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Chapter 2 Permutations and Combinations

2.2.1B A Personal Identification Number (PIN) consists of a sequence of four digits, each

drawn from the set }9,8,7,6,5,4,3,2,1,0{ , except that the first digit of a PIN cannot be 0.

How many different PINs are there? How many different PINs are there in which no

digit is repeated?

Solution: The numbers of the choices for the digits are, respectively, 9, 10, 10, 10, so

there are altogether 90001010109  different PINs. If we are not allowed to repeat

digits, the numbers of the choices are 9, 9, 8, 7, respectively. So there are

45367899  PINs in which no digit is repeated.

2.2.2B i) How many sequences are there of n digits in which all the digits are different?

ii) How many sequences are there of n digits in which no two consecutive digits are the

same?

Solution: i) Here we are not excluding 0 for the first digit. As there are only 10 different

digits, for 10n there are no sequences of n different digits. For 10n the numbers of

choices for the n successive digits are 10, 9, 8, …., n11 , so there are

)!10(

!10
11...910

n
n


 sequences of n different digits in this case.

ii) In this case there are 10 possibilities for the first digit, and each subsequent digit can

be any of the 10 other than the one preceding it, making 9 choices. So there are altogether

)9(109..9910 1 n sequences in which no two consecutive digits are the same.

2.2.3B A password is a sequence of six characters the first three being either an upper- or

lowercase letter, the next being a digit, and the final two coming from the set

{!,£,$,%,^,&,*,(,),_,+,=,{,},[,], @,#,?} of 19 other symbols occurring on a standard

keyboard. How many different passwords are there? How many are there if consecutive

characters must be different? How many are there if all the characters must be different?

Solution: The first three symbols can each be chosen in 52 ways, the fourth in 10 ways,

and the final two can each be chosen in 19 ways. So there are

507594880191910525252  different passwords. If consecutive characters

must be different, we have 181910515152  462561840 different passwords. If

all the characters must be different, we have

181910505152  453492000 different passwords.
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2.2.4B In how many different ways may eight red and eight green counters be placed on

the squares of an 88 chessboard so that there are not two counters on any one square,

and there is one red counter and one green counter in each row and column?

Note: This question is rather out of place here, as the simplest method requires ideas

derived from later chapters. However, it could be set at this stage as a very challenging

problem, as our direct solution shows.

Solution: The eight red counters may be placed on the board so that there is one red

counter in each row and column in 8! ways (see Problem 2.3). We now have to calculate,

for each of these arrangements, how many ways there are to place eight green counters on

the remaining squares with one green counter in each row and column. It should clear

that, by permuting the rows, and the columns, we need only consider the case where the

red counters are on the main diagonal, as shown in the board, B, below (see Theorem

17.2, if you think this needs proof).

















B

The number of ways in which the green counters can be placed on the board with no two

in the same row or column is also 8!, but we need to exclude the cases where some of

them are lying on top of the red counters. In just one of these cases all 8 green counters

are on top of red counters. In no case will there be exactly 7 green counters on top of red

counters, since then the 8th green count would have to be on top of the 8th red counter.

Now suppose n of the green counters are on top of red counters with 61  n . There are

),8( nC ways in which the positions of these green counters may be chosen. Then the

remaining n8 green counters can be placed in the exactly the number of ways in which

n8 red counters and n8 green counters may be placed on an )8()8( nn  board,

so that the red counters lie on the diagonal and none of the green counters is on the

diagonal.
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Thus, if we let ka be the number of ways of placing k red and k green counters on a

kk  board, with all the red counters, and none of green counters on the diagonal, and

with no two reds in the same row or column, and no two greens in the same row or

column, we have that

654328 )2,8()3,8()4,8()5,8()6,8(01!8 aCaCaCaCaCa  . (1)

Clearly 12 a , as there is just one way to put 2 green counters on a 22 board so they

are not on the diagonal and they are not in the same row or column, as shown below.

 

 

 = red counter;  = green counter.

Now by a similar argument to that used to deduce (1), we have that

2316)1,3(01!3 23  aCa ,

92416124)1,4()2,4(01!4 324  aCaCa ,

449521011001120)1,5()2,5()3,5(01!5 4325  aCaCaCa ,

54326 )1,6()2,6()3,6()4,6(01!6 aCaCaCaCa 

26544691522011501720  ,

654327 )1,7()2,7()3,7()4,7()5,7(01!7 aCaCaCaCaCa 

185426574421935235121015040  , and (at last),

7654328 )1,8()2,8()3,8()4,8()5,8()6,8(01!8 aCaCaCaCaCaCa 

1483318548265284456970256128140320  .

[After reading Chapter 4, it should become evident that this is the same as the number of

derangements of 8 objects, that is, 14833
!

)1(
!8

8

0





k

k

k
.]

This gives the number of ways of placing one green counter in each row and column, for

each placing of 8 red counters with one in each row and column. So the total number of

ways to place the counters to meet the required conditions is 59806656014833!8  .

2.3.1B A cricket squad consists of six batsmen, eight bowlers, three wicketkeepers and

four all-rounders. The selectors wish to pick a team made up of four batsmen, four

bowlers, one wicketkeeper and two all-rounders. How many different teams can they

pick?
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Solution: The number of different teams is

18900637015)2,4()1,3()4,8()4,6(  CCCC .

2.3.2B Prove that, for each positive integer n, 



n

r

nnCrnC
0

2 ),2(),( .

Solution: Let X be a set of n2 elements. We partition X into disjoint subsets, say Y,Z,

each containing n elements. The choice of n elements from X corresponds to choosing,

for some r, with nr 0 , r elements from Y and rn  elements from Z. Therefore, as

),(),( rnCrnnC  , 



n

r

n

r

rnCrnnCrnCnnC
0

2

0

),(),(),(),2( .

2.3.3B Let X be a finite set. Prove that the number of subsets of X that contain an even

number of elements is equal to the number of subsets of X that contain an odd number of

elements. Deduce that for each positive integer n, 0),()1(
0




n

r

r rnC .

Solution: Suppose X is a set of n elements, say },...,,{ ,121 nn xxxxX  . We have seen in

the solution to Exercise 2.3.2A, that X has altogether n2 subsets. If we wish to select a

subset of X containing an even number of elements we have a free choice, for

11  ni , whether or not to include ix . However, when it comes to nx we no longer

have a choice; if we have already selected an even number of elements, we must exclude

nx , and if we have already selected an odd number of elements, nx must be included. So

the number of ways we can choose a subset of X containing an even number of elements

is 2...22  ,with 1n factors, that is, )2(2
2
11 nn  . Thus X has 12 n subsets

containing an even number of elements and the same number of subsets containing an

odd number of elements.

Therefore 




rn
n

rn
n

rnCrnC

0
odd

0
even

),(),( , and so 0),()1(
0




n

r

r rnC .

2.3.4B Prove that for each positive integer n, 2

0

2 2)1(),( 



 n
n

r

nnrnCr

Solution: Let X be a set of n elements. We count the number of ordered pairs ),( BA

where A is a two-element subset of X and B is a subset of AX \ in two ways. First, for

nr 2 , let rY be the set of all such ordered pairs where rBA  )(#)(# . We obtain a



8

pair rYBA ),( by first choosing an r-element subset, say X  , of X and then choosing a

two element subset A of X  , and finally putting AXB \ . X  may be chosen in

),( rnC ways, and then A in )1()2,(
2
1  rrrC ways. Hence

),()1()(#
2
1 rnCrrYr  . Thus the total number of such ordered pairs ),( BA is





n

r

rnCrr
2

2
1 ),()1( , and this is the same as 




n

r

rnCrr
0

2
1 ),()1( . On the other hand, we

can choose such an ordered pair by first choosing a two-element subset, say A, of X, and

then any subset B of the element-)2( n set AX \ , and this pair of choices may be

made in 2
2
12 2)1(2)2,(   nn nnnC ways. We thus deduce

that 2
2
1

0
2
1 2)1(),()1( 



 n
n

r

nnrnCrr , and hence

2

0

2)1(),()1( 



 n
n

r

nnrnCrr . (1)

By the result of Exercise 2.3.4A ,





n

r

nnrnrC
0

12),(

(2)

Adding (1) and (2) then gives

2

0

2 2)1(),( 



 n
n

r

nnrnCr .

2.4.1B In his autobiography, What I Remember, Adolphus Trollope describes the Italian

lottery as follows:

“Ninety numbers, 1-90, are always put into the wheel. Five

only of these are drawn out. The player bets that a number named by

him shall be one of these (semplice estratto); or that it shall be the first

drawn (estratto determinato); or that two numbers named by him shall

be two of the five drawn (ambo); or that three so named shall be

drawn (terno). It will be seen, therefore, that the winner of an estratto

determinato, ought, if the play were quite even, to receive ninety times

his stake. But, in fact, such a player would receive only seventy-five

times his stake, the profit of the Government consisting of this pull of
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fifteen per ninety against the player. Of course, what he ought to

receive in any of the other cases is easily (not by me, but by experts)

calculable.”

What would be fair odds for the semplice estratto, ambo and terno bets?

Solution: There are )5,90(C different sets of 5 numbers that may be chosen from the

numbers 1-90. For 31  r , the number of these subsets containing r specified numbers,

is the number of ways of choosing r5 numbers from the remaining r90 , that is,

)5,90( rrC  . Hence the probability that the 5 drawn numbers include the r that you

have specified is
)5,90(

)5,90(

C

rrC 
. We thus obtain the following probabilities:

semplice estratto:
18

1

)5,90(

)4,89(


C

C
; ambo:

801

2

)5,90(

)3,88(


C

C
; terno:

11748

1

)5,90(

)2,87(


C

C
,

and so fair odds are 17:1, 799:2 and 11747:1, respectively.

2.4.2B A bag contains 2n red balls and 2n blue balls. What is the probability that if 2n

balls are drawn at random, the sample will consist of n red balls and n blue balls?

Solution: The bag contains n4 balls altogether. So n2 balls can be drawn from the bag in

)2,4( nnC ways. There are ),2(),2( nnCnnC  ways of choosing n red balls and n blue

balls from this bag. Hence the required probability is

)!4()!(

))!2((

))!2((

)!4(

)!(

))!2((

)2,4(

),2(),2(
4

4

24

2

nn

n

n

n

n

n

nnC

nnCnnC



.

[Using Stirling’s formula, namely that !n is asymptotic to
n

e

n
n 








2 , it can be seen that

this probability is asymptotic to
n

2
.]

2.4.3B Suppose there are 2n balls in a bag of which a are red and b are blue, where

nba 2 . One ball is removed at random from the bag, and then replaced. Then a

second ball is drawn at random from the bag and then replaced. Calculate the probability

that either a red ball is drawn twice or a blue ball is drawn twice. Show that this

probability is a minimum when nba  .

Solution: Since the sampling is done with replacement, there are 22 4)2( nn  ways in

which 2 balls can be drawn from the n2 balls. Two red balls can be drawn in 2a ways

and two blue balls in 2b ways. So the probability of getting either two red or two blue



10

balls is
2

22

4n

ba 
. Since anb  2 , we have

2

22

2

22

2

22

2

)(

4

)2(

4 n

ann

n

ana

n

ba 






.

For a given value of n this is a minimum when 0 an , that is, when bna  .

2.4.4B Suppose that in a given bridge deal North and South between them have nine

spades. What is the probability that the remaining four spades in the other two hands are

divided two-two?

Solution: Between them, East and West have 26 cards of which 4 are spades. The 13

cards held by, say, East, can be chosen in )13,26(C ways. There are )11,22()2,4( CC  of

these hands in which East has 2 of the 4 spades, and 11 of the 22 other cards. So the

required probability is
575

234

10400600

7054326

)13,26(

)11,22()2,4(







C

CC
. This is 0.41 to two

decimal places.

2.4.5B Complete the calculation of Exercise 2.4.5A by working out how many poker

hands there are that fall into the categories (f) to (i) above. Also work out the probability

that a poker hand dealt at random falls into each of these categories.

Solution: (f) Straight flush. A straight flush is determined by its suit, which may be

chosen in 4 ways, and its lowest card, which may be chosen in 10 ways. So there are

40104  of these hands.

(g) Three of a kind. The rank of the 3 cards may be chosen in 13 ways, and 3 cards of this

rank in 4)3,4( C ways. The 2 different ranks of the remaining 2 cards may be chosen in

66)2,12( C ways, and the ranks of these cards in 44 ways. So there are

549124466413  of these hands.

(h) Two pairs. The 2 ranks of the two pairs may be chosen in 78)2,13( C . For each

rank, we can choose 2 cards of this rank in 6)2,4( C ways. There are then 44 cards of

other ranks from which the 5th card may be chosen. So there are 446678 

123552 of these hands.

(i) Other hands. By adding the numbers calculated in the solution to Exercise 2.4.5A, and

those given above, we see that there are 1296420 poker hands in categories (a)-(h). There

are )5,52(C 2598960 poker hands altogether. So there are 12964202598960 

1302540 other hands.
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The number of hands of each type, and their probabilities, to 6 decimal places are given

the following table.

Kind of hand Number Probability

Straight Flush

Four of a Kind

Full House

Flush

Straight

Three of a Kind

Two Pairs

One Pair

Other Hands

40

624

3 744

5 108

10 200

54 912

123 552

1 098 240

1 302 540

0.000 015

0.000 240

0.001 441

0.001 965

0.003 925

0.021 128

0.047 539

0.422 569

0.501 177

Total 2 598 960

2.4.6B A coin is biased so that the probability of getting a head is 0.6. If the coin is

tossed five times, what is the probability of getting three heads?

Solution: The probability of a given sequence of the outcomes of 5 tosses, 3 of which are

heads (such as HTHHT) is 23 )4.0()6.0( 03456.0 . The number of such sequences is the

number of ways of choosing the positions of the 3 heads, that is, 10)3,5( C . So the

probability of getting 3 heads and 2 tails is 3456.03456.010  . [More generally, if a

biased coin is tossed n times and the probability of getting a head is p and the probability

of getting a tail is p1 , then, for nr 0 , the probability of getting r heads is

rnr pprnC  )1(),( . This corresponds to what is known as the binomial distribution of

probabilities.]

2.5.1B If 21 dice are thrown simultaneously, what is the probability that 1 comes up

once, 2 comes up twice, 3 comes up three times, 4 comes up four times, 5 comes up five

times and 6 comes up six times?

Solution: Since there are 6 outcomes for the result when 1 die is thrown, there are 216

different sequences of outcomes when 21 dice are thrown. By the Multinomial Theorem

(Theorem 2.11) the number of such sequences made up of one 1, two 2s, three 3s, four 4s,

five 5s and six 6s is
!6!5!4!3!2!1

!21
. Thus the required probability is
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1844231664861

396070675

03778562193695064

2002053230379
6

!6!5!4!3!2!1

!21 21  , which is 0000936.0 to 3

significant figures.

2.5.2B In how many different ways can one arrange the sequence of letters in the word

PROPERISPOMENON ?

Solution: Three of the letters (I,M,S) occur once, three occur twice (E,N,R) and two

(P,O) occur three times in this word. So by the Multinomial Theorem (Theorem 2.11) the

15 letters in PROPERISPOMENON can be arranged in order in

4540536000
!3!3!2!2!2!1!1!1

!15
 ways. [The word properispomenon means “a word having a

circumflex accent on the penultimate syllable”. There are not many examples; one is

fenêtre. ]

2.6.1B Write the following permutation in cycle notation:










13946710825

10987654321
.

Solution: (1 5 7 4 10)(2)(3 8 9)(6) or just (1 5 7 4 10)(3 8 9).

2.6.2B How many different permutations are there of the numbers

}10,9,8,7,6,5,4,3,2,1{ made up of

i) Four disjoint cycles of lengths 1, 2, 3 and 4?

ii) Four disjoint cycles of which three are of length 2 and one is of length 4?

Solution: Using the same approach as in the solution to Exercise 2.6.2A we obtain the

following for the number of permutations of each type.

i) ]!3)4,4([]!2)3,7([]!1)2,9([]!0)1,10([  CCCC

61235136110  151200 .

ii) 18900152845!3)4,4()!1)2,6(!1)2,8(!1)2,10((
!3

1
 CCCC .

2.6.3B If a permutation of the set },...,3,2,1{ n is chosen at random, what is the probability

that it includes exactly one cycle of length 1?

Note: As can be seen, this solution makes use of the idea of a derangement from

Chapter 4.
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Solution: We already know that there are altogether !n permutations of the set

},...,3,2,1{ n .To obtain a permutation that has just one cycle of length 1 we need first to

choose the number which is in the cycle of length 1. This can be done in n ways. Then we

need to arrange the remaining 1n numbers in a permutation that has no cycles of length

1, that is, so that it is a derangement of the remaining 1n numbers. By Theorem 4.4,

there are 







1

0 !

)1(
)!1(

n

k

k

k
n of these derangements. Hence there are
















1

0

1

0 !

)1(
!

!

)1(
)!1(

n

k

kn

k

k

k
n

k
nn permutations of },...,3,2,1{ n containing just one cycle

of length 1.

Hence the probability that a permutation of },...,3,2,1{ n has just one cycle of length 1 is





















  1

0

1

0 !

)1(

!

)1(
!

!

1 n

k

kn

k

k

kk
n

n
. For 8n , this is very close to

e

1
, that is, 0.36788 to five

decimal places.


