1,   = 1 in Figure 15.11 and let the domain be divided into 2 
elements as shown in Figure 15.16
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Finite Element Method 
– Solve the problem
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For element (2)
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Finite Element Method 
– Solve the problem
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The exact answer for the problem is:
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The exact answer given in (15.105) coincides with the approximate answer by 
finite element method in (15.103); however it may be noted that this is not true 
in the entire domain. For example,  (1/4) by exact answer (15.105) is
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Finite Element Method 
– Solve the problem
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By finite element method we note that x=1/4 is not an end point of an elementbut it is 
in the domain of element(1). In this domain

The source of the error is obvious, the exact solution shows that the potential 
varies quadratically where as the finite element method we used assumed a 
linear interpolation. The shape functions are obtained based on (15.94) and are 
called First order shape functions. One can define second order shape functions 
based on quadratic interpolation.
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1. No questions for the week 2

2. Home work: P15.6 – P15.10

Questions for the week


