
CHAPTER 2

Solutions to Chapter 2 exercises

Exercise 2.
(a) true (b) false (c) false
(d) true (e) false (a may be 0)
(f) true

Exercise 4. If a | b then b = an for some n ∈ Z, hence bc = anc so a | bc.
Exercise 6.

(a) prime (b) prime (c) composite
(d) prime (e) composite (f) composite

Exercise 8.
(a) 2 · 13 (b) 25 · 3 (c) 29

(d) 28 · 52 (e) 32 · 72 · 132 (f) 133 · 174

Exercise 10. In the following q is the quotient and r is the remainder.
(a) q = 22, r = 1 (b) r = 36, r = 0
(c) q = −7, r = 1 (d) q = −41, r = 10
(e) q = 30, r = 8 (f) q = −356, r = 12

Exercise 12.
(a) 5 (b) 120 (c) 2
(d) 7 (e) 1050 (f) 45

Exercise 14. See the answers for problem 12.
Exercise 16. (a) 5 = (3)(15) + (−1)(40)

(b) 2 = (−12)(136) + (19)(86)
(c) 7 = (−101)(1925) + (124)(1568)
(d) 45 = (908)(256500) + (−2129)(109395)

Exercise 18.
(a) false (b) false (c) true
(d) false (e) true (f) true

Exercise 20.
(a) 33 (b) 42 (c) 47 (d) 3 (e) 15

Exercise 22. (a) Addition and multiplication in Z3

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Every element in Z3 has an additive inverse. Nonzero elements 1 and 2 have
multiplicative inverses.
(b) Addition and multiplication in Z9
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+ 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 0
2 3 4 5 6 7 8 9 0 1
3 4 5 6 7 8 9 0 1 2
4 5 6 7 8 9 0 1 2 3
5 6 7 8 9 0 1 2 3 4
6 7 8 9 0 1 2 3 4 5
7 8 9 0 1 2 3 4 5 6
8 9 0 1 2 3 4 5 6 7

× 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8
2 0 2 4 6 8 1 3 5 7
3 0 3 6 0 3 6 0 3 6
4 0 4 8 3 7 2 6 1 5
5 0 5 1 6 2 7 3 8 4
6 0 6 3 0 6 3 0 6 3
7 0 7 5 3 1 8 6 4 2
8 0 8 7 6 5 4 3 2 1

Every element has an additive inverse. Numbers that are not divisible by 3,
that is 1,2,4,5,7,8, have multiplicative inverses.

Exercise 24. Multiplicative inverses in Z10

x 1 3 7 9

x−1 1 7 3 9

Exercise 26. Multiplicative inverses in Z11

x 1 2 3 4 5 6 7 8 9 10

x−1 1 6 4 3 9 2 8 7 5 10

Exercise 28. (a)

(7)(3x) ≡ (7)(5) mod 10
x ≡ 5 mod 10

(b)

(3)(7x+ 2) ≡ (3)(3) mod 10
x+ 6 ≡ 9 mod 10

x ≡ 3 mod 10

(c)

(9)(9x− 8) ≡ (9)(7) mod 10
x− 2 ≡ 3 mod 10

x ≡ 5 mod 10
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Exercise 30. Multiplicative inverses in Z299.
(a) 2−1 ≡ 150 (b) gcd(52, 299) = 13 so 52 is not invertible.
(c) 80−1 ≡ 228 (d) 199−1 ≡ 296.

Exercise 32.
(a) 2−1 ≡ 1278 mod 2555 (b) 74−1 ≡ 1899 mod 2555
(c) not invertible gcd(98, 2555) = 7 (d) 1972−1 ≡ 1753 mod 2555

Exercise 34. (a)

(150)(2x) ≡ (150)(59) mod 299
x ≡ 179 mod 299

(b)

(296)(199x) ≡ (296)(99) mod 299
x ≡ 2 mod 299

(c)

(1278)(2x) ≡ (1278)(847) mod 2555
x ≡ 1701 mod 2555

(d)

(1753)(1972x) ≡ (1753)(363) mod 2555
x ≡ 144 mod 2555

Exercise 36. (a)

2x ≡ 6 mod 16
divide by 2: x ≡ 3 mod 8

(b)

6x ≡ 16 mod 27
iff 6x = 16 + 27n for some integer n
iff 6x− 27n = 16

3 | (6x− 27n) but 3 - 16 so no solution exists.
(c)

14x ≡ 21 mod 88
iff 14x = 21 + 88n for some integer n
iff 14x− 88n = 21

2 | (14− 88n) but 2 - 21 so no solution exists.
(d)

25x ≡ 55 mod 95
divide by 5: 5x ≡ 11 mod 19

(4)(5x) ≡ (4)(11) mod 19
x ≡ 6 mod 19
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Exercise 38. (a)

8x ≡ 16 mod 1196
divide by 4: 2x ≡ 4 mod 299

(150)(2x) ≡ (150)(4) mod 299
x ≡ 2 mod 299

(b)

400x ≡ 125 mod 1495
divide by 5: 80x ≡ 25 mod 299

(228)(80x) ≡ (228)(25) mod 299
x ≡ 19 mod 299

(c)

1393x ≡ 175 mod 2093
divide by 7: 199x ≡ 25 mod 299

(296)(199x) ≡ (296)(25) mod 299
x ≡ 224 mod 299

(d)

17748x ≡ 6642 mod 22995
divide by 9: 1972x ≡ 738 mod 3285

(658)(1972x) ≡ (658)(738) mod 3285
x ≡ 2709 mod 3285

Exercise 40. (a) (4)(4) + (−3)(5) = 1 so

x ≡ (3)(−3)(5) + (4)(4)(4) ≡ 19 mod 20

(b)

(−22)(2) + (1)(5)(9) = 1

(−7)(5) + (2)(2)(9) = 1

(−1)(9) + (1)(2)(5) = 1

so

x ≡ (0)(1)(5)(9) + (1)(2)(2)(9) + (6)(1)(2)(5)
≡ 6 mod 90

(c)

(124)(4) + (−1)(5)(9)(11) = 1

(−79)(5) + (1)(4)(9)(11) = 1

(49)(9) + (−2)(4)(5)(11) = 1

(−49)(11) + (3)(4)(5)(9) = 1
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so

x ≡(1)(−1)(5)(9)(11) + (2)(1)(4)(9)(11)

+ (3)(−2)(4)(5)(11) + (1)(3)(4)(5)(9)
≡1497 mod 1980

Exercise 42. Suppose the computer has x bytes of memory. If it runs j jobs,
allocates b bytes to each job, and has r bytes left over then x = jb+ r so

x ≡ r mod j.

Therefore

x ≡ 86 mod 95
x ≡ 13 mod 98
x ≡ 46 mod 99
x ≡ 0 mod 101.

Also

(−340387)(95) + (33)(98 ∗ 99 ∗ 101) = 1

(106622)(98) + (−11)(95 ∗ 99 ∗ 101) = 1

(351429)(99) + (−37)(95 ∗ 98 ∗ 101) = 1

(−127759)(101) + (14)(95 ∗ 98 ∗ 99) = 1

so, using the Chinese remainder procedure, it follows that

x ≡(86)(33)(98 ∗ 99 ∗ 101) + (13)(−11)(95 ∗ 99 ∗ 101)

+ (46)(−37)(95 ∗ 98 ∗ 101) + (0)(14)(95 ∗ 98 ∗ 99)
≡20720251 mod 93090690

x < 109 so x = 20720251 bytes exactly.
Exercise 44. (a) 4, 4, 2

(b) Suppose x1x2 · · ·x10 and y1y2 · · · y10 are two ten-digit strings. Consider the
sums

x1 + 2x2 + 3x3 + 4x4 + · · ·+ 9x9 − x10 mod 11(1)

y1 + 2y2 + 3y3 + 4y4 + · · ·+ 9y9 − y10 mod 11(2)

If the strings are correct ISBN-10 numbers then both sums will be 0 (mod 11).
However suppose the x-string is correct and the y-string equals the x-string except
for the kth digit. Subtracting the second sum from the first, we obtain

(x1 + 2x2 + 3x3 + 4x4 + · · ·+ 9x9 − x10)

−(y1 + 2y2 + 3y3 + 4y4 + · · ·+ 9y9 − y10)

≡ k(xk − yk) mod 11

(If k = 10 use the fact that −1 ≡ 10 mod 11).
The difference of the two sums cannot be 0 (mod 11) because 1 ≤ |xk− yk| ≤ 10,
1 ≤ k ≤ 10 and the product of such numbers is never 0 mod 11. Therefore
y10 6≡ y1 + 2y2 + 3y3 + 4y4 + · · ·+ 9y9 mod 11. This discrepancy shows that the
y-string cannot be a correct ISBN-10 code.
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(c) Using the notation from part (b) assume that the x-string is correct, 1 ≤ j <
k ≤ 10, and the y-string is obtained from the x-string by swapping yj with yk.
Thus for each i = 1, . . . , 10,

yi =


xi if i 6= j and i 6= k

xk if i = j

xj if i = k.

Then

(x1 + 2x2 + 3x3 + 4x4 + · · ·+ 9x9 − x10)

−(y1 + 2y2 + 3y3 + 4y4 + · · ·+ 9y9 − y10)

≡ j(xj − xk) + k(xk − xj) mod 11

≡ (j − k)(xj − xk) mod 11.

(If j or k is 10 use −1 ≡ 10 mod 11).
If xj = xk then swapping the digits does not change the string. But if xj 6= xk
then (j − k)(xj − xk) 6≡ 0 mod 11 because 1 ≤ |j − k| and |xj − xk| ≤ 10. Thus
y10 6≡ y1 + 2y2 + 3y3 + 4y4 + · · ·+ 9y9 mod 11 if xj 6= xk.
(d) For example let x = 0000000000, y = 1000000000, z = 1000000001. x and
z are correct ISBN-10 strings that differ from y in only one digit. If someone
received the garbled copy y it wouldn’t be possible to decide which string, x or
z, was the correct one, using only the ISBN-10 system as a guide.

Exercise 46. The tables in parts (a) and (b) show how the teams are paired against
each other in each round. In round k, each team in the top line of the table plays
against the team in the same column in the row labeled “round k”, except when
the teams are the same. If the teams are the same the team sits out the round.
(a)

4 3 2 1
round 1 1 2 3 4
round 2 2 3 4 1
round 3 3 4 1 2
round 4 4 1 2 3

(b)
6 5 4 3 2 1

round 1 1 2 3 4 5 6
round 2 2 3 4 5 6 1
round 3 3 4 5 6 1 2
round 4 4 5 6 1 2 3
round 5 5 6 1 2 3 4
round 6 6 1 2 3 4 5

(c) Team i plays against team j in round k iff j ≡ (N − i) + k mod N , except
when i ≡ (N − i) + k. When i ≡ (N − i) + k the team sits out the round. Thus
each team plays at most one other team in a given round.
Suppose team i plays against the same team in rounds k and k′. Then (N−i)+k ≡
(N−i)+k′ mod N so, subtracting N−i from both sides, we have k ≡ k′ mod N
hence k = k′ because 1 ≤ k, k′ ≤ N . Therefore each team plays every other team
exactly once in the tournament.
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Exercise 48. (a) Proof. Let a | b and c | d. Then there exist m,n ∈ Z such that
am = b and cn = d. Hence bd = amcn = (ac)(mn) so ac | bd.
(b) Proof. There exist integers x, y such that gcd(b, c) = xb + yc. If a | b and
a | c then there also exist integers r, s such that b = ra and c = sa. Substitute
these into the previous equation to obtain gcd(b, c) = xra + ysa = (xr + ys)a.
Hence a | gcd(b, c).
(c) Proof. n3 − n = n(n2 − 1) = (n+ 1)n(n− 1). If n is any integer then either
n− 1 or n or n+ 1 is a multiple of 3, hence (n+ 1)n(n− 1) is a multiple of 3.

Exercise 50. (a) Counterexample. let a = b = 2.
(b) Proof. Let a be an odd integer. Then a = 2n+ 1 for some integer n. Hence
a2 − 1 = (a− 1)(a+ 1) = (2n)(2n+ 2) = 4n(n+ 1) is divisible by 4.
(c) Proof. In part (b) we showed that a2 = 4n(n+ 1) for some integer n. Either
n is even or n + 1 is even so in every case the product n(n + 1) is even. Hence
n(n + 1) = 2k for some integer k. Hence a2 − 1 = 4n(n + 1) = (4)(2k) = 8k is
divisible by 8.

Exercise 52. Proof. Let a | bc and gcd(a, b) = 1. Then there exists an integer
n such that bc = an, and by theorem 2.6 there exist x, y such that 1 = ax + by.
Multiply the last equation by c to obtain c = c(1) = c(ax + by) = acx + bcy, then
plug in bc = an to obtain c = acx+ (an)y = a(cx+ ny). Hence a | c.

Exercise 54. (a) Proof. Let n be a positive integer, written in the usual way
as a string of base 10 digits dD−1dD−2 . . . d2d1d0 so n =

∑D
k=0 dk · 10k. 10 ≡ 1

mod 3 so 10k ≡ 1k ≡ 1 mod 3 so

n ≡
D∑
k=0

dk · 1 =
D∑
k=0

dk mod 3.

In particular 0 ≡ n mod 3 iff 0 ≡
∑D
k=0 dk mod 3.

(b) If k ≥ 2 then 10k = 100 · 10k−2 = (4)(25)(10k−2) is divisible by 4 so 10k ≡ 0
mod 4. Hence

n = d0 + d1 +
D∑
k=

dk · 10k ≡ d0 + d1 mod 4.

Exercise 56. Proof.
∑m−1
k=1 = (m−1)(m)/2. If m is odd then m = 2n+ 1 for some

integer n so (m− 1)(m)/2 = (2n)(m)/2 = nm is divisible by m.
Exercise 58. x = 1 is the unique (mod N) solution to the simultaneous congruences
x ≡ 1 mod ni, i = 1, . . . , k. Setting bi = 1, i = 1, . . . , n in formula (8) on page 26
we have x ≡

∑k
i=1 ei(N/ni) mod N .

Exercise 60. (a) Let 0 ≤ n ≤ p − 1. n has a square root mod p iff there exists
0 ≤ k < p such that n ≡ (±k)2 mod p. −k ≡ p − k mod p so it’s enough to
prove the following

Claim. If p is odd and (p− 1)/2 < k < p then 0 ≤ (k − p) ≤ (p− 1)/2.

Proof. If (p − 1)/2 < k < p then (p − p) < p − k < p − (p − 1)/2 so
0 < p−k < (p+1)/2. If p is also odd then (p+1)/2 is an integer, so p−k < (p+1)/2
implies that p− k ≤ (p+ 1)/2− 1 = (p− 1)/2. Hence 0 < p− k ≤ (p− 1)/2. �

(b) Suppose j2 ≡ k2 mod p. Then j2 − k2 = (j − k)(j + k) ≡ 0 mod p so
p | (j − k)(j + k). p is prime so p | j − k or p | j + k.
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Suppose also that 0 ≤ j, k ≤ (p − 1)/2. (p − 1)/2 ≤ j + k ≤ p − 1 so p - j + k.
Thus p | j− k. But −(p− 1)/2 ≤ j− k ≤ (p− 1)/2 so j− k = 0 because p | j− k.
Hence j = k.
(c) Suppose n = j2 ≡ k2 mod p. In part (b) we proved that p | j−k or p | j+k,
so j − k ≡ 0 or j + k ≡ 0 mod p. Hence j ≡ ±k mod p. Thus n has at most
two square roots: ±k mod p. It has exactly two square roots iff k 6≡ −k mod p.
Now k ≡ −k mod p iff 2k ≡ 0 mod p iff p | 2k. p is prime so p | 2k iff p | 2
or p | k iff p = 2 or k ≡ 0 mod p. So if p > 2 and 0 < k < p then n = k2 has
exactly two square roots.
(d) Below is a table of elements in Z11 and their squares.

x 0 1 2 3 4 5 6 7 8 9 10

x2 0 1 4 9 5 3 3 5 9 4 1

The squares are in the second row and the corresponding square roots are in the
first row. Except for 0, every square in the second row appears twice so it has
two corresonding square roots in the first row.
(e) Below is a table of squares in Z13. The squares are in row 2, corresponding
square roots are in row 1.

x 0 1 2 3 4 5 6 7 8 9 10 11 12

x2 0 1 4 9 3 12 10 10 12 3 9 4 1

(f) Both 0 ≡ 02 and 1 ≡ 12 are squares in Z2. The assertions in parts (a-c) don’t
make sense because [(2− 1)/2]2 = 1/4 is not in Z2.

Exercise 62.
(i) 19 and 40 (because −19 ≡ 40 mod 59)
(ii) 402 and 206
(iii)

(
102144/4

)2 ≡ 2133 ≡ −10 mod 2143 so 10 has no square root mod 2143.
Exercise 64. (a) Suppose (n− 1)! ≡ −1 mod n. Then (n− 1)! + 1 ≡ 0 mod n

so (n− 1)! + 1 = nx for some integer x.
Let 1 ≤ a < n be an integer factor of n, so n = ab for some integer b. a is a factor
of (n − 1)! because 1 ≤ a < n, so (n − 1)! = ac for some integer c. Substituting
these equations into the formula (n− 1)! + 1 = nx we obtain ac+ 1 = nx = (ab)x
so 1 = abx− ac = a(bx− c) is divisible by a. Thus a = 1.
We have proved that 1 is the only factor of n that is between 1 and n − 1.
Therefore n is prime.
(b) p ≥ 3 because p is an odd prime, so (p−1)! = (p−3)!(p−2)(p−1). Consider
the product [2(p− 3)! + 1](p− 2)(p− 1).

[2(p− 3)! + 1](p− 2)(p− 1) = 2(p− 3)!(p− 2)(p− 1) + (p− 2)(p− 1)

= 2(p− 1)! + p2 − 3p+ 2 = 2[(p− 1)! + 1] + p(p− 3)

Wilson’s theorem says p | (p − 1)! + 1 hence p divides 2[(p − 1)! + 1] + p(p − 3),
hence p divides [2(p− 3)! + 1](p− 2)(p− 1). Since p is prime it must divide one
of the factors 2(p− 3)! + 1 or p− 2 or p− 1. p cannot divide p− 2 or p− 1 so it
must divide 2(p− 3)! + 1.

Exercise 66. (a) Let R(k, `) be the remainder obtained by dividing ak − 1 by
a` − 1 and r(k, `) the remainder obtained by dividing k by `.
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Claim.
R(k, `) = ar(k,`) − 1 for all integers 1 ≤ k, `

Proof. If k = ` the claim is obviously true since both remainders are 0.
If k < ` then r(k, `) = k. Also ak − 1 < al − 1 since a > 1, so R(k, `) = ak − 1.
Hence the claim is true if k < `.
Thus the claim is true if k = 1 because k ≤ `.
The rest of the proof proceeds by induction on k.
Let k > 1. Assume the claim is true for all 1 ≤ k′ such that k′ < k (this is the
induction hypothesis). Let 1 ≤ ` < k. Then

ak − 1 = ak−`(a` − 1) + ak−` − 1

Therefore the remainder obtained by dividing ak−1 by a`−1 equals the remainder
obtained by dividing ak−` − 1 by a` − 1, that is,

R(k, `) = R(k − `, `).
The remainder obtained by dividing k by ` equals the remainder obtained by
dividing k − ` by ` so

r(k, `) = r(k − `, `).
Set k′ = k − `. 1 ≤ ` < k so 1 ≤ k′ < k. Applying the induction hypothesis we
have

R(k − `, `) = ar(k−`,`) − 1.
Combine the last three displayed equations to obtain

R(k, `) = R(k − `, `) = ar(k−`,`) − 1 = ar(k,`) − 1.

Hence claim is also true for k. This completes the proof by induction. �

(b) Assume k ≥ `. Applying the Euclidean algorithm to compute d = gcd(k, `)
we generate a sequence of remainders ri:

k = q1`+ r1

` = q2r1 + r2

r1 = q3r2 + r3

...
rn−2 = qn−1rn−2 + rn

rn−1 = qnrn + 0

where
` > r1 > r2 > · · · > rn > 0 and rn = gcd(k, `)

(if k = ` then n = 0 and r0 = k).
Applying the result from part (a), it follows that the sequence of steps for com-
puting the GCD of ak − 1 and a` − 1 with the Euclidean algorithm is

ak − 1 = Q1(a` − 1) + (ar1 − 1)

a` − 1 = Q2(ar1 − 1) + (ar2 − 1)
...

arn−2 − 1 = Qn−1(arn−1 − 1) + (arn − 1)

arn−1 − 1 = Qn(arn − 1) + 0
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where
a` − 1 > ar1 − 1 > · · · > arn − 1

because a > 1.
Thus arn − 1 is the GCD of ak − 1 and a` − 1. Since rn = gcd(k, `) the proof is
complete.


