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Exercise 3.2 
 
Identify the experimental unit, the replication for each treatment and whether pseudo-replication is present in the 
following experiments. 

 
a) A pot experiment with 12 circular pots in a 2 × 6 array, in a uniform environment. Each pot contains four 

plants at the three-leaf stage, and each of four treatments (labelled A to D) were applied at random to one 
plant per pot as shown in Figure 3.8.  

 
b) A field experiment with 12 homogeneous rectangular plots in a 3 × 4 grid. Two treatments (labelled A and 

B) were applied at random to six plots each (Figure 3.9). At harvest, twenty-five plants are to be sampled 
per plot, and the plants from each plot will be processed as a single batch for measurement. 

 
c) The field experiment described in part (b) (Figure 3.9) with the height of 25 individual plants per plot 

measured and recorded in situ at four-weekly intervals from tillering until harvest. 
 

Solution 3.2 
 
a) As the treatments are applied directly to individual plants, the experimental unit is a plant, the replication is n 
= 12 (i.e. there are 12 replicates of each treatment and N = 48 units in total), and no pseudo-replication is 
present. This experiment is a RCBD with pots as blocks.  
 
There is an interesting contrast here with the first example in the bulleted list of Section 3.1.1 (and Figure 3.1). 
Whilst the physical structure (plants within pots) is the same in both cases, the fact that treatments are applied at 
different levels of the structure (here to plants, there to pots) means that the experimental design structure and 
subsequent analysis differs. 
 
b) As treatments are applied to whole plots, the experimental unit is a plot, the replication is n = 6, and pseudo-
replication (the 25 plants from each plot) is present in the plot samples. However, as the sample of plants from 
each plot produces a single observation (as they are processed in bulk) this will not be apparent in the analysis 
which uses observations for the N = 12 plots. 
 
c) Despite the changes to the sampling scheme, the underlying experiment here is exactly the same as that in (b), 
i.e. the experimental unit is still a plot. Pseudo-replication (the 25 plants from each plot) is present and each 
pseudo-replicate will give rise to several, say t, four-weekly repeated measurements. By the end of the 
experiment there will therefore be N = 300 t  observations, but the true replication is still n = 6 for each 
treatment. 
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Note that the presence of treatment D twice in the last row here (plots 23 and 24) should not give cause for 
concern if our blocking is correct (i.e. the major trend in the field runs from west to east). This allocation would 
only be a problem if there was also a north to south trend that might affect the observations and, in that case, a 
design with a crossed blocking structure (Sections 3.2 and 3.3.3; also see Chapter 9) should be used. 

Note that many other valid schemes are also possible, such as using cards 1–6 of a different suit for 
each block, allocating the cards to treatments in a different order, or allocating cards 5–10 to the treatments, etc., 
etc.  
 
b) For this design, a valid randomization can also be done using a die. We first allocate treatments A–D, P and 
H to the numbers 1–6. We start with the randomization for the first block: roll the die to allocate a treatment to 
the first unit of block 1 (plot 1). Then roll the die to allocate a treatment to the second unit of block 1 (plot 5), 
but ignore the result and roll again if the treatment already allocated to plot 1 occurs. For the third to fifth unit, 
we again roll the die, but ignore the result and reroll if any treatment that has already occurred in the block is 
repeated. The treatment for the sixth unit is determined by elimination.  

To determine whether this randomization scheme is valid, we consider the probabilities at each stage. 
We want each treatment to be equally likely to be applied to each unit within each block, each with probability 
of 1/6. In our process, assuming the die is fair, all treatments are allowed in the allocation of a treatment to the 
first unit of the block, all with equal probability (1/6). For the second unit of the block, we ignore the treatment 
chosen for the first unit but the other five treatments are all allowed, all with equal probability (1/5). The 
probability of the second unit  receiving treatment A, say, is equal to the probability that the first unit does not 

receive treatment A multiplied by the probability that the second unit does receive treatment A, i.e.
5 1 1

6 5 6
  . 

And so on. In fact the probability that any plot within a block receives treatment A (or any other specific 
treatment) is equal to 1/6.  

This randomization process is valid because we work separately within each block and only have one 
replicate of each treatment within each block. If there were two replicates of any treatment within a block, a 
more complex scheme would be required.  
 In addition we provide details of how to generate this design using statistical software below. 
 
 
GenStat 3.4 
 
" Create RCBD design with 4 blocks and 6 plots per block, 
  with treatments labelled A-D, P, H" 
FACTOR [LEVELS=6; LABELS=!T(A,B,C,D,P,H)] IDENTIFIER=Treatment 
AGHIERARCHICAL [PRINT=design; ANALYSE=no; SEED=26289] \ 
   BLOCKFACTORS=Block,Plot; TREATMENTFACTORS=*,Treatment; LEVELS=4,6 

 
R 3.4 
 
Note: this solution uses the agricolae package 
 
library(agricolae) 
trt <- c("A", "B", "C","D","H","P") 
nblock <- 4 
design <- design.rcbd(trt, r=nblock, seed=26289) 
design$book 

 
SAS 3.4 
 
* Create RCBD design with 4 blocks and 6 plots per block with treatments labelled A-D, P, H; 
proc plan seed=26289; 
  factors Block=4 ordered Treatment=6 random; 
  output out=RCBD 
  Treatment cvals=('A' 'B' 'C' 'D' 'P' 'H') ordered; 
run; 
 
* Printing final scheme; 
proc print data=RCBD;run;  
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Exercise 3.6 
 
The effect of temperature on transmission of a virus by five aphid species is to be investigated. Three small 
growth chambers are available and three temperatures will be tested. The temperature for each chamber can be 
set and then applies to the whole chamber, and each chamber can hold five plants in individual pots. One aphid 
will be placed onto each plant using a clip cage. Forty-five plants and 15 aphids of each species are available. 
Assuming that chambers (and positions within chambers) can be considered homogeneous, suggest a design to 
test the effects of temperature and aphid species. What are the experimental units for each factor? Produce a 
randomized design for this experiment and write down the explanatory and structural components for the 
design. If you suspected that there were systematic differences between chambers, how would you modify your 
design? Write down the structural component for this new design. 
 
Solution 3.6 
 
Suggested design 
With three chambers, we can run a maximum of 15 plants at one time (five per chamber). We are told that the 
chambers behave similarly (can be considered homogeneous) so we can consider the set of three chambers as a 
block and set one chamber at each temperature (allocated at random). Within each chamber there are five 
positions that can be considered homogeneous and we will also make assumptions of homogeneity within the 
sets of plants and aphids. We allocate plants at random to positions within chambers. We randomly allocate each 
of the five aphid species to one plant within each chamber and place one aphid of the allocated type onto each 
plant. This gives one replicate of each species   temperature combination and forms one run of the basic 
experiment. Replication will be achieved by running the experiment several times. In one run we use 15 plants 
and three aphids of each species and so with the resources available we will be able to repeat the experiment 
three times, using 45 plants and nine aphids of each species in total. Six aphids of each species remain unused as 
the number of plants is the limiting resource here.  
 
Identify experimental units 
This experiment has a hierarchical structure: temperatures are applied to chambers, and species are applied to 
plants within chambers; this is a split-plot design. Temperatures will be randomized to chambers, independently 
within each run. Aphid species will be randomized to plants within each chamber, with a different 
randomization in each chamber in each run. The experimental units for the temperature factor are chambers, and 
the experimental units for the aphid species factor are plants within chambers.  
 
Explanatory and structural components of model 
We have 15 experimental treatments with a 3 × 5 factorial structure, as each aphid species will be tested with 
each temperature within each run. There are three replicates of each treatment combination. A crossed structure 
is appropriate for the explanatory component, as the main effects associated with both factors are meaningful 
and the interaction between them is of interest. The hierarchical structural component has plants nested within 
chambers nested within runs. The explanatory and structural components for the design can therefore be written 
in symbolic notation as 
 
 Explanatory component:  Temperature * Species 
     = Temperature + Species + Temperature.Species 
 Structural component:  Run / Chamber / Plant 
     = Run + Run.Chamber + Run.Chamber.Plant 
 
where Temperature and Species are factors with three and five levels labelling the temperature and species 
treatments, respectively, Run is a factor with three levels labelling the three runs of the experiment, Chamber is a 
factor with three levels labelling the chambers within runs, and Plant is a factor with five levels labelling the 
plants within each chamber. 
 
Generating a randomized plan for the design 
Randomization of the treatments can be achieved in many different ways. For example, we might write the 
numbers 1–3 on slips of paper to represent the three temperatures, then select the slips one at a time from a bag 
(without replacement) to allocate temperatures to chambers in the first run. The process would then be repeated 
to allocate temperatures to chambers in the second and third runs. A similar process with slips numbered 1–5 
representing the different species can be used to allocate species to plants within each chamber; this process 
would need to be done nine times, once for each chamber in each run.  
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Note the difference between the two plans. In the design with crossing and nesting (Figure S.3.6.2), 
each temperature appears once in each run and in each chamber, as desired. In the purely nested design (Figure 
S.3.6.1), each temperature appears once in each run, but there is no constraint in the allocation to chambers so, 
for example, chamber 2 is set twice to temperature T2 but never to temperature T1. 
 
 
GenStat 3.6 
 
" Create split-plot design with 3 blocks, 3 main plots per block and 5 subplots per main plot 
" 
AGHIERARCHICAL [PRINT=design; ANALYSE=no; SEED=1096] \ 
   BLOCKFACTORS=Run,Chamber,Plant; TREATMENTFACTORS=*,Temperature,Species; LEVELS=3,3,5 
 
" Print factors " 
PRINT STRUCTURE=Run,Chamber,Plant,Temperature,Species 
 
" Plot experimental plan " 
VARIATE IDENTIFIER=X,Y; VALUES=!((1...15)3),!(15(1...3)) 
DDESIGN [Y=Y; X=X; SIZE=0.5] FACTOR=Run,Temperature,Species; PEN=0,1,2; \ 
   PENGRID=1...3; LABELS=*,!t(T1,T2,T3),!t(S1,S2,S3,S4,S5) 
 
" Introduce Latin square structure on chambers " 
 
" Duplicate structural factors already set up " 
DUPLICATE OLDSTRUCTURE=Run,Chamber,Plant; NEWSTRUCTURE=Run2,Chamber2,Plant2 
 
" Get starting systematic allocations of temperatures to chambers (Latin square) and species 
to plants (within chambers) " 
FACTOR [LEVELS=3; VALUES=5(1,2,3,2,3,1,3,1,2)] IDENTIFIER=Temperature2 
DUPLICATE OLDSTRUCTURE=Plant2; NEWSTRUCTURE=Species2 
 
" Get randomized allocation of temps to chambers and species to plants " 
RANDOMIZE [BLOCKSTRUCTURE=(Run2*Chamber2)/Plant2] Temperature2,Species2  
 
" Print factors " 
PRINT STRUCTURE=Run2,Chamber2,Plant2,Temperature2,Species2 
 
" Plot experimental plan " 
DDESIGN [Y=Y; X=X; SIZE=0.5] FACTOR=Run2,Temperature2,Species2; PEN=0,1,2; \ 
   PENGRID=1...3; LABELS=*,!t(T1,T2,T3),!t(S1,S2,S3,S4,S5) 

 
R 3.6 
 
Note: this solution uses the agricolae package 
 
library(agricolae) 
 
# Standard split-plot design 
Temperature <- c("T1","T2","T3") 
Species<-c("S1","S2","S3","S4","S5") 
design <-design.split(Temperature, Species, r=3, seed=1097) 
design$book 
 
# Generating the Latin square variation is not straightforward within R 

 
SAS 3.6 
 
* Create split-plot design with 3 blocks, 3 main plots per block and 5 subplots per main plot; 
proc plan seed=1096; 
  factors Run=3 ordered 
          Chamber=3 ordered 
    Temperature=3 random 
    Species=5 random; 
  output out=SPLITPLOT 
    Temperature cvals=('T1' 'T2' 'T3') ordered 
    Species cvals=('S1' 'S2' 'S3' 'S4' 'S5') ordered; 
run; 
 
* Printing final scheme; 
proc print data=SPLITPLOT;run; 
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Exercise 3.8 
 
A glasshouse experiment to compare the effect of two nutrition regimes on the growth of three wheat varieties 
was set up as a RCBD with 12 blocks of six pots each, as shown in Figure 3.12. The treatments comprise the six 
combinations of nutrition regime (labelled N1, N2) and variety (labelled V1–V3). The blocks accommodate an 
expected temperature gradient running from the door to the far end of the glasshouse. Several characteristics of 
each plant, including height and number of leaves, are to be recorded every week. Suggest acceptable protocols 
for recording data if  

a) you are the only person available to take the measurements; 
b) there are two people available to take the measurements. 

Which protocols would be unacceptable and why? 
 
Solution 3.8 
 
a) Given that it will take some time to make the measurements on each plant, we might expect that time-of-
measurement is a possible source of heterogeneity and so should be accounted for by blocking. One easy way to 
implement this is to use the blocking already imposed. So you might start by measuring all the plants in the 
block nearest the door (pots numbered 12, 24, 36, 48, 60 and 72) and work your way, block by block, along the 
greenhouse to the far end. If you need to take a break then you can schedule it between two blocks. This scheme 
confounds the temperature effect and any time-of-measurement effect — so these two sources of heterogeneity 
cannot be separated — but this is not important unless you are interested in both effects. What is important is 
that circumstances in a given block are homogeneous, e.g. all the plants in a block are in the same 
environmental conditions and measured at a similar time. 
 
b) If there are two people available then sensible protocols will involve allocating whole blocks to each person. 
For example, person A might assess the block nearest the door first (pots numbered 12, 24, 36, 48, 60 and 72) 
and then continue block by block towards the centre of the glasshouse. Person B might start by assessing the 
block nearest the far end (pots numbered 1, 13, 25, 37, 49 and 61), and then also work block by block towards 
the centre of the glasshouse. In practice, this protocol might lead to the two people assessing a different number 
of blocks (e.g. if one works faster than the other, or if one has to leave, etc.). With this protocol, person A will 
be associated with blocks at cooler temperatures and person B with blocks at higher temperatures but, if there is 
no requirement to separate recorder and temperature effects separately, this will be an acceptable protocol. 
Alternatively, the two people might be randomly allocated to blocks or might assess alternate blocks. It is 
always sensible to record which person assessed which block and in which order (also the order of 
measurements of pots within blocks); this information might be useful, for example, to produce index plots as 
part of the subsequent analysis (Section 5.2.2). 
 
Protocols that are not advisable include 
 
 Measure all plants of one treatment first and then all of another, etc. In this protocol, any time-of-

measurement effect, e.g. due to physiological effects or you getting tired as the day goes on, will be 
confounded with the treatment effect you are trying to test. 

 Work along rows, e.g. down one edge of the glasshouse first (pots numbered 1–12) and then come back 
along the next row, etc. In this protocol you cut across blocks, and it is difficult to efficiently account for 
any time-of-measurement effect in the statistical analysis (although it is now separated from temperature 
effects). If separation of temperature and time-of-measurement effects is required, these two structural sources 
of heterogeneity should be incorporated using a crossed blocking structure. 

 
 
  


