
Chapter 2

Trees and Connectivity

2.1 Nonseparable Graphs

1. Proof. Suppose first that u and v are two vertices in a nonseparable graph G of

order 3 or more. By Theorem 2.3, there is a cycle C of order 3 or more containing u
and v. There are two internally disjoint u − v paths on C.

For the converse, suppose that for every two vertices x and y of G, there are two

internally x−y paths. Thus G is connected. Assume, to the contrary, that G contains

a cut-vertex v. By Theorem 2.2, G contains two vertices u and w such that v lies on

every u − w path of G. Then G does not contain two internally disjoint u − w paths,

which is a contradiction.

2. Proof. Since H is clearly connected, it remains to show that H contains no cut-

vertices. Let x ∈ V (H). If x = v, then H − x = G, which is connected. If x ∈ V (G),

then G − x is connected since G is nonseparable. Since v is adjacent to at least one

vertex of G − x, it follows that H − x is connected. Thus H has no cut-vertices.

3. Proof. Let H be the graph obtained by adding two vertices u and w to G and joining

u to the two vertices of U and joining w to the two vertices of W . By Corollary 2.5,

H is nonseparable. By Corollary 2.4, H contains two internally disjoint u − w paths.

Deleting u and w from these two paths produces two disjoint paths connecting the

vertices of U and the vertices of W .

4. (a) Proof. Suppose first that G contains disjoint k-cycles C and C′. Let u1, u2 ∈
V (C) and w1, w2 ∈ V (C′). Let U = {u1, u2} and W = {w1, w2}. By Corol-

lary 2.6, G contains two disjoint paths P1 and P2 connecting the vertices of U
and the vertices of W . Let xi be the last vertex of Pi (i = 1, 2) belonging to C
and let yi be the first vertex of W following xi on Pi. For i = 1, 2, let Qi be the

xi − yi subpath of Pi. Suppose that the length of Qi is ℓi ≥ 1. Since there is an

x1−x2 path on C of length at least
⌈

k
2

⌉

and a y1−y2 path on C′ of length at least
⌈

k
2

⌉

, it follows that G contains a cycle of length at least 2
⌈

k
2

⌉

+ ℓ1 + ℓ2 ≥ k + 2,

which is a contradiction.

Next assume that G contains k-cycles C and C′ having exactly one vertex v in

common. Suppose that u ∈ V (C) and w ∈ V (C′), where u, w 6= v. Since v is not
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a cut-vertex of G, there is a u − w path P in G not containing v. Let x be the

last vertex of P belonging to C and let y be the first vertex of C′ following x on

P . Let Q be the x − y subpath of P , where Q has length ℓ. Then G contains a

cycle of length at least 2
⌈

k
2

⌉

+ ℓ ≥ k + 1, again, producing a contradiction.

(b) There are two cycles in the graph K2,4 that have only two vertices in common.

5. Proof. Since v is a cut-vertex of G, it follows that G − v is disconnected. Let

u, w ∈ V (G) − {v}. We show that there is a u − w path in G not containing v, which

implies that v is not a cut-vertex of G. We consider two cases.

Case 1. u and w belong to distinct components of G−v. Then u and w are nonadjacent

in G and so uw is an edge in G. Thus v is not on the u − w path (u, w) in G − v.

Case 2. u and w belong to the same component G1 of G − v. Let G2 be another

component of G and let x ∈ V (G2). Then neither u nor w is adjacent to x in G. This

implies that ux and wx are edges in G. Thus (u, x, w) is a u−w path in G that does

not contain v.

6. No. In the graph G = K4 − e, where V (G) = {u, v, w, x} with uv /∈ E(G), let

P = (u, w, x, v). Then there is no u − v path Q such that P and Q are internally

disjoint.

7. (a) Proof. By Theorem 2.3, every two vertices of a nonseparable graph lie on a

common cycle. For the converse, suppose that G is a graph of order 3 or more

such that every two vertices u and v of G lie on a common cycle. Then there exist

two internally disjoint u − v paths in G. By Corollary 2.4, G is nonseparable.

Next, let G be a nonseparable graph, where e = uv and f = xy are two edges

of G. The edges e and f are subdivided by introducing two new vertices s and t,
resulting in the four new edges us, sv, xt and ty, producing a nonseparable graph

H . Thus s and t lie on a common cycle C′. Since degH s = degH t = 2, the edges

us, sv, xt and ty lie on the cycle C′. Replacing us and sv by e and replacing

xt and ty by f produces a cycle C in G containing e and f . For the converse,

suppose that G is a connected graph of order 3 or more with the property that

every two edges of G lie on a common cycle. Let u and v be two vertices of G.

Let e = ux and f = vy be distinct edges of G incident with u and v, respectively.

Then e and f lie on a common cycle C of G. So u and v lie on C. Thus G is

nonseparable.

A similar proof can be given of the statement: A graph G of order 3 or more

is nonseparable if and only if every vertex and edge of G lie on a common cycle

of G.

(b) The graph H is complete if and only if G is nonseparable.

Proof. First, if G is nonseparable, then every two vertices of G lie on a common

cycle of G. Thus every two vertices of H are adjacent and so H is complete. For

the converse, suppose that H is complete. Then every two vertices of H are

adjacent. Thus every two vertices of G lie on a common cycle of G and so G is

nonseparable.

8. Proof. Since G is connected (by Exercise 10(a) in Section 1.3), it remains to show

that G contains no cut-vertex. Assume, to the contrary, that G contains a cut-vertex
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v. Then G contains (necessarily nonadjacent) vertices u and w such that v lies on

every u−w path in G. Thus deg u + deg w ≥ n. Let U be the set of vertices adjacent

to u and let W be the set of vertices adjacent to w. Since G has order n, the set U ∩W
contains at least two vertices. Let v1, v2 ∈ U ∩ W . At least one of these vertices, say

v1, is different from v. Then (u, v1, w) is a u−w path in G not containing v, contrary

to the hypothesis.

9. The statement is false. The graph G = K2,3 is itself a block of order 5 in G and there

is no cycle in G containing all the vertices of G.

10. k ≥ ℓ + 1. Proof. We proceed by induction on ℓ. If ℓ = 0, then k = 1; while if

ℓ = 1, then k ≥ 2. Assume, for an integer ℓ ≥ 2, that every connected graph with b
blocks and c cut-vertices, where 0 ≤ c < ℓ, satisfies b ≥ c + 1. Let G be a connected

graph with k blocks and ℓ cut-vertices. By Theorem 2.8, G contains a cut-vertex v
with the property that, with at most one exception, all blocks containing v are end-

blocks. Since G has at least two cut-vertices, exactly one block B containing v is not

an end-block. For each end-block B′ containing v, delete V (B′)− {v} from G. In the

resulting graph H , the vertex v is not a cut-vertex. Thus H has j blocks and ℓ − 1

cut-vertices, where j ≤ k − 1. By the induction hypothesis, j ≥ (ℓ− 1) + 1 = ℓ and so

k ≥ j + 1 ≥ ℓ + 1.

11. The statement is false. See Figure 2.1.
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Figure 2.1: The graph in Exercise 11

12. (a) Proof. Consider the wheel W2k+2 = C2k+2 ∨ K1, where v is the central vertex

of W2k+2. Then rad(W2k+2) = 1 and rad(W2k+2 − v) = rad(C2k+2) = k + 1.

Thus rad(W2k+2 − v) = rad(W2k+2) + k.

(b) Proof. First observe that there are graphs G for which rad(G−v) = rad(G)−1

for some vertex v of G that is not a cut-vertex. For example, for an end-vertex

v of P2k, rad(P2k − v) = rad(P2k−1) = k − 1 = rad(P2k) − 1.

Now, let G be a nontrivial connected graph and let v be a vertex of G that

is not a cut-vertex. Let u ∈ V (G) and let w be a vertex of G that is distinct

from u. Suppose that dG(u, w) = k. If there exists a u − w geodesic in G
that does not contain v, then dG−v(u, w) = k. If, on the other hand, every

u − w geodesic in G contains v, then dG−v(u, w) > k. This implies that if u is

a vertex of G with eG(u) = k and dG(u, v) 6= k, then eG−v(u) ≥ k. Suppose

that dG(u, v) = k and P = (u = u0, u1, . . . , uk = v) is a u − v geodesic in G.

Then dG(u, uk−1) = dG−v(u, uk−1) = k − 1. Thus eG−v(u) ≥ k − 1. Therefore,

rad(G − v) ≥ rad(G) − 1.

(c) Proof. By assumption, H is a connected induced subgraph of G of minimum

order having radius r. For a non-cut-vertex v of H , rad(H − v) 6= r. If rad(H −
v) < r, then by (b), rad(H − v) = r − 1. If rad(H − v) ≥ r + 1, then there are
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induced subgraphs of H − v whose radius is 1. Since the removal of any non-cut-

vertex of a connected graph can reduce the radius by at most 1 (by (b)), it follows

that repeated deletion of non-cut-vertices from H − v will result in an induced

subgraph of H − v (and therefore of G) with radius r. This is a contradiction.

2.2 Trees

1. Proof. Since G is a connected graph of order 3 or more, either deg u ≥ 2 or deg v ≥ 2,

say deg v ≥ 2. Then there is a vertex w different from u that is adjacent to v. Assume,

to the contrary, that v is not a cut-vertex. Thus G− v is connected, and so there is a

u − w path P in G − v. However then, P together with v and the two edges uv and

vw form a cycle containing the bridge uv. This contradicts Theorem 2.10.

2. The statement is false. For example, let G be the graph consisting of two components,

one of which is P2 and the other is obtained from K3 by adding a pendant edge at

each vertex of K3.

3. (a) The only example is a double star where each central vertex has degree 4.

(b) Let T be a tree of order n where 75% of the vertices have degree 1 and the

remaining 25% vertices have degree x ≥ 2. Then (3n/4) · 1+ (n/4) ·x = 2(n− 1).
Solving for n, we have n = 8/(5− x). The only possible solutions for n are when

x = 3 or x = 4. If x = 3, then T = K1,3; while if x = 4, then T is the tree in (a).

4. Let T be a tree of order n containing x vertices of degree 3. Thus T has n − x end-

vertices. Therefore, 3x+1 · (n−x) = 2(n−1). Solving for x, we obtain x = (n−2)/2.

5. There are 20 forests of order 6 (see Figure 2.2).
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Figure 2.2: The 20 forests of order 6 in Exercise 5
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6. Proof. Assume first that G is a forest. Then every induced subgraph H of G is a

forest. If H contains a nontrivial component (a tree), then H contains at least two

end-vertices. Otherwise, H contains at least one isolated vertex. In either case, G
contains a vertex of degree at most 1. For the converse, assume that G is not a forest.

Then G contains a cycle C. Thus G[V (C)] is an induced subgraph of G that contains

the spanning cycle C. This implies that every vertex of G[V (C)] has degree at least

2.

7. Claim: A graph G is a forest if and only if every connected subgraph of G is an

induced subgraph of G.

Proof. We first show that every connected subgraph of a forest F is an induced

subgraph of F . Assume, to the contrary, that this is not the case. Then there is

a connected subgraph H of F that is not an induced subgraph of F . This implies

that H contains two nonadjacent vertices u and v that are adjacent in F . Since H is

connected, H and therefore F contains u − v path P . However then P together with

uv is a cycle in F , which is impossible.

For the converse, suppose that G is a graph that is not a forest. Then G has a cycle

C. Let e be an edge of C. Then C − e is a connected subgraph of G with vertex set

V (C). Since G[V (C)] contains e, it follows that G[V (C)] 6= C − e. Thus C − e is not

an induced subgraph of G.

8. Proof. Assume, to the contrary, there exists a connected graph G whose vertices

have even degrees but G contains a bridge e = uv. Then G − e contains exactly two

components, one of which contains u and the other contains v. Then each of the

components of G − e has exactly one odd vertex, which is impossible.

9. Proof. Assume first that at least one of e1 and e2 is not a bridge, say e1 is not a

bridge. Then G− e1 is connected. Thus G− e1 − e2 = (G− e1)− e2 has at most two

components.

For the converse, suppose that e1 and e2 are bridges of G. Since e1 is a bridge,

G − e1 has exactly two components, say H and F . We may assume that e2 ∈ E(H).

Then e2 is a bridge of H , implying that H−e2 consists of two components. Therefore,

G − e1 − e2 has three components.

10. Proof. Let G be a 3-regular graph. If G has a bridge e, then each vertex incident

with e is a cut-vertex. For the converse, suppose that G has a cut-vertex u. We may

assume that G is connected, for otherwise, consider the component of G containing

u. Then G − u is disconnected and so G − u has at least two components. Since

deg u = 3, it follows that G − u has at most three components. If G − u has three

components, say G − u = G1 + G2 + G3, then u is adjacent to exactly one vertex vi

in Gi and each edge uvi (1 ≤ i ≤ 3) is a bridge of G. If G − u has two components,

say G− u = G1 + G2, then u is adjacent to exactly one vertex in G1 or to exactly one

vertex in G2, say u is adjacent to exactly one vertex v1 in G1. Then uv1 is a bridge

of G.

11. Proof. By Theorem 2.9, the center of every graph lies in a block. Since the only

blocks of T are K2, the only possible centers are K1 and K2.
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12. (a) Proof. Let P be a longest path in T , say P is a u − v path. Thus the length

of P is diam(T ). Then u and v are end-vertices of T and P − u − v is a path

of length diam(T ) − 2 in T ′. Thus diam(T ′) ≥ diam(T ) − 2. Assume, to the

contrary, that T ′ contains a longest path Q of length j, where j ≥ diam(T ) − 1.

Suppose that Q is an x− y path. Each of x and y is adjacent to an end-vertex of

T , for otherwise, x and y are end-vertices of T and so do not belong to T ′. This

implies that T contains a path of length diam(T ) + 1, which is impossible.

Certainly, no central vertex of T is an end-vertex of T . Thus each central

vertex of T belongs to T ′. Let u ∈ V (T ′) and suppose that eT (u) = k. For

each vertex v of T such that dT (u, v) = k, the vertex v is an end-vertex of T .

Hence eT ′(u) ≤ k − 1. Let w be the neighbor of v on the u − v path in T . Then

dT ′(u, w) = k − 1. Thus eT ′(u) = k − 1. Therefore, for every vertex u in T such

that u is not an end-vertex of T , it follows that eT ′(u) = eT (u)−1. In particular,

if u is a central vertex of T , then eT (u) = rad(T ) = rad(T ′) + 1.

Let u be a central vertex of T . Then u is not an end-vertex of T . As we saw,

eT ′(u) = eT (u)− 1. Then any central vertex of T is a central vertex of T ′. Thus

Cen(T ) = Cen(T ′).

(b) Proof. Let T1 be the tree obtained from T by deleting the end-vertices of T ,

let T2 be the tree obtained by deleting the end-vertices of T1 and so on until we

arrive at a tree Tℓ which is either K1 or K2. Then diam(T ) = diam(Tℓ) + 2ℓ
and rad(T ) = rad(Tℓ) + ℓ. If Tℓ = K1, then diam(Tℓ) = 0 and rad(Tℓ) = 0.

So diam(T ) = 2ℓ and rad(T ) = ℓ. Hence diam(T ) = 2 rad(T ) if Cen(T ) = K1.

If Tℓ = K2, then diam(Tℓ) = 1 and rad(Tℓ) = 1. So diam(T ) = 2ℓ + 1 and

rad(T ) = ℓ+1. Thus diam(T ) = 2(rad(T )−1)+1 = 2 rad(T )−1 if Cen(T ) = K2.

13. (a) Proof. Since b(vi) ≤ deg vi for 1 ≤ i ≤ n, it then follows by the First Theorem

of Graph Theory (Theorem 1.4) that

n
∑

i=1

b(vi) ≤
n

∑

i=1

deg vi = 2m,

as desired.

(b) Proof. First, assume that
∑n

i=1 b(vi) = 2m. By (a), b(vi) = deg vi for 1 ≤ i ≤
n. This implies that every edge of G is a bridge and so G is a tree.

For the converse, assume that G is a tree. Then every edge of G is a bridge.

This implies that b(vi) = deg vi for 1 ≤ i ≤ n. It then follows by the First

Theorem of Graph Theory (Theorem 1.4) that
∑n

i=1 b(vi) = 2m.

14. Claim: T = K1 or T = P4.

Proof. Let T be a tree of order n. Since T and T are both trees of order n, it follows

that the sizes of T and T are n − 1. Thus n − 1 + n − 1 = 2(n − 1) =
(

n
2

)

=
n(n−1)

2 .
Hence 4(n − 1) = n(n − 1) and so (n − 1)(n − 4) = 0, implying that n = 1 or n = 4.

If n = 1, then T = K1. If n = 4, then T = P4 or T = K1,3. Since P4 = P4 and K1,3

is not a tree, it follows that T = P4.

15. Proof. Since each end-block of a tree contains a pendant edge and thus a leaf, the

result follows from Theorem 2.8.
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16. Proof. Assume, to the contrary, that dk = deg vk >
⌈

n−1
k

⌉

for some integer k with

1 ≤ k ≤ n and so

deg vk ≥

⌈

n − 1

k

⌉

+ 1 ≥
n − 1

k
+ 1 =

n + k − 1

k
.

Thus

2n − 2 =

n
∑

i=1

deg vi =

k
∑

i=1

deg vi +

n
∑

i=k+1

deg vi

≥ k

(

n + k − 1

k

)

+ (n − k) = 2n− 1,

which is a contradiction.

17. Proof. Suppose that the order of G is n and the size of G is m. Since G−u and G−v
are both trees of order n− 1, the size of each of G − u and G− v is n− 2. Therefore,

m − deg u = n − 2 and m − deg v = n − 2. Thus deg u = deg v = m − (n − 2).

18. Proof. Assume, to the contrary, that there exists a tree T containing two distinct

edges e1 and e2 such that the two components of T − e1 are isomorphic and the two

components of T −e2 are isomorphic. Let T1 and T2 be the two components of T −e1.

Since T1
∼= T2, these two trees have the same size, say k. Thus the size of T is 2k + 1.

The edge e2 belongs either to T1 or to T2. Without loss of generality, assume that

e2 belongs to T2. Since one component of T − e2 contains T1 and e1, the size of one

component of T − e2 is at least k + 1 and the size of the other component of T − e2

is therefore at most k − 1. Thus the two components of T − e2 are not isomorphic,

which is a contradiction.

19. Proof. The graph Cn+2 is (n − 1)-regular. Since δ(Cn+2) = n − 1, it follows by

Theorem 2.20 that T is isomorphic to a subgraph of Cn+2.

20. Proof. Since T is not a star, the order n of T is at least 4. We proceed by induction

on n ≥ 4. If n = 4, then T = P4. Since P 4 = P4, the result is true for n = 4. Assume

that for every tree T of order n − 1 ≥ 4 that is not a star, T ⊆ T .

Let T be a tree of order n that is not a star. We first show that there is an end-

vertex v ∈ V (T ) such that T − v is not a star. If T = Pn, then let v be an end-vertex

of T . So we may assume that T 6= Pn and let w ∈ V (T ) such that deg w ≥ 3. If every

vertex adjacent to w is not an end-vertex of T , let v be any end-vertex of T ; otherwise,

let v be an end-vertex of T that is adjacent to w. Thus T − v is not a star.

By the induction hypothesis, T−v ⊆ T − v. Hence T−v is isomorphic to a subgraph

F of T − v. Let φ be an isomorphism from T − v to F . Let u be the vertex in T that

is adjacent to v. We consider two cases.

Case 1. φ(u) 6= u. Since v is adjacent to φ(u) in T , we can extend the isomorphism φ
from T −v to F to an isomorphism from T to a subgraph F ′ of T by defining φ(v) = v.

Case 2. φ(u) = u. Since T is not a star, there exists an end-vertex x in T such that x
is not adjacent to u in T . Define an isomorphism φ∗ from T to a subgraph F ′ of T by
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defining φ∗(v) = φ(x), φ∗(x) = v and φ∗(w) = φ(w) for all w ∈ V (T − v−x). Observe

that if x is a adjacent to a vertex y in T , then v is adjacent to φ(y) in T . Moreover,

φ(x) is adjacent u in T .

21. Claim. The 4-cycle C4 is the only graph with this property.

Proof. First, observe that if G = C4 and S is a set of three vertices of G, then

G[S] = P3. Suppose then that G 6= C4. If G is a tree, then G cannot have three

or more end-vertices. Thus G = Pn = (v1, v2, . . . , vn) for some n ≥ 4. However,

G[{v1, v2, v4}] = K2 + K1, which is not a tree. If G is not a tree, then G contains

cycles. Let Ck = (v1, v2, . . . , vk = v1) be a smallest cycle in G. If k = 3, then

G[{v1, v2, v3}] = K3, which is not a tree. If k ≥ 5, then G[{v1, v2, v4}] = K2 + K1,

which is not a tree. Thus k = 4. Since G 6= C4, there is a vertex v ∈ V (G) − V (Ck)

such that v is adjacent a vertex in Ck, say v is adjacent to v1. Then v is adjacent to

neither v2 nor vk as G contains no triangles. So G[{v, v2, vk}] = K3, which is not a

tree.

2.3 Spanning Trees

1. See Figure 2.3.
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Figure 2.3: The trees in Exercise 1

2. (a) Let T be a tree with vertex set V (T ) = {1, 2, . . . , n}, n ≥ 3, that has con-

stant Prüfer code (a1, a2, . . . , an) where ai = ℓ for some ℓ ∈ V (T ) for 1 ≤
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i ≤ n. Let V1 = V (T ) − {ℓ} = {b1, b2, . . . , bn−1}, where b1 < b2 < . . . <
bn−1. Then b1, b2, . . . , bn−2 are end-vertices adjacent to the vertex ℓ. Removing

b1, b2, . . . , bn−2 from T , we obtain K2 containing the edge bn−1ℓ. Thus every

vertex in V1 is adjacent to the vertex ℓ and so T = K1,n−1 whose central vertex

is ℓ.

(b) Let T be a tree with vertex set V (T ) = {1, 2, . . . , n}, n ≥ 3, that has Prüfer code

(a1, a2, . . . , an) where ai ∈ {ℓ1, ℓ2} for some ℓ1, ℓ2 ∈ V (T ) for 1 ≤ i ≤ n, ℓ1 6= ℓ2

and each of ℓ1 and ℓ2 appears at least once in (a1, a2, . . . , an). In this case, n ≥ 4.

Let V1 = V (T ) − {ℓ1, ℓ2} = {b1, b2, . . . , bn−2}, where b1 < b2 < . . . < bn−2. We

know that ℓ1 and ℓ2 are not end-vertices, while b1, b2, . . . , bn−3 in V1 are end-

vertices, each of which is adjacent to ℓ1 or to ℓ2. Removing all b1, b2, . . . , bn−3

from T , we obtain P3 whose central vertex is bn−2 ∈ {ℓ1, ℓ2}. Thus every vertex

in V2 is adjacent to ℓ1 or to ℓ2, which implies that T is a double star whose central

vertices are ℓ1 and ℓ2.

(c) Let T be a tree of order n ≥ 3. Observe that if T contains a vertex ℓ whose

degree is 3 or more, then ℓ appears twice in the Prüfer code of T . This implies

that ∆(T ) ≤ 2. On the other hand, T is connected and so T = Pn.

3. The labeled tree in Figure 2.4 has Prüfer code (4, 5, 7, 2, 1, 1, 6, 6, 7).
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11 10 9

3 4 5 7 6 1 2 8

Figure 2.4: The tree in Exercise 3

4. Since seven numbers appear twice each and one number appears three times, the

length of the Prüfer code is 17. However, the length of the Prüfer code of a tree of

order n is n−2, so n−2 = 17 and n = 19. Thus the number of leaves is 19−7−1 = 11.

Also, by Theorem 2.14, n1 = 2 + n3 + 2n4 = 2 + 7 + 2 · 1 = 11.

5. Since every vertex v of a tree T appears deg v − 1 times in its Prüfer code, it follows

that the degree sequence of T is 4, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1.

6. (a) If G contains three or more u − v paths for two distinct vertices u and v, then

G contains at least two cycles, which contradicts to the fact that G has cycle

rank 1.

(b) The statement in (a) is false if G has cycle rank 2. Let the partite sets of G = K2,3

be U = {u1, u2} and W = {w1, w2, w3}. Then the graph G has order n = 5 and

size m = 6. Thus m−n +1 = 2 and G has cycle rank 2. There are three u1 −u2

paths in G.

7. Proof. If G is a unicyclic graph of order n, then G has size n and at least three

vertices of G lie on a cycle of G. Hence if sn : d1, d2, . . . , dn is a degree sequence of G,

then 1 ≤ di ≤ n− 1 for 1 ≤ i ≤ n, at most n− 3 terms of sn are 1 and
∑n

i=1 di = 2n.

We verify the converse by induction. Suppose that d1, d2, d3 is a sequence of integers

with 1 ≤ di ≤ 2 for 1 ≤ i ≤ 3 such that
∑3

i=1 di = 2 · 3 = 6. Then the sequence
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is necessarily 2, 2, 2, which is the degree sequence of the unicyclic graph K3. The

statement is therefore true for n = 3. Assume for an integer k ≥ 3 that if sk :

d1, d2, . . . , dk is a sequence of integers with 1 ≤ di ≤ k − 1, at most k − 3 terms of

which are 1 which satisfies
∑k

i=1 di = 2k, then sk is a degree sequence of a unicyclic

graph of order k. Let

sk+1 : d1, d2, . . . , dk+1

be a sequence of integers with 1 ≤ di ≤ k, at most k − 2 terms of which are 1 which

satisfies
∑k+1

i=1 di = 2k + 2. If every term di = 2, then sk+1 is a degree sequence of

Ck+1, which is a unicyclic graph. Suppose that not all integers di are 2. Then some

term is 1, say dk+1 = 1 and some integer dj is 3 or more. Let dk be the maximum

term in sk+1. Then dk ≤ k. If dk = k, then no other term has this value since
∑k+1

i=1 di = 2k + 2. Let

s′ : d′1, d
′
2, . . . , d

′
k

be the sequence where d′i = di for 1 ≤ i ≤ k − 1 and d′k = dk − 1. Then 1 ≤

d′i ≤ k − 1 for 1 ≤ i ≤ k,
∑k

i=1 d′i = 2k and at most k − 3 terms of s′ are 1. By

the induction hypothesis, s′ is the degree sequence of some unicyclic graph H with

V (H) = {v1, v2, . . . , vk} where deg vi = d′i. Let G be the graph obtained from H by

adding a new vertex vk+1 which is adjacent to vk. Then sk+1 is the degree sequence

of the unicyclic graph G.

8. (a) Let T be any spanning tree of G that is a distance-preserving tree, say from

the vertex v. Let x, y ∈ V (T ) such that dT (x, y) = diam(T ). Now dT (x, v) =

dG(x, v) ≤ eG(v) and dT (y, v) = dG(y, v) ≤ eG(v). Thus

diam(T ) = dT (x, y) ≤ dT (x, v) + dT (v, y)

≤ 2eG(v) ≤ 2 diam(G).

(b) The statement is true. Let k be a positive integer. Consider G = Kk+2. Then

T = Pk+2 is a spanning tree of G and diam(T ) = k + 1 > k · 1 = k diam(G).

9. See Figure 2.5.
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Figure 2.5: The graphs in Exercise 9

10. (a) Suppose that T is a spanning tree of G that is distance-preserving from some

vertex of G. The fact that diam(G) ≤ diam(T ) is obvious. For diam(T ) ≤
2 diam(G), see the proof in Exercise 8(a).
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(b) Let G be the graph of order 2a + 1, where

V (G) = {v0, v1, . . . , va} ∪ {u1, u2, . . . , ua}.,

such that

E(G) = {vivi+1 : 0 ≤ i ≤ a − 1} ∪ {uiui+1 : 1 ≤ i ≤ a − 1} ∪ {uivi : 1 ≤ i ≤ a}

∪{viui+1 : 0 ≤ i ≤ a − 1}.

(See Figure 2.6 for the graph G when a = 4.) Let E denote the edge set of the

path

P = (v0, v1, · · · , va).

For a ≤ b ≤ 2a, we define a spanning tree Tb of G such that Tb is distance-

preserving from v0. Then

E(Ta) = E ∪ {v1u1} ∪ {viui+1 : 1 ≤ i ≤ a − 1}.

For b = a + j with 1 ≤ j ≤ a, let

Qj = (v0, u1, · · · , uj)

and

E(Tb) = E ∪ E(Qj) ∪ {uivi+1 : j ≤ i ≤ a − 1}.

See Figure 2.6 for the trees Tb for a ≤ b ≤ 2a.
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Figure 2.6: The graphs in Exercise 10(b)
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11. See Figure 2.7.
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Figure 2.7: The graphs in Exercise 11

12. (a) The matrices D and D − A of G are

D =













2 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 3













D − A =













2 −1 0 0 −1

−1 3 −1 0 −1

0 −1 2 −1 0

0 0 −1 2 −1

−1 −1 0 −1 3













To calculate a cofactor of D − A, we delete the entries in row 5 and column 5

and obtain

(−1)5+5

∣

∣

∣

∣

∣

∣

∣

∣

2 −1 0 0

−1 3 −1 0

0 −1 2 −1

0 0 −1 2

∣

∣

∣

∣

∣

∣

∣

∣

= 11.

Consequently, there are 11 distinct spanning trees of the graph G.

(b) The distinct labeled spanning trees of G are shown in Figure 2.8
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Figure 2.8: The distinct spanning trees of a graph
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13. (a) See Figure 2.9.
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Figure 2.9: The graphs in Exercise 13

(b) Proof. A spanning tree T of G having v as an end-vertex is obtained from a

spanning tree T ′ of G− v by joining a vertex u of T ′ to v. Since G− v has order

n−1, the number of spanning trees of T −v is (n−1)(n−1)−2 = (n−1)n−3. Since

there are n − 1 vertices in T − v to join to v, the number of spanning trees of G
having v as an end-vertex is (n − 1)(n − 1)n−3 = (n − 1)n−2. Note: For n = 4,

(n − 1)n−2 = 32 = 9.

14. We use the Matrix-Tree theorem to prove that there are nn−2 distinct labeled trees of

order n.

Proof. Let tn be the number of distinct labeled trees of order n. For n ≥ 2, tn is

the number of spanning trees of Kn and so tn is any cofactor of the n × n matrix

D − A = [cij ], where cii = n − 1 and cij = −1 for all i, j with 1 ≤ i, j ≤ n and i 6= j.
Let B be the (n − 1) × (n − 1) matrix obtained from D − A by deleting row n and

column n. Then

tn = (−1)n+n det(B) = det(B).

For 2 ≤ i ≤ n − 1, replace the ith row Ri in B by Ri − R1, obtaining the matrix

B′. Observe that det(B′) = det(B). Next replace the first column C1 in B′ by
∑n−1

i=1 Ci where Ci is the ith column for 1 ≤ i ≤ n − 1, obtaining B′′. Observe that

det(B′′) = det(B′) = det(B) and B′′ = [bij ] is an upper triangular (n − 1) × (n − 1)

matrix such that b11 = 1 and bii = n for 2 ≤ j ≤ n − 1. Since det(B′′) is the product

of the entries on the main diagonal, it follows that det(B) = nn−2 and so tn = nn−2.

15. Proof. Assume first that e is an edge of a connected graph G that is not a bridge.

Then G − e is connected. Then every spanning tree of G − e is a spanning tree of G
that does not contain e.

For the converse, suppose that e is an edge that does not belong to every spanning

tree of G. Let T be a spanning tree of G not containing e. Then T + e has a cycle

containing e. Therefore, e is not a bridge.

16. By Exercise 15, an edge of F belongs to every spanning tree of G if and only if e is a

bridge of G. Thus F is a forest and so F contains no cycles.

17. Since the size of a complete graph of order n is
(

n
2

)

=
n(n−1)

2 and each spanning tree

has n−1 edges, the maximum possible number of spanning trees in a connected graph

of order n ≥ 4, no two of which have an edge in common, is
n(n−1)
2(n−1) = n

2 . (We will see

in Chapter 10 that this is attainable when n is even.)
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18. (a) Proof. Let v be an end-vertex of a spanning tree T of G. Then T − v is a

tree that is a spanning tree of G − v and so G − v is connected. Thus v is not a

cut-vertex of G.

(b) Proof. Since every tree contains at least two end-vertices, it then follows by

(a) that G contains at least two vertices that are not cut-vertices.

(c) Proof. The edges of G incident with v do not produce a cycle. Let E be the

set of edges incident with v. If there is a spanning tree of G with edge set E,

then the proof is complete; otherwise, there is an edge e1 such that E∪{e1} does

not produce a cycle. If there is a spanning tree of G with edge set E ∪{e1}, then

the proof is complete. Continuing in this manner, we obtain a spanning tree T
with E ⊆ E(T ).

(d) Proof. We show that ∆(G) ≤ 2. Assume, to the contrary, that ∆(G) = k ≥ 3.

Let v be a vertex of G with deg v = k. It then follows by (c) that G contains a

spanning tree T that contains all edges of G that are incident with v. Thus T
contains a vertex whose degree exceeds 2 and so T has more than two end-vertices.

By (a), G has more than two vertices that are not cut-vertices, a contradiction.

Therefore, as claimed ∆(G) ≤ 2. Since G is connected, G is a path or G is a

cycle. Since a cycle has no cut-vertices, G is a path.

19. For each positive integer k different from 2, we show that there is a connected graph

with exactly k spanning trees. First, a connected graph G has exactly one spanning

tree if and only if G is a tree. For k ≥ 3, the graph G = Ck has exactly k spanning

trees, as there are k possible edges that can be removed from G to obtain a spanning

tree of G. In order for G to have more than one spanning tree, G must contain a cycle

and therefore at least three spanning trees.

20. Applying the proof of Theorem 2.24, observe that the tree T can be transformed into

T ′ by a sequence T = T0, T1, . . . , Tk = T ′ of spanning trees of G such that Ti is

transformed into Ti+1 (0 ≤ i ≤ k− 1) by an edge exchange. In an edge exchange from

Ti to Ti+1, these two spanning trees have n − 2 edges in common for each i.

21. If r = t, let G = K1,r. Suppose then that 2 ≤ r < t. Let G be the graph obtained by

attaching r − 1 pendant edges to a vertex v of Kt−r+2. Then at least one vertex of

Kt−r+2 different from v is an end-vertex in a spanning tree of G. At the other extreme,

all other vertices of Kt−r+2 different from v can be an end-vertex in a spanning tree of

G, for a total of (t− r +1)+ (r− 1) = t end-vertices. This is illustrated in Figure 2.10

for r = 4 and t = 7.
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Figure 2.10: A graph G and two spanning trees of G in Exercise 21
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22. (a) The adjacency matrix A of G and the degree matrix D of G are

A =









0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0









and D =









2 0 0 0

0 2 0 0

0 0 3 0

0 0 0 1









.

Thus

D − A =









2 −1 −1 0

−1 2 −1 0

−1 −1 3 −1

0 0 −1 1









(b) A cofactor of the matrix D − A is

(−1)1+1

∣

∣

∣

∣

∣

∣

2 −1 0

−1 3 −1

0 −1 1

∣

∣

∣

∣

∣

∣

.

(c) The matrix C described in the proof of Theorem 2.25 is

C =









1 −1 0 0

−1 0 1 0

0 1 −1 1

0 0 0 −1









.

(d) The matrix C3 described in the proof of Theorem 2.25 is

C3 =





1 −1 0 0

−1 0 1 0

0 0 0 −1



.

(e) The matrix C3 · Ct
3 is

2

4

1 −1 0 0
−1 0 1 0

0 0 0 −1

3

5 ·

2

6

4

1 −1 0
−1 0 0

0 1 0
0 0 −1

3

7

5
=

2

4

2 −1 0
−1 2 1

0 0 1

3

5.

The determinant of C3 · Ct
3 is 3.

(f) Note that

det(C3 · Ct

3) =

˛

˛

˛

˛

˛

˛

1 −1 0
−1 0 1

0 0 0

˛

˛

˛

˛

˛

˛

·

˛

˛

˛

˛

˛

˛

1 −1 0
−1 0 0

0 1 0

˛

˛

˛

˛

˛

˛

+

˛

˛

˛

˛

˛

˛

1 −1 0
−1 0 0

0 0 −1

˛

˛

˛

˛

˛

˛

·

˛

˛

˛

˛

˛

˛

1 −1 0
−1 0 0

0 0 −1

˛

˛

˛

˛

˛

˛

+

˛

˛

˛

˛

˛

˛

1 0 0
−1 1 0

0 0 −1

˛

˛

˛

˛

˛

˛

·

˛

˛

˛

˛

˛

˛

1 −1 0
0 1 0
0 0 −1

˛

˛

˛

˛

˛

˛

+

˛

˛

˛

˛

˛

˛

−1 0 0
0 1 0
0 0 −1

˛

˛

˛

˛

˛

˛

·

˛

˛

˛

˛

˛

˛

−1 0 0
0 1 0
0 0 −1

˛

˛

˛

˛

˛

˛

= 0 + 12 + (−1)2 + 12 = 3.

23. For the graph G, there are two nonisomorphic spanning trees, namely K1,3 and P4.

For the graph H , there are three nonisomorphic spanning trees namely K1,5, T1 and

T2, where T1 is the tree obtained from P5 = (v1, v2, v3, v4, v5) by adding a pendant

edge at v3 and T2 is the tree obtained by subdividing an edge of K1,4.
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24. See Figure 2.11.
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Figure 2.11: The graphs in Exercise 24

25. See Figure 2.12.

26. Proof. Suppose that G has order n and assume, to the contrary, that there is a

minimum spanning tree T of G that cannot be obtained from Kruskal’s algorithm.

Let E(T ) = {e1, e2, . . . , en−1}, where w(e1) ≤ w(e2) ≤ . . . ≤ w(en−1). Among all

minimum spanning trees of T obtained by Kruskal’s algorithm, let T ′ be one whose

edges are selected in the order f1, f2, . . . , fn−1 (and so w(f1) ≤ w(f2) ≤ . . . ≤ w(fn−1))

and such that k (< n−1) is the maximum positive integer for which {e1, e2, . . . , ek} =

{f1, f2, . . . , fk}. Thus fk+1 is not in T .

Let e be an edge of the cycle C in T + fk+1 that does not belong to T ′ and let

T0 = T + fk+1 − e. Hence T0 is a spanning tree of G and so w(T ) ≤ w(T0). Thus

w(e) ≤ w(fk+1). Furthermore,

w(ek+1) ≤ w(e) ≤ w(fk+1) ≤ w(ek+1). (2.1)

Since there is equality throughout (2.1), it follows that w(ek+1) = w(fk+1). Because

e1, e2, . . . , ek+1 do not produce a cycle in G and ek+1 is an edge of minimum weight

in E(G) − {e1, e2, . . . , ek}, there is a minimum spanning tree obtained by Kruskal’s

algorithm that contains e1, e2, . . . , ek+1. This produces a contradiction.

27. Proof. Let T be a minimum spanning tree of G. First, assume that T is the unique

minimum spanning tree of G. Assume, to the contrary, that there exist edges e and f
of G such that (1) e ∈ E(G)−E(T ), (2) f is on the cycle of T +e and (3) w(f) ≥ w(e).
Then T ′ = T + e − f is a spanning tree of G with

w(T ′) = w(T ) + w(e) − w(f) ≤ w(T ),

which implies that either T ′ is another minimum spanning tree of G or T is not a

minimum spanning tree of G, a contradiction.
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Figure 2.12: The graphs in Exercise 25

For the converse, assume that the weight of each edge e ∈ E(G) − E(T ) exceeds

the weight of every edge on the cycle of T + e. We claim that T is unique, for

otherwise, let T ′ 6= T be another minimum spanning tree of G. So w(T ′) = w(T ). Let

e′ ∈ E(T ′)−E(T ) and let C′ be the cycle in T +e′. By our assumption, w(e′) > w(f ′)

for every edge f ′ in C′. Thus let f ′ ∈ E(C) and so

w(T ′) = w(T ) + w(e′) − w(f ′) > w(T ) = w(T ′),

which is a contradiction.

2.4 Connectivity and Edge-Connectivity

1. Let G = Kn1,n2,···,nk
with n1 ≤ n2 ≤ · · · ≤ nk and n =

∑k
i=1 ni. Let Vi be a partite

set of G with |Vi| = ni (1 ≤ i ≤ k).

Claim: κ(G) = λ(G) = δ(G) = n − nk.

Proof. Certainly, V (G) − Vk is a vertex-cut. So κ(G) ≤ δ(G). Let S be a set of

vertices with |S| < δ(G). Then there exist u, v ∈ V (G) − S such that u ∈ Vi and

v ∈ Vj , where i 6= j. Furthermore, uv ∈ E(G − S) and each vertex of G − S is either

adjacent to u or adjacent to v. Thus G − S is connected.

(Also, note that diamG = 2 and so λ(G) = δ(G).)

2. Proof. Observe that {v1, v2, . . . , vk} is a vertex-cut of H . Thus κ(H) ≤ k. Let W
be a set of k − 1 vertices of H . We show that H − W is connected. We consider two

cases.
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Case 1. w ∈ W . Then H − W = G − (W − {w}). Since G is k-connected and

|W − {w}| = k − 2, it follows that G − (W − {w}) is connected and so H − W is

connected.

Case 2. w /∈ W . Since G is k-connected, G − W is connected. Since |W | = k − 1, it

follows that H −W is obtained from G−W by adding a new vertex w and joining w
to a vertex of G − W . Therefore, H − W is connected.

3. (a) Proof. Let H = G∨K1, where V (H)−V (G) = {v}. We show that κ(H) ≥ k+1.

Let S be a set of vertices of H with |S| = k. There are two cases.

Case 1. v /∈ S. Since every vertex in G is adjacent to v in H , every vertex in

G − S is adjacent to v in H − S and so H − S is connected.

Case 2. v ∈ S. Then H−S = G−(S−{v}). Since κ(G) ≥ k and |S−{v}| = k−1,

it follows that G − (S − {v}) is connected.

In either case, S is not a vertex-cut of H . Thus the removal of k or fewer vertices

from H does not disconnect H and so κ(H) ≥ k + 1. Therefore, H is (k + 1)-

connected.

(b) Proof. Let H = G∨K1, where V (H)−V (G) = {v}. We show that λ(H) ≥ k+1.

Let S be a set of edges of H with |S| = k. Suppose that ℓ edges of S belong

to G, where 0 ≤ ℓ ≤ k and the remaining k − ℓ edges are incident with v. Let

S′ be the set of ℓ edges belonging to G. If ℓ = k, then v is adjacent to every

vertex of G in H and so H − S is connected. If ℓ < k, then G − S′ is connected.

Since v is adjacent to at least k + 1 − ℓ > 0 vertices of G, it follows that H − S
is connected.

4. Let H = G ∨ K1. Observe that H has diameter at most 2. By Theorem 2.34,

λ(H) = δ(H) = 1 + dn.

5. Let G be a k-connected graph and let T be a tree of order k+1. Then k ≤ κ(G) ≤ δ(G).

By Theorem 2.20, G contains T as a subgraph.

6. (a) Proof. Since S is a minimum vertex-cut, |S| = κ(G) = k. Assume, to the

contrary, that G − S has ℓ components, where ℓ ≥ 3. Let G1 be a component of

smallest order n1 in G − S. Then

n1 ≤
n − k

ℓ
≤

n − k

3
.

If u ∈ V (G1), then

degG u ≤ degG1
u + k ≤ n1 − 1 + k

≤
n − k

3
− 1 + k =

n + 2k − 3

3
,

contrary to hypothesis.
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(b) Proof. Assume, to the contrary, that G−S has ℓ components, where ℓ ≥ t+1.

Let G1 be a component of smallest order n1 in G − S. Then

n1 ≤
n − k

ℓ
≤

n − k

t + 1
.

If u ∈ V (G1), then

degG u ≤ degG1
u + k ≤ n1 − 1 + k

≤
n − k

t + 1
− 1 + k =

n + kt − t − 1

t + 1
,

contrary to hypothesis.

7. Proof. Assume, to contrary, that there exists a graph G of order n containing at

least k pairwise nonadjacent vertices such that

degG v ≥
n + (k − 1)(ℓ − 2)

k

for all v ∈ V (G) but that G is not (ℓ, k)-connected. Thus κk(G) = t ≤ ℓ − 1. Since

G contains at least k pairwise nonadjacent vertices, there is a set S of t vertices such

that G− S contains at least k components. Let G1 be a component of smallest order

n1 in G − S. Thus n1 ≤ n−t
k . For v ∈ V (G1), it follows that

degG v ≤

(

n − t

k
− 1

)

+ t =
n + kt − t − k

k

=
n + (k − 1)(t − 1) − 1

k
≤

n + (k − 1)(ℓ − 2) − 1

k
,

producing a contradiction.

8. Proof. Let S be a minimum edge-cut of G. Since diam(G) = 2, it follows by

Theorem 2.34 that

|S| = λ(G) = δ(G) = δ.

Furthermore, G − S has exactly two components. Suppose that G1 and G2 are the

two components of G − S with V (G1) = A and V (G2) = B. Since diam(G) = 2, at

most one of A and B contains a vertex that is not incident with any edges in S; for

otherwise, there are vertices x ∈ A and y ∈ B such that x and y are not incident with

any edges in S, implying that d(x, y) ≥ 3, which is impossible. Assume, without loss

of generality, that every vertex in A is incident with some edge in S; that is, every

vertex in A is adjacent to some vertex of B in G.

Let v ∈ A such that v is incident with a maximum number k of edges in S, say

v is incident with the edges e1, e2, · · · , ek in S. Since there are δ − k edges in S −
{e1, e2, · · · , ek} and every vertex in A is incident with some edge in S, there are at

most δ− k vertices in A−{v} and so |A| ≤ δ− k + 1. On the other hand, v must also

be adjacent to deg v−k ≥ δ−k vertices in A and so there are at least δ−k vertices in

A− {v}. Therefore, |A| ≥ δ − k + 1 and so |A| = δ − k + 1. Let u be any other vertex
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of A, where u is incident, say, with ℓ edges, where then ℓ ≤ k. Thus u is incident with

deg u − ℓ vertices in A − {u} and so

δ − k + 1 = |A| ≥ deg u − ℓ + 1 ≥ δ − k + 1,

which implies that deg u = δ and ℓ = k. Hence

(1) G1 = Kδ−k+1 and (2) |S| = k(δ − k + 1) = δ.

Solving (2) for δ, we obtain δ = k or δ = 1. Thus G1 = K1 or G1 = Kδ.

9. Proof. Let F1 and F2 be two copies of Kc+1 with V (F1) = {u1, u2, . . . , uc+1} and

V (F2) = {v1, v2, . . . , vc+1}. Let G be the graph obtained from F1 and F2 by adding

the a edges uivi (1 ≤ i ≤ a) and b−a edges joining u1 and b−a vertices of F2 different

from v1. Then κ(G) = a, where {u1, u2, . . . , ua} is a minimum vertex-cut, λ(G) = b,
where the b edges between F1 and F2 form a minimum edge-cut and δ(G) = c.

10. Choose k and n such that n ≥ k + 1 and let N = (n − k + 1)/2 (so k and n are of

opposite parity). Let G = 2KN ∨ Kk−1. Then U = V (Kk−1) is a vertex-cut and so

κ(G) ≤ k − 1. Let v ∈ V (2KN). Then deg v = (N − 1) + (k − 1) = (n + k − 3)/2. In

fact, δ(G) = (n + k − 3)/2.

11. Let G be the graph obtained from two copies F1 and F2 of Kk (k ≥ 3) by adding an

edge joining a vertex of F1 and a vertex of F2. Then λ(G) = 1 and δ(G) = k − 1 ≥ 2.

12. Claim: If G is a connected graph of order n ≥ 2, then

κ(G) + c(G) = n + 1.

Proof. Let S be a minimum vertex-cut of G. Then |S| = κ(G). Since G − S is

an induced disconnected subgraph of order n − κ(G) in G, it follows that c(G) ≥
n − κ(G) + 1 or κ(G) + c(G) ≥ n + 1.

Let H be an induced disconnected subgraph of order c(G) − 1 and let S = V (G) −
V (H). Since H = G − S is disconnected, S is a vertex-cut of G and so

κ(G) ≤ |S| = n − (c(G) − 1) = n − c(G) + 1,

or κ(G) + c(G) ≤ n + 1. Combining the two inequalities gives us the desired result.

13. Proof. Let k = 2ℓ, where ℓ ≥ 1. Any k-connected graph of order n has minimum

degree at least k and so has size at least kn/2. We show that there exists a k-connected

graph G of order n and size kn/2. Let V (G) = {v1, v2, . . . , vn} where vi is adjacent

to the vertices vi±1, vi±2, . . . , vi±ℓ. Thus G is a k-regular graph of order n and size

kn/2. It remains to show that κ(G) = k. Assume, to the contrary, that κ(G) < k.

Then there exists a set S of k − 1 vertices of G such that G − S is disconnected. Let

v1 and vr be vertices in two components of G−S. Let S = {vi1 , vi2 , . . . , vik−1
}, where

1 < i1 < i2 < · · · < ik−1 ≤ n. Either at most ℓ − 1 of the integers i1, i2, . . . , ik−1 are

less than r or at most ℓ − 1 of these integers exceed r, say the former. Let j1 = 1.

There is a vertex vj2 /∈ S such that 2 ≤ j2 ≤ ℓ+1. Also, there is a vertex vj3 /∈ S such

that j2 + 1 ≤ j3 ≤ j2 + ℓ. Continuing in this manner, there are integers j1, j2, . . . , js

with 1 = j1 < j2 < . . . < js = r such that ji+1 − ji ≤ ℓ and vji
∈ V (G − S) for

1 ≤ i ≤ s − 1. Since vji
vji+1 ∈ E(G − S), the path (v1 = vj1 , vj2 , . . . , vjs

= vr) is a

v1 − vr path in G − S, producing a contradiction.
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14. The statement is false. For example, let G = K1 ∨ (K1 + K2), where v ∈ V (G) with

deg v = 1. Then κ(G) = 1 and κ(G − v) = 2.

15. (a) Proof. Let W = {w1, w2, . . . , wk−2} be a set of k−2 vertices of G−e. We show

that (G− e)−W is connected. First, assume that e is incident with some vertex

of W . Then (G − e) − W = G − W . Since G is k-connected and |W | = k − 2,

it follows that G − W is connected. Thus, we may assume that e is not incident

with any vertex of W . Let x, y ∈ V (G)−W . We show that x and y are connected

in (G − e) − W . There are two cases.

Case 1. e = xy. Since G contains at least k + 1 vertices, there exists z ∈
V (G)− (W ∪ {x, y}). Since G is k-connected, G− (W ∪ {y}) and G− (W ∪ {x})
are both connected. Thus there is an x− z path P in G− (W ∪ {y}) and a z − y
path Q in G− (W ∪ {x}). Note that P and Q do not contain e and so are paths

in G − e − W . Then the walk obtained by following P by Q is an x − y walk in

G − e − W and so G − e − W contains an x − y path by Theorem 1.16.

Case 2. e 6= xy. So e is either not incident with x or not incident with y, say e
is not incident with x. Suppose that e is incident with a vertex u 6= x. Since G
is k-connected, G − (W ∪ {u}) is connected and so there is an x − y path P in

G − (W ∪ {u}). This implies that P is also an x − y path in G − W . Since P
does not contain u, it follows that P does not contain e. Therefore, P is an x− y
path in G − e − W .

(b) Proof. Let X = {e1, e2, . . . , ek−2} be a set of k − 2 edges of G − e. Since

|X ∪ {e}| = k − 1, the graph G − e − X is connected.

16. (a) If G is a 0-regular graph, then G = Kn for some positive integer n. Then

κ(G) = λ(G) = 0.

(b) Let G be a 1-regular graph. If G is disconnected, then κ(G) = λ(G) = 0. If G is

connected, then G = K2 and so κ(G) = λ(G) = 1.

(c) If G is disconnected, then κ(G) = λ(G) = 0. If G is connected, then G = Cn,

where n ≥ 3. Thus κ(G) = λ(G) = 2.

(d) The graph G shown in Figure 2.13(a) is 4-regular with κ(G) = 1 and λ(G) = 2.

Thus r = 4.

(e) The graph G shown in Figure 2.13(b) is 4-regular with κ(G) = 2 and λ(G) = 4.

Thus r = 4.
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Figure 2.13: The graphs in Exercises 16(d) and 16(e)

17. Claim: (1) κ(G) ≥ κ(G), (2) λ(G) ≥ λ(G), and (3) λ(G) ≥ κ(G).

Proof. Observe that (1) and (2) are immediate consequences of the definitions. For

(3), let H be a subgraph of G such that κ(H) = κ(G). Then λ(G) ≥ λ(H) ≥ κ(H) =

κ(G).
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18. Claim: max{κ(G) : G ∈ G} = k.

Proof. Let G ∈ G and let E = [V (G1), V (G2)], so |E| = k. Let W be the set of

vertices of G1 incident with at least one edge of E. Then G − W is disconnected and

|W | ≤ k. Thus max{κ(G) : G ∈ G} ≤ k.

Since G1 and G2 are k-connected, each has order at least k + 1. Let V (G1) =

{u1, u2, . . . , un} and V (G2) = {v1, v2, . . . , vn}. Suppose that E = {u1v1, u2v2, · · ·,
ukvk} is the set of k edges added to G1 and G2, producing the graph H . Let U =

{u1, u2, · · ·, uk} and V = {v1, v2, · · · , vk}. Since H − U is disconnected, it follows

that κ(H) ≤ k. We show that κ(H) = k in this case. Let S be a subset of V (H) of

cardinality k−1 and let Si = S∩V (Gi) for i = 1, 2. Since Gi (i = 1, 2) is k-connected

and |Si| < k for i = 1, 2, it follows that Gi−Si is connected. Furthermore, there exists

j (1 ≤ j ≤ k) such that uj , vj /∈ S. Thus uj , vj , and ujvj are present in H − S and so

H − S is connected. Hence S is not a vertex-cut and so κ(H) > k − 1, implying that

κ(H) = k.

2.5 Menger’s Theorem

1. For n ≥ k ≥ 3, every k vertices of G = Cn lie on a common cycle but G is not

k-connected.

2. Proof. Let S = {v1, v2, · · · , vk} and T = {v1, v2}. Since G is k-connected, there are

k internally disjoint v1 − v2 paths (by Theorem 2.37). Since v3, v4, · · ·, vk can belong

to at most k − 2 of these paths, there are two of these paths that contain no vertices

of S − T . These two paths produce a cycle containing no vertices of S − T .

For the converse, let G be a graph having the property that for each set S of k
distinct vertices of G and each two-element subset T of S, there is a cycle containing

the vertices of T and avoiding the vertices of S − T . Assume, to the contrary, that

κ(G) < k. Then G contains a vertex-cut W = {v1, v2, · · · , vk−1}. Since n ≥ k + 1, it

follows that G − W is not trivial. Let u and v be two vertices belonging to different

components of G−W . Let S = {v1, v2, · · · , vk−2, u, v} and T = {u, v}. By assumption,

there is a cycle C containing the vertices of T , but avoiding the vertices of S−T . This

is impossible, however, since C must contain two vertices of W .

3. Proof. Let W be a set of k − 1 vertices of H . We show that H − W is connected.

We consider two cases.

Case 1. w ∈ W . Then H − W = G − (W − {w}). Since G is k-connected and

|W − {w}| = k − 2, it follows that G − (W − {w}) is connected and so H − W is

connected.

Case 2. w /∈ W . Since G is k-connected, G − W is connected. Since |W | = k − 1, it

follows that S−W 6= ∅. Thus H −W is obtained from G−W by adding a new vertex

w and joining w to the vertices of S − W . Therefore, H − W is connected.

4. Proof. Construct a graph H from G by adding a new vertex v and joining v to

each of v1, v2, . . . , vt. It is a consequence of Corollary 2.38 that H is t-connected.

By Theorem 2.37, H contains t internally disjoint u − v paths Q1, Q2, . . . , Qt. Then

Qi − v is a u− vi path for each i (1 ≤ i ≤ t), every two paths of which have only u in

common.
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5. Proof. Let G be a k-connected graph order n ≥ 2k and let the graph H be obtained

from G by adding two vertices v1 and v2 and joining vi to the vertices of Vi for i = 1, 2.

By applying Corollary 2.38 twice, it follows that H is k-connected. Thus H contains

k internally disjoint v1 − v2 paths. This produces k disjoint paths connecting V1 and

V2.

For the converse, let G be a graph of order n ≥ 2k that is not k-connected. Then

G contains a vertex-cut S with |S| = k − 1. Let G1 be a component of G − S of

minimum order n1. If n1 ≥ k, let V1 be a set of k vertices of G1, and let V2 be a set

of k vertices of G− S, none of which belong to G1. Then there do not exist k disjoint

paths connecting V1 and V2 since all such paths must pass through S. If n1 < k, then

define V1 to be the union of V (G1) and k − n1 vertices of S. Let V2 be the union of

the remaining n1 − 1 vertices of S and k − n1 + 1 vertices of G − S not belonging to

G1. Here too there do not exist k disjoint paths connecting V1 and V2.

6. Proof. Since G is k-connected, δ(G) ≥ k. By t applications of Corollary 2.38, it

follows that Gt is k-connected.

7. Proof. Let u ∈ S1 and v ∈ S2. Then there exist k internally disjoint u − v paths

P ′
1, P

′
2, . . . , P

′
k in G. Let ui be the last vertex of P ′

i belonging to S1 and let vi be the

first vertex following ui on P ′
i that belongs to S2. For 1 ≤ i ≤ k, let Pi be the ui − vi

subpath of P ′
i . Then the paths P1, P2, . . . , Pk have the desired properties.

8. Proof. Since G is k-connected, G−v is (k−1)-connected, where k−1 ≥ 2. Therefore,

by Theorem 2.41 the vertices v1, v2, · · · , vk−1 lie on a common cycle C of G− v. Since

G is k-connected, G contains k − 1 internally disjoint v − vi paths Qi (1 ≤ i ≤ k − 1).

Let ui be the first vertex of Qi on C and denote the v − ui subpath of Qi by Pi.

9. Proof. Assume first that G is k-edge-connected. Thus λ(G) ≥ k and so the removal

of any fewer than k edges of G results in a connected graph. Hence for every two

vertices u and v, the minimum number of edges that separate u and v is at least k.

By Theorem 2.42, G contains at least k pairwise edge-disjoint u − v paths.

For the converse, suppose that G contains k pairwise edge-disjoint u − v paths for

each pair u, v of distinct vertices of G. Hence for every pair u, v of distinct vertices

of G, the maximum number of pairwise edge-disjoint u − v paths in G is at least k.

By Theorem 2.42, the minimum number of edges that separate u and v is at least k.

Thus λ(G) ≥ k and so G is k-edge-connected.

10. The statement is false. Let G = K1 ∨ 2K2. Then G is 2-edge-connected. Let v1 be

the cut-vertex of G, and let v and v2 be two nonadjacent vertices of G.

11. The statement is true. Proof. Let u ∈ S1 and v ∈ S2. Then there exist k edge-

disjoint u − v paths Q1, Q2, · · · , Qk. For each i = 1, 2, · · · , k, let ui be the last vertex

of Qi that belongs to S1 and let vi be the first vertex of S2 that belongs to Qi after

ui is encountered. Let Pi be the ui − vi subpath of Qi.

12. Proof. Since Qn is n-regular, δ(Qn) = n and so κ(Qn) ≤ λ(Qn) ≤ n. Thus it

suffices to show that κ(Qn) ≥ n. We show that for every two vertices u and v of Qn,

there are n internally disjoint u− v paths. We verify this by induction. This is clearly

true for n = 1 and n = 2.
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Assume that every two vertices of Qn−1 are connected by n − 1 internally disjoint

paths, where n− 1 ≥ 2. Suppose that Qn is constructed from two copies H and H ′ of

Qn−1, where V (H) = {v1, v2, . . . , v2n−1} and V (H ′) = {v′1, v
′
2, . . . , v

′
2n−1}, such that

viv
′
i ∈ E(Qn). Let u and v be two vertices of Qn. We consider two cases.

Case 1. u, v ∈ V (H) or u, v ∈ V (H ′), say the former. By the induction hypothesis, H
contains n−1 internally disjoint u−v paths P1, P2, . . . , Pn−1. Let P ′ be a u′−v′ path

in H ′. Define Pn = (u, P ′, v). Then {P1, P2, . . . , Pn} is a collection of n internally

disjoint u − v paths in Qn.

Case 2. u ∈ V (H) and v ∈ V (H ′). Then v = w′ for some w ∈ V (H). We consider

two subcases.

Subcase 2.1. w 6= u. By the induction hypothesis, H contains n− 1 internally disjoint

u − w paths P ′
1, P

′
2, . . . , P

′
n−1. Each of these paths necessarily contains at least one

neighbor of w in H . Suppose that the next-to-last vertex of P ′
i (1 ≤ i ≤ n − 1) is

xi. For 1 ≤ i ≤ n − 2, let Pi = (P ′
i − w, x′

i, w
′). Let Pn−1 = (P ′

n−1, w
′ = v). Let

P ′′
n−1 be the u′ − w′ path in H ′ corresponding to P ′

n−1 and let Pn = (u, P ′′
n−1). Then

{P1, P2, . . . , Pn} is a collection of n internally disjoint u − v paths in Qn.

Subcase 2.2. w = u. Then we show that Qn contains n internally disjoint u−u′ paths.

Let x ∈ V (H) such that x 6= u. Then H contains n − 1 internally disjoint u − x
paths P ′

1, P
′
2, . . . , P

′
n−1. For each i with 1 ≤ i ≤ n − 1, let xi ∈ V (H) such that xi

is adjacent to x on P ′
i and let Qi be the u − xi subpath of P ′

i . Now for each i with

1 ≤ i ≤ n − 1, let Q∗
i be the x′

i − u path in H ′ corresponding to Qi (by reversing the

order of the vertices on Qi). For 1 ≤ i ≤ n − 1, define Pi = (Qi, Q
∗
i ) and Pn = (u, v).

Then {P1, P2, . . . , Pn} is a collection of n internally disjoint u − u′ paths in Qn.

13. In the proof of Theorem 2.42, there is a step where each edge of S is subdivided,

introducing k new vertices w1, w2, . . . , wk, which are then identified producing a new

vertex w. The resulting structure may be a multigraph (not a graph) and it need not

occur that there are k pairwise edge-disjoint u−w paths in the underlying graph of H
and k pairwise edge-disjoint w−v paths in the underlying graph of H . See Figure 2.14.
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Figure 2.14: The graphs in Exercise 13

14. Proof. Suppose that κ(G) = k. Let u and v be two vertices of G such that d(u, v) =

diam(G). Since G has connectivity k, it follows that G contains k internally disjoint

u−v paths P1, P2, . . . , Pk. Since d(u, v) = diam(G), each path Pi (1 ≤ i ≤ k) contains

at least diam(G) − 1 vertices different from u and v. Thus n ≥ k(diam(G) − 1) + 2.
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15. Proof. Let u and v be two adjacent vertices of a 3-connected graph G. Then there

are three internally disjoint u− v paths P1, P2, P3, where say the lengths of P1 and P2

are at least 2. Then P1 and P2 together with the edge uv form a chorded cycle in G.

This need not be the case for a 2-connected graph. For example, the graph G = Cn

for n ≥ 4 contains no chorded cycle.

16. (a) Proof. Suppose that the statement is false. Then there is a 3-connected graph

G and two vertices u and v such that all paths in every set of three internally

disjoint u − v paths have the same length. Let P1, P2 and P3 be three internally

disjoint u− v paths of length a, where then a ≥ 2. Since G−{u, v} is connected,

G − {u, v} contains an x − y path P connecting two of the three paths P1, P2

and P3 such that x, say, belongs to P1, y belongs to P2 and no other vertex of P
belongs to P1, P2 or P3. Suppose that the length of P is b ≥ 1, the length of the

u − x subpath of P1 is k and the length of the u − y subpath of P2 is ℓ. Then

there are u− v paths of lengths k + b + a− ℓ and ℓ + b + a− k internally disjoint

with P3. Hence k + b + a − ℓ = ℓ + b + a − k = a, which implies that b = 0, a

contradiction.

(b) Let u and v be any two antipodal vertices of Cn, where n ≥ 4 is even.

17. (a) Proof. By Whitney’s theorem (Theorem 2.37), κ(G) = k. Let S be a vertex-

cut of G with |S| = k. Since n ≥ k + 3, it follows that G − S has at least three

vertices. Since G − S is disconnected, there are vertices u and v belonging to

different components of G − S. Let w ∈ V (G) − (S ∪ {u, v}). Then u and v
belong to different components of G − (S ∪ {w}) and so S ∪ {w} is a vertex-cut

with |S ∪ {w}| = k + 1.

(b) Proof. Let u and v be two vertices of G with d(u, v) = diamG = k. Since G
is k-connected, there exist k internally disjoint v − u paths Qi (i = 1, 2, · · · , k).

Since d(u, v) = k, each path Qi has length k or more. For each i with 1 ≤ i ≤ k,

let vi be a vertex on Qi such that the v − vi subpath Pi has length i. This gives

the desired result.


