
Chapter 2

Single Degree-of-Freedom Vibration:
Discrete Models

Problems for Section 2.2 —Math Modeling: Deterministic

1. The beam in Figure 2.26 vibrates as a result of loading not shown. State the necessary
assumptions to reduce this problem to a one degree-of-freedom oscillator. Then derive the
equation of motion.

Figure 2.26: Vibrating beam supported by springs.

Solution: In order for the system to be approximated by a one DOF oscillator, one spatial coordi-
nate is required to define its displacement. We need to assume that (i) the beam does not deform
but moves as a rigid body, and (ii) the deflection at each end of the beam is the same, implying a
symmetric loading (or only a moment is applied and the rotation at one end is equal and opposite
to that at the other end).
Under these limitations, a SDOF system can be used to model the behavior of this beam. Let F (t)
be the external force acting upward on the beam. Then, using Newton’s second law,

+ ↑
∑

Fvertical = F (t)− 2kx = m
d2x

dt2

giving the equation of motion

m
d2x

dt2
+ 2kx = F (t).

The system has the natural frequency ωn =
√

2k/m.

1



2 CHAPTER 2 SDOF VIBRATION: AN INTRODUCTION

2. If a beam is supported continuously on a foundation, as shown in Figure 2.27, damping must
be added to an idealized model to represent the viscous effects of the mat foundation. How
would you idealize this system as a one degree-of-freedom oscillator? Derive the equation of
motion.

Figure 2.27: Vibrating beam on mat foundation.

Solution: To be modeled as a one DOF system, it must be possible to describe the motion using
one coordinate. We assume the beam is rigid and does not deform. We also assume that the mat
behaves uniformly and has the same physical characteristics along the whole length of the beam.
Finally, the loading must be symmetrical so that the beam will translate only (although a pure
rotation instead is also a possible behavior).
Given these assumptions, the equivalent system is the single mass oscillating in a vertical direction,
where k is the equivalent total stiffness of the mat, and c is the total damping of the mat. Let
x (t) be the displacement from the static equilibrium, and F (t) be the external force, both defined
positive upward. The force must be distributed uniformly to avoid rotation. Then,

+ ↑
∑

Fvertical = m
d2x

dt2

F (t)− kx− cdx
dt

= m
d2x

dt2

m
d2x

dt2
+ c

dx

dt
+ kx = F (t).

The system has a natural frequency ωn =
√
k/m.
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3. An idealized one degree-of-freedommodel is tested many times in order to estimate its natural
frequency. It is relatively straightforward to measure its mass m, but stiffness k can only be
measured approximately. How might one use the natural frequency data to estimate k?

Solution: If we have test data on the natural frequency ωn, and we know m, we can then use
this data to estimate the value of k by using the average frequency ωn in the equation k = ω2nm.
How do we get the frequency data? By weighing the object, we can obtain the mass m = W/g,
whereW is the weight. Then we hang the weight on the spring, displace it and measure the period.
This is actually the damped period. However, if damping is small, the undamped period, T, will
be approximately equal to the damped period. Then ωn = 2π/T. From this we have k again.
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4. The cantilever beam in Figure 2.28 undergoes harmonic oscillation, being driven by a force
of amplitude A with frequency nominally equal to ω. An examination of a long time-history
of the response shows slight fluctuations about an exact harmonic response. If we divide this
long time-history into segments of one period (2π/ω) and superpose these, we obtain the set of
curves shown in Figure 2.29.

Figure 2.28: Cantilever beam.
Figure 2.29: Overlapping

time-histories.

How serious are such fluctuations in the response of the beam? Is there a way to relate the
magnitude of the fluctuation to the maximum response? What would be a reasonable way to
specify the value of ω?

Solution: These fluctuations do not seem significant based on a qualitative assessment of devia-
tions. Although there may be applications where the variations in loading might be important, for
most applications the beam motion is not heavily dependent on such minor deviations.
We may quantify the magnitude of the fluctuations by measuring the amplitudes at one instant of
time. For example, at one instant of time, the largest and smallest amplitudes might be al and
as. The fluctuation at this instant is defined as ∆ = (al − as). We can obtain a measure of the
importance of the fluctuation by relating it to the amplitude of the response A, a simple way being
∆/A. Then, ∆/A×100 provides a percent fluctuation. A small percent signifies minor fluctuations.
The frequency ω can be estimated from the curves by averaging the periods and then using the
average period T to calculate the frequency ω = 2π/ T .
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5. For each nonlinear equation of motion, linearize the equation and discuss the range of validity
of the linearized equation. For example: the linearized equation of motion has an x% error in
the nonlinear term cos θ for θ > θ0. Analytically solve the linearized equations of motion and
numerically solve the fully nonlinear equation using a program such as MATLAB. Plot the linear
and nonlinear time-histories on the same graph and discuss the comparisons.
(a) θ̈ + 3 cos θ = 0, θ(0) = 0.5, θ̇(0) = 0
(b) θ̈ + 3 sin θ = 0, θ(0) = 0.5, θ̇(0) = 0
(c) θ̈ + 3 cos2 θ = 0, θ(0) = 0.5, θ̇(0) = 0
(d) θ̈ + 3 sin2 θ = 0, θ(0) = 0.5, θ̇(0) = 0.

Solution:
(a) θ̈ + 3 cos θ = 0, θ(0) = 0.5, θ̇(0) = 0

To linearize this equation implies that θ is small and that the following approximation can be made:
cos θ ' 1. The equation of motion becomes θ̈+3 = 0 with initial conditions, θ(0) = 0.5 and θ̇(0) = 0.
The solution is given by θ (t) = 0. 5− 1. 5t2.

To solve the original nonlinear equation requires a numerical integration. Most math programs have
built-in differential equation solvers. In MAPLE, one would write,

dsolve({diff(theta(t),t$2)+3*cos(theta(t)),theta(0)=0.5,D(theta)(0)=0});

Below is a sample MATLAB program that solves and plots the results. Note that MATLAB requires
the equations of motion to be in a state-space form.

function problem2_5

clear

[t,Y]=ode45(@odefun, [0:0.01:5], [0.5 0]);

plot(t, Y(:,1), t, 0.5-1.5*t.^2,’—’)

function dot=odefun(t,Y)

dot=[Y(2);

-3*cos(Y(1))];

end

end

The figures below show the results of the numerical simulation as compared to the linearized solution.
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The error is within 10% for t < 1. Afterwards, the linearized solution develops greater errors.
(b) θ̈ + 3 sin θ = 0, θ(0) = 0.5, θ̇(0) = 0

The linearized equation, with sin θ ' θ, becomes y′′ + 3y = 0 with y(0) = 0.5 and y′(0) = 0 with
solution y (t) = 0. 5 cos 1. 7321t. Let us plot the numerical solution to the nonlinear equation and
the solution to the linearized equation. Note that the solution to the linearized equation works very
well.

(c) θ̈ + 3 cos2 θ = 0, θ(0) = 0.5, θ̇(0) = 0

Recall the trigonometric identity cos2 θ = (1 + cos 2θ) /2. Applying this identity to the above dif-
ferential equation and substituting the small angle approximation cos 2θ ' 1 leaves us with the
expression θ̈ + 3 = 0, which is the same equation as in part (a). So, we arrive at the approximate
solution θ(t) = 0.5− 1.5t2. The following figure plots the linear and numerical solutions. Note that
the linearized solution is a good approximation for only the first two or three seconds of the motion.
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(d) θ̈ + 3 sin2 θ = 0, θ(0) = 0.5, θ̇(0) = 0

Recall the trigonometric identity sin2 θ = (1− cos 2θ) /2. Applying this identity to the above dif-
ferential equation and substituting the small angle approximation as above leaves us with the
expression θ̈ = 0, implying a constant solution since the slope of the solution at time t = 0 is zero.
Two integrations satisfying the initial conditions leads to the result θ(t) = 0.5. Plotting the approx-
imate and the numerical solutions against each other gives the following figure.

The linear approximation valid here for the first 2.5 seconds of the motion, and then large errors
develop.
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6. For each idealized model in Figures 2.30 to 2.33, draw a free-body diagram and derive the
equation of motion using (a) Newton’s second law of motion and (b) the energy method. The
block in Figure 2.31 slides on a frictionless surface. State whether the oscillations are linear or
nonlinear. Determine the natural frequency of each model.

Figure 2.30:
Oscillating mass.

Figure 2.31: Sliding
oscillation of mass.

Figure 2.32: A simple pendulum.
Figure 2.33: Torsional

vibration.

Solution: Fig.2.30 For an oscillator vibrating in the gravitational direction x, about static equi-
librium, we have

+ →
∑

Fx = mẍ

−kx− kx = mẍ.

Therefore, the equation of motion is mẍ+ (k + k)x = 0 with natural frequency ωn =
√

2k/m.

Using an energy approach to the same problem, we first find the kinetic and potential energies, and
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then apply the principle of energy conservation T + V = constant,

T =
1

2
mẋ2

V =
1

2
(k + k)x2

1

2
mẋ2 +

1

2
(2k)x2 = const.

Differentiating the last expression with respect to time, we have

mẋẍ+ 2kxẋ = 0.

Since ẋ 6= 0, we can divide it out of the expression, leaving the equation of motion mẍ+ 2kx = 0.

Fig.2.31 Sum the forces in the x direction to obtain

+ →
∑

Fx = mẍ

−kx = mẍ.

The equation of motion is mẍ + kx = 0. When the mass reaches the wall, it bounces back with a
new velocity. The new velocity depends on the coeffi cient of restitution, e. The velocity after the
bounce is vf = vie in the opposite direction. We re-solve the same equation of motion with this
new initial velocity in the opposite direction.
Using an energy approach to the same problem, we first find the kinetic and potential energies, and
then apply the principle of energy conservation T + V = constant,

T =
1

2
mẋ2, V =

1

2
kx2

E =
1

2
mẋ2 +

1

2
kx2 = const.

Differentiating the total energy, E, and dividing the expression by ẋ, we obtain the same equation
of motion mẍ+ kx = 0.

Fig.2.32 For the oscillating pendulum, from the free-body diagram, we take the sum of the mo-
ments and set these equal to the mass moment of inertia about the base multiplied by the angular
acceleration,

+ �
∑

Mo = Iθ̈

−mgl sin θ = Iθ̈.

The negative sign is there because the moment is in the opposite sense of the positive direction given
to θ. I is the mass moment of inertia about the point of contact of the string. For the point mass
shown, I = ml2. Therefore, the equation of motion is Iθ̈ + mgl sin θ = 0. The natural frequency is
given by ωn =

√
mgl/I.
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By the energy method, we substitute the kinetic and potential energies into the principle of the
conservation of energy.

T =
1

2
Iθ̇
2
, V = −mgl cos θ

T + V =
1

2
Iθ̇
2 −mgl cos θ = const.

Differentiating the total energy with respect to time,

Iθ̇θ̈ +mgl sin θθ̇ = 0

θ̇(Iθ̈ +mgL sin θ) = 0.

Since θ̇ 6= 0, we can divide it out of the expression, leaving us with the equation of motion Iθ̈ +
mgL sin θ = 0.

Fig.2.33 Take the moment about the vertical axis through the center of the disk to obtain

+ 	
∑

MG = Jθ̈

−Kθ = Jθ̈,

where J is the mass polar moment of inertia. For a solid disk J = mR2/2. The equation of motion
is Jθ̈ +Kθ = 0, and the natural frequency is then ωn =

√
K/J.

Using the energy approach, we first find the kinetic and potential energies, and then apply the
principle of energy conservation T + V = constant.

T =
1

2
Jθ̇

2
, V =

1

2
Kθ2

T + V =
1

2
Jθ̇

2
+

1

2
Kθ2 = const.

Differentiating the total energy and dividing the expression by θ̇, we obtain the same equation of
motion Jθ̈ +Kθ = 0.
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7. A disk of mass m is mounted between two shafts with different properties, as shown in Figure
3.34. (a) What is the natural frequency of the system? (b) If the disk is rotated θ, where θ � 1
rad, and then released, what will its angular position be at an arbitrary time t?

Figure 2.34: A disk mounted between two shafts.

Solution: Note that k2 and k3 are in series. The equivalent stiffness is

k′eq =

(
1

k2
+

1

k3

)−1
=

k2k3
k2 + k3

.

Let us assume a rotation of θ, then the springs exert moments in the opposite direction of the
assumed motion. Summing the moment about the rotational axis, we have∑

M = Idiskθ̈

−k1θ − k′eqθ = Idiskθ̈.

The equation of motion is then

Idiskθ̈ +

(
k1 +

k2k3
k2 + k3

)
︸ ︷︷ ︸

keq

θ = 0.

The natural frequency is

ωn =

√
1

Idisk

(
k1 +

k2k3
k2 + k3

)
.

Note that the polar mass moment of inertia of a solid disk is Idisk = 1
2
mr2, where r is the radius of

the disk. The response is purely sinusoidal, and

θ (t) = C1 cosωnt+ C2 sinωnt.

For a disk released from an initial position θ0 with zero velocity, the response at an arbitrary time
is given by

θ (t) = θ0 cosωnt.
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8. Calculate the equivalent torsional spring constant for the shaft on the disk shown in Figure
2.35.

Solution: The stiffness of a torsional bar is GJ/l, where J is the area polar moment of inertia
given by

J =
1

2
πr4 =

1

32
πd4.

In this case, two torsional bars are in series so that the equivalent stiffness is

keq =

(
1

k1
+

1

k2

)−1
=

k1k2
k1 + k2

=
G1J1
l1

G2J2
l2

G1J1
l1

+ G2J2
l2

=
G1G2J1J2

G1J1l2 +G2J2l1
.

Substituting for J1 and J2, we obtain the equation for the equivalent stiffness in terms of the
diameters,

keq =
π

32

G1G2d
4
1d
4
2

G1d41l2 +G2d42l1
.
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9. A valve mechanism is drawn schematically in Figure 2.36. The mechanism is in equilibrium
when the rocker arm is horizontal. The system is assumed to be frictionless. Use an energy
method to determine the natural angular frequency for small vibration about the equilibrium.

Figure 2.36: A rocker-arm valve system.

Solution: Let θ be the angle of rotation of the rocker arm in the counterclockwise direction
measured from the static equilibrium. The kinetic energy of the system is given by

T =
1

2
mB

(
aθ̇
)2

︸ ︷︷ ︸
Tmass

+
1

2
IOθ̇

2︸ ︷︷ ︸
Trod

+
1

2
mV

(
bθ̇ cos θ

)2
︸ ︷︷ ︸

Tvalve

where IO = IG + mBe
2 = 1

12
mB (a+ b)2 + mBe

2 using the parallel axis theorem. The potential
energy of the system is

V = −mBga sin (θ + θs)︸ ︷︷ ︸
Vmass

+mBge sin (θ + θs)︸ ︷︷ ︸
Vrod

+mV gb sin (θ + θs)︸ ︷︷ ︸
Vvalve

+
1

2
k (b sin (θ + θs))

2︸ ︷︷ ︸
Vspring

,

where θs is the angle of rotation under static equilibrium. The total energy, E, is the sum of
the kinetic and potential energies. The system is conservative, and the total energy is constant.
Differentiate the total energy and we obtain

0 =
dE

dt
= mBa

2θ̇θ̈ + IOθ̇θ̈ +mV b
2θ̇ cos θ

(
θ̈ cos θ + θ̇

2
sin θ

)
−mBga cos (θ + θs) θ̇ +mBge cos (θ + θs) θ̇ +mV gb cos (θ + θs) θ̇ + kb2 sin (θ + θs) θ̇.

Divide by θ̇ to obtain

0 = mBa
2θ̈ + IOθ̈ +mV b

2 cos θ
(
θ̈ cos θ + θ̇

2
sin θ

)
−mBga cos (θ + θs) +mBge cos (θ + θs) +mV gb cos (θ + θs) + kb2 sin (θ + θs) .

Assuming small rotations
(
θ2 � 1, or |θ| � 1

)
and we obtain

0 =
(
mBa

2 + IO +mV b
2
)
θ̈ + kb2 (θ + θs)−mBga+mBge+mV gb.
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The equilibrium position θs satisfies kb2θs − mBga + mBge + mV gb = 0. Then, the equation of
motion is simplified to

0 =
(
mBa

2 + IO +mV b
2
)
θ̈ + kb2θ.

The natural frequency of this system is

ωn =

√
kb2

mBa2 + IO +mV b2
.
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10. A rod is supported on two rotating grooved rollers, as depicted in Figure 2.39. The tubes
rotate in opposite directions and the coeffi cient of friction between the tubes and the rod is µk.
Find the natural frequency of the system and describe the behavior of the rod if it is disturbed
in the horizontal direction.

Figure 2.39: Rod supported by two rotating grooved rollers.

Solution: The rod oscillates because of the variation in the frictional force by each wheel. Let us
consider a free-body diagram shown below.

The rod does not move up and down nor rotate. Therefore, we have

+ ↑
∑

Fy = N1 +N2 −mg = 0

+ �
∑

MG = N1

(
L

2
+ x

)
−N2

(
L

2
− x
)

= 0.

Solving, we can find the normal forces as functions of x:

N1 = mg

(
1

2
− x

L

)
and N2 = mg

(
1

2
+
x

L

)
.

The force balance equation in the x direction is given by

+ →
∑

Fx = f1 − f2 = mẍ

µkN1 − µkN2 = mẍ

µkmg

(
1

2
− x

L
− 1

2
− x

L

)
= mẍ.
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The equation of motion is then
mẍ+ 2

µkmg

L
x = 0.

The rod oscillates about the midpoint at the natural frequency of

ωn =

√
2
µkmg

L
.
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11. A 25 kg block is suspended by two cables, as depicted in Figure 2.38. Assume small
displacements. (a) What is the frequency of oscillation in Hz of the block in the x direction if
it is slightly displaced in this direction? (b) What is the period of oscillation in the z direction
if the block is slightly displaced in this direction?

Solution: (a) Assuming the block oscillates on the xy plane, the corresponding free-body diagram
is shown below.

The block does not rotate, but translates. Summing the forces in the x and y direction, we obtain

+ →
∑

Fx = −2T sin θ = mẍ (1)

+ ↑
∑

Fy = 2T cos θ −mg = mÿ. (2)

The accelerations in the x and y directions are written in terms of θ and derivatives of θ. Note that
the accelerations at the center of gravity are the same as those anywhere else on the block. We
write the position of one of the points where the string is attached. Taking a second derivative with
respect to time gives the accelerations,

x = l sin θ =⇒ ẍ = lθ̈ cos θ − lθ̇2 sin θ (3)

y = l − l cos θ =⇒ ÿ = lθ̈ sin θ + lθ̇
2

cos θ. (4)

Substituting Equation (3) into (1) and (4) into (2), the force balance equations are now

−2T sin θ = m
(
lθ̈ cos θ − lθ̇2 sin θ

)
2T cos θ −mg = m

(
lθ̈ sin θ + lθ̇

2
cos θ

)
.

There are two unknowns, θ and T, both functions of time. We eliminate the tension to obtain a
differential equation in terms of θ. Multiplying the first by cos θ and the second equation by sin θ
and adding them, we obtain

mlθ̈ +mg sin θ = 0,



18 CHAPTER 2 SDOF VIBRATION: AN INTRODUCTION

which is identical to a pendulum equation. The reason why the equation of motion is that of a
pendulum is because the block does not rotate. The natural frequency for small oscillations in units
of Hz is f = ωn/2π =

√
g/L/2π.

(b) If the block oscillates in the yz plane, the free-body diagram is shown below.

Taking a moment about the fixed point at the ceiling, we have

+ 	
∑

M =
(
IG +ml2

)
θ̈

−mgl sin θ =
(
IG +ml2

)
θ̈,

where IG = 1
12
m (d2 + h2) . The equation of motion is given by(

IG +ml2
)
θ̈ +mgl sin θ = 0.

For small oscillations, the natural frequency is

ωn =

√(
d2+h2

12
+ l2

)
gl

=
1

2

√
(d2 + h2 + 12l2)

3gl
.

In Hz,

fn =
ωn
2π

=
1

4π

√
(d2 + h2 + 12l2)

3gl
.
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12. Derive the equation of motion and natural frequency for a mass m on the string that is
under constant tension T as shown in Figure 2.39. Assume small displacements and m is much
greater than the mass of the string.

Figure 2.39: Vibration of a mass on a string under tension.

Solution: When the string with the mass is displaced from equilibrium, it is the vertical components
of the string tension forces that restore the mass to its original position. The free-body diagram is
shown below.

Summing the forces in the vertical direction we obtain

+ ↑
∑

F = mẍ

−T sin θ1 − T sin θ2 = mẍ.

For small displacements, we can make the approximation that sin θ ' tan θ. For the triangle with
base a, tan θ = x/a, and for the triangle with base L−a, tan θ ' x/(L−a). Therefore, the equation
of motion becomes

−T x
a
− T x

l − a = mẍ

mẍ+ T

(
L

a (L− a)

)
x = 0.

The natural frequency is therefore

ωn =

√
T

m

L

a (L− a)
.
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13. Continuing Problem 2.12, the string is stretched to the position shown in Figure 2.40.
Calculate the natural frequency of the system using the following parameter values: W = 2 lb,
T = 50 lb, and l = 4 ft, where T is the tension in the string for the configuration shown.

Figure 2.40: Mass on a stretched string.

Solution: From the previous problem, we found that the natural frequency is

ωn =

√
T

m

l

a (l − a)
.

Substitute the following values:

T = 50 lb

a = 2 ft

l = 4 ft

m =
W

g
=

2

32.2

lb

ft/s2
.

The natural frequency is

ωn =

√
T

m

l

a (l − a)

=

√
50

(2/32.2)

4

2 (4− 2)

= 28.4 rad/s.
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14. Derive the equation of motion for a uniform stiff rod restrained from vertical motion by
a torsional spring of stiffness K as shown in Figure 2.41. The torsional spring constant is
determined by the application of a momentM and the measurement of the angular displacement
θ, that is, M = Kθ. Calculate the natural frequency of oscillation. Let J define the moment of
inertia of the rod about the point of oscillation. State any assumptions.

Figure 2.41: Restrained rigid rod.

Solution: Let J be the mass moment of inertia of the rod about its base, O. The free-body
diagram is shown below.

We assume small displacements at the end. In this way we can assume that essentially the springs
remain vertical. Newton’s second law of motion, in moment form, can be applied for the sum of
the external moments about the left end of the rod. It should be noted that the moment is taken
positive in the positive θ direction.

+ y
∑

Mo = Ioθ̈

−Kθ − (kl sin θ)(l)− (kl sin θ)(l) = Ioθ̈,

where Io = ml2/3, l sin θ is the deflection of the right end and l is the moment arm of the spring
force. Then,

ml2

3
θ̈ +Kθ + 2kl2 sin θ = 0

or
ml2

3
θ̈ +

(
2kl2 +K

)
θ = 0,

where for small angles sin θ ' θ gives the equation of linearized motion. The natural frequency for
small motions is ωn =

√
3 (2kl2 +K) /ml2.
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15. A uniform rigid and massless rod is pinned at one end and connected to ground via a
spring at the other end. At midpoint on the rod, a spring is connected to a mass which is then
connected to a fixed point via another spring, as shown in Figure 2.42. (a) Derive the equation
of free vibration for the system, and (b) find the natural frequency. (c) Calculate the natural
frequency given the following parameters: k1 = 20 lb/in, k2 = 30 lb/in, k3 = 40 lb/in, W = 50
lb, and l = 8 ft.

Solution: (a) Equation of motion
The free-body diagrams corresponding to positive displacements are shown below.

For the mass, the force balance equation in the vertical direction is

+ ↑
∑

F = mẍ

−k1x− k2 (x− y) = mẍ. (1)

Note that the deflections are measured from static equilibrium so that gravity can be omitted from
the problem. (We can always do this if the only thing that the gravity does is to cause a static
deflection.) The moment balance equation for the rod is

+ 	
∑

MA = IAθ̈

k2 (x− y)
l

2
− k3yBl = 0,

where IA = 0 because, from the problem statement, the rod is massless, and yB is twice y (using
similar triangles). Then, the moment balance equation for the rod is reduced to

k2 (x− y)− 4k3y = 0.

Solving for y, we find y = (k2/ (k2 + 4k3))x. Substituting this back into Equation (1), the equation
of motion is given by

−k1x− k2
(
x− k2

k2 + 4k3
x

)
= mẍ

mẍ+

(
k1 + k2 +

k22
k2 + 4k3

)
x = 0.
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(b) The general expression for the natural frequency is

ωn =

√(
k1 + k2 +

k22
k2 + 4k3

)
1

m
.

(c) The numerical value for the natural frequency given k1 = 20 lb/in, k2 = 30 lb/in, k3 = 40 lb/in,
W = 50 lb, and l = 8 ft is

ωn =

√(
20 + 30 +

302

30 + 4 (40)

)
32.2× 12

50

= 20.6 rad/s.
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16. (a) A rod of nonuniform cross-section but uniform material is pinned at one end and
supported by two springs as shown in Figure 2.43. The rod is displaced slightly from equilibrium
and released and observed to oscillate with a period of T = 1.5 s. Calculate the moment of
inertia of the rod with respect to the hinge axis of rotation if k = 500 N/m and l = 1 m.
(b) Calculate the period of oscillation if both springs were on the same side of the rod and all
parameter values are the same as in the previous part.

Figure 2.43: A rigid rod supported by two springs.

Solution: Assuming a positive rotation in the counterclockwise direction and positive displacement
upward, we draw free-body diagrams for both cases below.

(a) First Case - We sum the moment about A, finding

+ 	
∑

MA = IAθ̈

−2kl2 sin θ = IAθ̈.

The linearized equation of motion is
IAθ̈ + 2kl2θ = 0.
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The natural frequency is ωn =
√

2kl2/IA, and the natural period is T = 2π/ωn = 2π
√
IA/2k2l.

Substituting k = 500 N/m, l = 1 m, and T = 1.5 s, we find

IA =

(
T

2π

)2
2kl2 = 57.0 kg-m2.

(b) Second Case - If the springs are attached in series, the equivalent stiffness becomes keq =

(1/k + 1/k)−1 = k/2. This can be seen from the free-body diagram. We sum the moments about
A to obtain

+ 	
∑

MA = IAθ̈

kl (x− l sin θ) = IAθ̈. (1)

We sum the forces about B to obtain

+ ↑
∑

F = 0 (massless point B)

kx+ kx− kl sin θ = 0.

Solving for x, we obtain x = l sin θ/2. Substituting this into Equation (1), we obtain

kl

(
l sin θ

2
− l sin θ

)
= IAθ̈

IAθ̈ +
k

2
l2 sin θ = 0.

The linearized equation of motion is

IAθ̈ +
k

2
l2θ = 0.

The stiffness of the second system is reduced by a factor of four. Then, the natural frequency is
reduced by a factor of

√
4 or 2. This will increase the period by a factor of two. The period of the

second system is 3 s.
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17. A body of mass m is suspended by a spring of constant k and attached to an elastic beam
of length l, as shown in Figure 2.44. When the mass is attached to the spring measurements are
taken of the spring extension δs and the end deflection of the beam xb. Neglect the masses of
the beam and the spring. (a) Estimate the natural frequency of the system. (b) Calculate the
natural frequency if the mass is attached to the beam directly without a spring. (c) Calculate
the natural frequency if the beam is assumed to be rigid. (d) Calculate the respective numerical
values given δs = 12 mm, xb = 2 mm, and l = 0.5 m.

Figure 2.44: Mass suspended by a spring from a beam.

Solution: (a) In this system, a leaf spring is connected to a coil spring in series. The system in
Figure 2.44 can be simplified to

The beam can be modeled as a spring with stiffness kbeam. This leaf spring has a stiffness of kbeam =
3EI/L3. The combined stiffness is

keq =

(
1

k
+

1

kbeam

)−1
=

kbeamk

k + kbeam
.
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The equation of motion is
mẍm + keqxm = 0,

where xm is measured from the equilibrium position. The natural frequency is

ωn =

√
kbeamk

(k + kbeam)m
.

Note that we could have omitted mg from the free-body diagram if we measure the deflection from
static equilibrium.
(b) If the mass is attached to the beam directly without a spring, the natural frequency is obtained
by letting keq = kbeam or let k →∞ in the natural frequency expression obtained in part (a):

ωn =

√
kbeam
m

.

(c) If the beam is assumed rigid, we let kbeam →∞ in the natural frequency expression obtained in
part (a):

ωn =

√
k

m

(d) If a mass is placed, we find δs = 12 mm and xb = 2 mm. For springs in series, the forces in the
springs are equal. That is,

kbeamxb = mg and kδs = mg.

Then,
kbeam =

mg

0.002
and k =

mg

0.012
.

The numerical answer to parts (a), (b) and (c) are

(a) ωn =

√
kbeamk

(k + kbeam)m
=

√√√√√√√
1

xb

1

δs(
1

xb
+

1

δs

)g = 26.5 rad/s

(b) ωn =

√
kbeam
m

=

√
g

xb
= 70.0 rad/s

(b) ωn =

√
k

m
=

√
g

δs
= 28.6 rad/s.

Note that l is needed to calculate kbeam.
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18. A solid cylinder floating in equilibrium in a liquid of specific gravity γ is depressed slightly
and released into motion. A schematic is shown in Figure 2.45. Find the equilibrium position
and solve for the natural frequency of oscillation assuming the cylinder remains upright at all
times. Suppose the assumption that the cylinder remains upright is not reasonable. Then what
diffi culties do you foresee in the calculations, and how might they be resolved?

Figure 2.45: Solid body oscillating in a liquid.

Solution: We know from Archimedes’principle that for a body immersed in a fluid, a buoyancy
force acts in the opposite direction of gravity with a magnitude equal to the product of displaced
volume and mass density of the fluid. For water this mass density equals ρwater = 64 lb/ft3. The
displaced volume equals πr2x, where x is the length of the cylinder that is immersed and r is the
radius of the cylinder. We assume the cylinder remains vertical as it oscillates. The mass of the
cylinder is πr2hρ, where h is the length of the cylinder and ρ is the mass density of the cylinder.
The equilibrium position xeq is given by equating the buoyancy force to the weight of the cylinder:

Fbuoyancy = Wcylinder

πr2xeqρwaterg = (πr2hρ)g

xeq =
hρ

ρwater
= γh.

The forces in the vertical direction are those due to gravity: the weight of the cylinder and the
buoyancy force. If the oscillation is taken about the equilibrium position, weight can be ignored.
The buoyancy force acts like a spring force. Newton’s second law of motion in the vertical direction
is given by ∑

Fvertical = mcylindera

−πr2yρwaterg = πr2hρẍ,

where y is the displacement measured from the static (equilibrium) position so that x = y + xeq.
The figure below is referred to for the definitions of x, xeq, and y.
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In standard form this equation of motion becomes

hρÿ + ρwatergy = 0,

or

ÿ +
ρwaterg

hρ
y = 0,

ÿ +
g

γρ
y = 0,

where the natural frequency is given by

ωn =

√
g

γρ
.

The specific gravity γ is the ratio of the density of a fluid to the density of water. If the cylinder
does not remain vertical during oscillation, then in addition to vertical oscillations there will be
rotational oscillations and the restoring force will be more complicated to evaluate.
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19. The uniform rod is restrained by four translational springs and a torsional spring as shown
in Figure 2.46. Determine the natural frequency of the system using the energy approach.

Figure 2.46: A rigid rod supported by four translational springs and a torsional spring.

Solution: The kinetic energy is given by

T =
1

2
IOθ̇

2
,

whereO is where the rod is attached to the hinge, and IO = IG+md2, where in this case, IG = ml2/12
and d = l/4. Then,

IO =
7

48
ml2.

The potential energies are stored in the four translational springs and the torsional spring. The
total potential energy is given by

V = k

(
l

4
θ

)2
+ k

(
3l

4
θ

)2
+

1

2
Kθ2

=
5

8
kl2θ2 +

1

2
Kθ2.

Note that gravitational potential energy can be omitted if θ is measured from the static equilibrium.
The total energy is E = T + V, and it is conserved. Taking a derivative with respect to time, we
have

dE

dt
= 0 =

7

48
ml2θ̇θ̈ +

10

8
kl2θθ̇ +Kθθ̇.

Dividing by θ̇, we have the equation of motion,

7

48
ml2θ̈ +

(
5

4
kl2 +K

)
θ = 0.

The natural frequency is

ωn =

√(
5
4
kl2 +K

)
7
48
ml2

.
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20. Derive Equation 2.23,

x(t) = x(0) cosωnt+
ẋ(0)

ωn
sinωnt.

beginning with the equation of motion.

Solution: Begin with Equation 2.20 with F (t) set to zero:

ẍ+ ω2nx = 0.

The solution is given in the form,

x(t) = C1 sinωnt+ C2 cosωnt.

We can evaluate the arbitrary constants by satisfying initial conditions: x(0) and ẋ(0) to find

x(0) = C2,

ẋ(0) = C1ωn.

Therefore, C2 = x(0) and C1 = ẋ(0)/ωn. Equation 2.23 is found:

x(t) = x(0) cosωnt+
ẋ(0)

ωn
sinωnt.
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Problems for Section 2.3 —Undamped Free Vibration

21. Derive Equation 2.26,
x(t) = B1 cosωnt+B2 sinωnt,

beginning with the equation of motion.

Solution: The equation of motion is ẍ+ ω2nx = F (t). Assume the general solution

x(t) = A exp(rt).

Differentiate this function twice and substitute into the ordinary differential equation to find the
characteristic equation

r2 + ω2n = 0,

where the common factor A exp(rt) has been divided out of the expression. This provides us with
two roots:

r1,2 = ±iωn.
Each of these is one solution to the governing ordinary differential equation. Therefore,

x(t) = A1 exp(r1t) + A2 exp(r2t).

We substitute the two roots in this expression, and proceed as in the text, where the rest of the
derivation is provided before our goal: Equation 2.26.
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22. Show that the period of free vibration of a load weighing W suspended from two parallel
springs, as shown in Figure 2.47, is given by

T = 2π
√
W/g(k1 + k2),

and show that the equivalent stiffness is k = k1 + k2. Discuss the need to hang the weight
asymmetrically, that is a1 6= a2 if k1 6= k2, so that the extension of the springs is identical and
that the ratio a1/a2 = k2/k1.

Figure 2.47: Weight hanging from two parallel springs.

Solution: Let y be the deflection of the mass defined positive downward, and let θ be the rotation
of the rigid bar defined as positive in the counter clockwise direction. For positive y and θ, we draw
the free-body diagram shown below.

Free-body diagram.

The deflection of the left spring is approximately y + a1θ and of the right spring y − a2θ. We have
arbitrarily assumed that rotation of the bar is counter clockwise resulting that the beam deflects
more at the left side than the right side. If for particular parameter values this is not true, then the
signs will change in the resulting expressions to reflect this. By Newton’s second law of motion,
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+ ↓
∑

Fy =
W

g
ÿ

−k1 (y + a1θ)− k2 (y − a2θ) =
W

g
ÿ.

If the weight is hung asymmetrically such that a1/a2 = k2/k1, then the equation of motion becomes

W

g
ÿ + (k1 + k2)y = 0

ÿ +
(k1 + k2)g

W
y = 0,

where ω2n = (k1 + k2)g/W and the period is then T = 2π/ωn = 2π
√
W/g(k1 + k2). If the above

assumptions were not made, then we would need a second equation of motion that governs θ.
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23. For the body suspended between two springs as in Figure 2.48, show that the period of
oscillation is T = 2π

√
W/g(k1 + k2).

Figure 2.48: Body suspended between two springs.

Solution: Let y be the downward displacement of the body measured from the static position.
The corresponding free-body diagram is shown below.

Applying Newton’s second law of motion in the vertical y direction results in

−(k1 + k2)y =
W

g
ÿ.

Note that gravity is omitted because y is measured from static equilibrium. Therefore, the equation
of motion is

ÿ +
g(k1 + k2)

W
y = 0.

The natural frequency ωn and the period T are, respectively,

ωn =

√
g(k1 + k2)

W
, T =

2π

ωn
.
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24. A compound pendulum in the shape of a rectangle is supported at point O and allowed
to oscillate. The dimensions of the rectangle are given in Figure 2.49. Calculate the natural
frequency for small oscillations.

Figure 2.49: A compound pendulum

Solution: Use a free-body diagram based on a counter clockwise positive θ rotation. Taking a
moment about O, we have

+ 	
∑

MO = IOθ̈

−mg
(
l

2
− d
)

sin θ = IOθ̈,

where IO is the mass moment of inertia of the plate about O given by

IO = IG +mOG
2

=
1

12
m
(
l2 + b2

)
+m

(
l

2
− d
)2

,

where G is the center of mass. The equation of motion is given by

IOθ̈ +mg

(
l

2
− d
)

sin θ = 0,

which can be linearized for small rotations by replacing sin θ by θ.
The natural frequency is then

ωn =

√
mg
(
l
2
− d
)

IO
=

√√√√ mg
(
l
2
− d
)

1
12
m (l2 + b2) +m

(
l
2
− d
)2 .
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25. Two springs are joined in series as shown in Figure 2.50. If these are to be replaced by an
equivalent spring, find the equivalent stiffness as well as the period of oscillation. The solution
is

k =
k1k2
k1 + k2

, T = 2π

√
W

g

(k1 + k2)

k1k2
.

Figure 2.50: Two springs in series at left.

Solution: We need to find the equivalent stiffness of two springs in series. To do this attach a
second coordinate to the point where the two springs are attached to each other. Call the deflection
of this location, y2, and call the displacement of the weight y1 as shown below.

To find the equivalent stiffness we consider the static equilibrium problem. From a free-body of W
and the lower spring, W = k1(y1 − y2). From a free-body of the upper spring, we have W = k2(y2).
Since y2 is an intermediate displacement, we can eliminate y2 using the second equation. Solving
for y2 and substituting it into the first equation we find

W = k1(y1 − y2)

= k1(y1 −
W

k2
);
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or

W (1 +
k1
k2

) = k1y1

W (
k1 + k2
k2

) = k1y1

W =
k1k2
k1 + k2

y1.

The equivalent stiffness is then k1k2/(k1 + k2). The equation of motion is

W

g
ÿ1 +

k1k2
k1 + k2

y1 = 0,

The natural frequency and period are

ωn =

√
k1k2g

(k1 + k2)W
, T =

2π

ωn
= 2π

√
(k1 + k2)W

k1k2g
.
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26. A pendulum of mass m and mass moment of inertia IO is suspended from a hinge, as
shown in Figure 2.51. The center of gravity O is located a distance h from the hinge. For small
oscillations, the period equals T . Suppose the pendulum swings with an amplitude of angle α
from the vertical, find the force exerted on the hinge when the pendulum is (a) at its maximum
rotation and (b) at its vertical position.

Figure 2.51: Compound pendulum rotating about pinned connection.

Solution: *** In the following G is used for the center of gravity and O for the point of contact.***

(a) Taking the sum of the moments in a free-body diagram about the point of contact, we find the
equation of motion given by

IOθ̈ +mgh sin θ = 0.

The linearized equation is
IOθ̈ +mghθ = 0

The problem states that for small oscillations the period is T . That is,

T =
2π

ωn
= 2π

√
IO
mgh

,

which can be used to calculate IO of the compound pendulum if m and h are also known.
At θ = α, the acceleration of the pendulum is v̇ or hθ̈ in the tangential direction toward the
equilibrium position.
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∑ ~F = m~a when θ = α.

From the equation of motion, we know θ̈ (θ = α) = −mghα/IO. We write

At θ = ±α
∑

~F = m~a (θ = α) = mhθ̈ (− cosαı̂− sinα̂)

~FO −mg̂ = mh

(
mghα

IO

)
(cosαı̂+ sinα̂)

~FO (θ = α) =
m2h2gα

IO
cosαı̂+

(
m2h2gα

IO
sinα +mg

)
̂.

(Answer to part (a))

(b) When the pendulum passes through the vertical position, the acceleration is hθ̇
2
in the normal

direction only.

∑ ~F = m~a when θ = 0.

Summing the forces at these locations, we have

At θ = 0
∑

~F = m
v2

h
̂.

The normal velocity at θ = 0 is obtained from the conservation of total energy. At θ = 0, the total
energy at θ = α is converted to the kinetic energy. That is

mg (h− h cosα) =
1

2
mv2.

The velocity squared is then
mv2 (θ = 0) = 2mgh (1− cosα) .
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The force balance equation is then∑
~F = m

v2

ρ
̂

~FO −mg̂ =
1

h
(2mgh (1− cosα)) ̂.

The reaction force when θ = 0 is

~FO (θ = 0) = (3mg − 2mg cosα) ̂. (Answer to part (b))
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27. A bifilar pendulum of length 2a is suspended with two vertical strings, each of length l, as
shown in Figure 2.52. (Bifilar means fitted with or involving the use of two threads or wires.)
Assuming small rotations of the strings, such that the bar is essentially horizontal with half its
weight supported by each string, show that the period is given by T = 2πa

b

√
l/3g.

Figure 2.52: A bifilar compound pendulum.

Solution: Note that if we assume that the bar moves as a pendulum in-plane, then the equation
of motion will be the same as that for a simple pendulum. Here, we take the motion to be out of
plane as shown below.

Out-of-plane oscillation of a bifilar pendulum.

Let us visualize the motion: the bar begins to rotate about its centerline, and as it rotates its ends
also raise. However, we assume that this raising can be neglected if the angle of rotation out of the
plane of the paper θ is small. By neglecting the motion in the z direction, we can also approximate
the tension in the each string as mg/2. For a small angle of rotation, the tension in each string
develops a restoring moment (like a spring).

From the free-body diagram below
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the restoring moment about the z axis due to the tension in the each string is Tθb. The component
of the tension perpendicular to the rod in the x-y plane is approximately

Tθ = Tbθ/l = mgbθ/2l

and the restoring moment due to the two strings is mgb2θ/l. The restoring moment is set equal
to the moment of inertia of beam about its center of mass (and rotation) IG times the angular
acceleration θ̈ :

IGθ̈ =
−mgb2

l
θ

ma2

3
θ̈ +

mgb2

l
θ = 0,

where we have used IG = 1
12
m(2a)2. Simplifying the equation of motion,

θ̈ +
b2

a2
3g

l
θ = 0

θ̈ + ω2n θ = 0,

where ω2n = 3b2g/a2l. The period is given by T = 2π/ωn, which equals the given expression.
Note that using vector notation may be more convenient. Taking the moment about the z axis
through the center of mass, we have, (sum of the moments equals the time rate of change of the
angular momentum) ∑

~MG =
d

dt
~HG,

where the sum of the moments is given by∑
~MG = ~rB/G × ~T + ~rA/G × ~T ,

where

~rA/G = b cos θ~i+ b sin θ~j

~rA/G = −b cos θ~i− b sin θ~j

~T = T ((b− b cos θ)~i− b sin θ~j + l~k)/l.

Considering the z component only, we obtain the same equation of motion,

−2T
b2

l
sin θ = ICM θ̈.
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28. An inverted hinged pendulum with a mass m at the top is suspended between two springs
with constants k, as shown in Figure 2.53. The rod can be assumed rigid and massless, and in
the vertical position the springs are not stretched. For small motion, the springs can be assumed
to remain horizontal. Show that the period of oscillation is T = 2π/

√
2k/m− g/l.

Figure 2.53: Inverted pendulum.

Solution: From the free-body diagram of the mass m, we see that a displacement to the right in
the x direction results in forces in the opposite sense due to each spring of −kl sin θ each.

Even though we assume the springs to be horizontal, the motion of the rigid beam with the mass
at the end is a rotational motion about the hinge. Therefore, use Euler’s equation,

+ �
∑

MO = IOθ̈,

where θ is the angle of the beam from the vertical and IO equals the moment of inertia about the
hinge: IO = IG + ml2 ' ml2 since IG is very small when compared to ml2. If you are wondering
why the rod only transmits tension but not shear, it is because the mass is assumed to have no
inertia about its own center of gravity. If the pendulum has mass moment of inertia, shear must be
included.
Taking the moment about the hinge in the clockwise direction, we have:

−(2kl sin θ)l + (mg)l sin θ = ml2θ̈

θ̈ +
2kl2

ml2
sin θ − g

l
sin θ = 0.
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Even though we have not explicitly assumed small angles so far, we have assumed small angles in
reality when we assumed that the spring forces act horizontally. Therefore, the above equations are
not yet valid until we make the substitution: sin θ ' θ :

θ̈ +
2kl2

ml2
θ − g

l
θ = 0

θ̈ +

[
2k

m
− g

l

]
θ = 0,

where

ω2n =
2k

m
− g

l
.

The term in the brackets is the natural frequency squared for small oscillations ω2n, and the period
is given by T = 2π/ωn.
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29. Consider the inverted simple pendulum shown in Figure 2.54. Initially the pendulum is in
an exact vertical position. If it is very slightly displaced from the vertical, what are the stability
characteristics of the system? What kind of motion is expected and what is the equation of
motion? Discuss the long-term behavior.

Figure 2.54: Inverted pendulum.

Solution: We can start with the known pendulum equation given by

θ̈ +
g

l
sin θ = 0,

which is based on Figure 2.32. For an inverted pendulum, we expand sin θ about θ = π rad. The
Taylor series of sin θ about θ = π rad is − sin θ (retaining only the first term). Then, the governing
equation becomes

θ̈ − g

l
θ = 0.

The solution is given by

θ (t) = C1 exp

(√
g

l
t

)
+ C1 exp

(
−
√
g

l
t

)
.

The response is unstable about the equilibrium when it is in the upright position. We cannot discuss
a long term behavior based on the linearized model because the model is valid only at the upright
position.
However, from energy conservation —there is no damping in the system, we know that the pendulum
will not be able to reach a height higher than initial height. If the pendulum is released from 5◦

from the vertical with zero initial velocity, it will oscillate between 5◦ and 355◦ as measured from
vertical.
We can also derive the equation of motion based on an inverted pendulum. Let θ be measured from
vertical this time as shown below.
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Taking moments about O in the positive clockwise direction, we obtain

+ �
∑

MO = mgl sin θ

IOθ̈ = mgl sin θ

θ̈ − g

l
sin θ = 0.

In order to investigate the behavior near θ = 0, we expand sin θ near θ = 0. The one-term Taylor
series of sin θ near θ = 0 is θ. Then, the equation of motion becomes

θ̈ − g

l
θ = 0,

which is identical to the linearized equation of motion obtained based on Figure 2.32.
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30. For the system of Figure 2.55, what should be the value of k3 if k1 = 2k2 = 3k3, for a period
of free vibration of 400 ms for m = 2.5 kg?

Figure 2.55: Mass constrained by several springs.

Solution: Springs k1, k2 and k3 are in parallel. This becomes more obvious when we consider what
happens when the mass moves a distance x. The corresponding spring force is k1x + k2x + k3x in
the direction opposite to the assumed displacement.
The equivalent stiffness is

keq = k1 + k2 + k3

= 3k3 +
3

2
k3 + k3

= 5.5k3.

The natural period is

T =
2π

ωn
= 2π

√
m

keq
.

For T = 0.4 s and m = 2.5 kg, keq = 616.23 N/m. Then, k3 = keq/5.5 = 112.04 N/m.
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31. A slender bar of massm and length l is supported at its base by a torsional spring of stiffness
K, as per Figure 2.56. The bar rests in the vertical position when in equilibrium with the spring
not stretched. Show that the following are true: The differential equation of the rotation θ from
equilibrium is given by

ml2

3
θ̈ +Kθ − mgl

2
sin θ = 0.

For small vibration, that is, θ � 1, show that the natural frequency is given by

ωn =
(k −mgl/2)

ml2/3
.

Figure 2.56: A slender bar of mass is supported at its base by a torsional spring.

Solution: Draw the free-body diagram first.

Take moments about point O to obtain

+ �
∑

MO = IOθ̈

mg
l

2
sin θ −Kθ =

ml3

3
θ̈.
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We assume small rotations (θ2 � 1) so that sin θ can be approximated as θ. The linearized equation
of motion is

ml3

3
θ̈ +

(
K −mg l

2

)
θ = 0.

The natural frequency is

ωn =

√
(K −mgl/2)

ml3/3
.

Note that K must be greater than mgl/2 for the system to be stable, that is, so that the spring is
suffi ciently stiff to balance out the torque applied by the mass of the rod.
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32. A bar supported by a hinge at its base is held in place by a spring connected to a collar, as
per Figure 2.57. The spring is not stretched when the bar is vertical. As the bar is displaced
from equilibrium by an angle θ, the collar slides on the frictionless bar so that the spring remains
horizontal. Derive the governing equation of motion using an energy method, and then reduce
the model for small amplitude motion. Identify the frequency of oscillation.

Figure 2.57: An inverted bar is held in place by a spring connected to a collar.

Solution: The kinetic energy is given by

T =
1

2
IOθ̇

2
,

where IO = ml2/3 where O is the hinge where the bar is supported. The potential energy is given
by

V = mg
l

2
cos θ +

1

2
k (l sin θ)2 .

The total energy is constant and is given by

E = T + V =
1

2
IOθ̇

2
+mg

l

2
cos θ +

1

2
k (l sin θ)2 .

Take the derivative with respect to time (not forgetting the chain rule) to obtain

0 = IOθ̈θ −mg
l

2
sin θθ̇ + k (l sin θ) l cos θθ̇.

Divide by θ̇ 6= 0 to obtain the equation of motion,

IOθ̈ −mg
l

2
sin θ + kl2 sin θ cos θ = 0.

We assume small angles (θ2 � 1) so that sin θ ' θ and cos θ ' 1. The linearized equation of motion
is then

IOθ̈ +

(
kl2 −mg l

2

)
θ = 0.

If k > mg/2l, the natural frequency is

ωn =

√
kl −mg/2
ml/3

.
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33. Solve the previous problem for the initial conditions θ(0) = 0 and θ̇(0) = θ̇0 for two cases of
the stiffness:

k >
mg

2l
and k <

mg

2l
.

What is the solution for k = mg/2l?

Solution: If k > mg/2l, the equivalent stiffness of the linearized system is positive, and θ (t) will
oscillate about the static equilibrium position (vertical position). For the given initial conditions,
the response is

θ (t) =
θ̇0
ωn

sinωnt,

where

ωn =

√
kl −mg/2
ml/3

.

If k < mg/2l, the equivalent stiffness is negative, and the response will grow with time. The solution
near θ = 0 is given by

θ (t) = C1 exp

(√
mg/2− kl
ml/3

t

)
+ C2 exp

(
−

√
mg/2− kl
ml/3

t

)
.

Upon substituting the initial conditions, we obtain

C1 =
θ̇0
2

√
ml/3

mg/2− kl and C2 = − θ̇0
2

√
ml/3

mg/2− kl .

The response is therefore

θ (t) =
θ̇0
2

√
ml/3

mg/2− kl exp

(√
mg/2− kl
ml/3

t

)
− θ̇0

2

√
ml/3

mg/2− kl exp

(
−

√
mg/2− kl
ml/3

t

)
.

We must keep in mind that this solution is good for small θ only (θ � 1).
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34. A simple pendulum of initial length l0 and initial angle θ0 is released from rest. If the length
is a function of time according to l = l0 + εt, find the position (l, θ) of the pendulum at any
time assuming small oscillations. (Hint: This problem requires the use of Bessel functions.) The
governing equation of motion will turn out to be

(l0 + ε)θ̈ + 2εθ̇ + gθ = 0,

and in transformed Bessel form,

x2θ′′ + 2xθ′ +
xg

ε2
θ = 0,

where x = l0 + εt.

Solution: Let us first derive the equation of motion shown. We use Newton’s second law. The
energy method using the total energy will not give the right answer because this is a non-natural
system (a system with prescribed motion).
Summing the moments about the support point O,

d

dt
(HO) +mg (l0 + εt) sin θ = 0,

where HO = IOθ̇ and IO = m (l0 + εt)2 . The moment balance equation becomes

m (l0 + εt)2 θ̈ + 2mε (l0 + εt) θ̇ +mg (l0 + εt) sin θ = 0

Divide this equation by m (l0 + εt) and assume that a small angle of rotation will result in the
equation of motion in the problem statement: (l0 + εt)θ̈ + 2εθ̇ + gθ = 0. This equation can be
transformed into a Bessel equation by change of variables.
Let us start with

(l0 + εt)2 θ̈ + 2ε (l0 + εt) θ̇ + g (l0 + εt) θ = 0.

Let x = l0 + εt, and the derivatives are given by

dθ

dx
=
dθ

dx

dx

dt
= ε

dθ

dx
and

d2θ

dt2
=

d

dx

(
dθ

dx

dx

dt

)
dx

dt
= ε2

d2θ

dx2
.

Then,

x2ε2θ′′ + 2ε2xθ′ + gxθ = 0

x2θ′′ + 2xθ′ +
g

ε2
xθ = 0,

which is the second equation in the problem statement.
From the theory of Bessel functions, the solution of differential equation

x2y′′ + (2k + 1)xy′ + (α2x2r + β2)y = 0,



54 CHAPTER 2 SDOF VIBRATION: AN INTRODUCTION

where k, α, r, β are constants, is the general equation

y = x−k
[
c1Jκ/r(αx

r/r) + c2Yκ/r(αx
r/r)

]
,

where κ =
√
k2 − β2. In the above problem, we have 2k + 1 = 2, β = 0, r = 1/2, α2 = g/ε2, κ =

k = 1/2. Making these substitutions, our solution for θ becomes

θ = x−1/2
[
AJ1(2

√
g

ε
x1/2) +BY1(2

√
g

ε
x1/2)

]
θ = (l0 + εt)−1/2

[
AJ1(2

√
g

ε
(l0 + εt)1/2) +BY1(2

√
g

ε
(l0 + εt)1/2)

]
.

The first initial condition is that θ(t = 0) = θ0. The second initial condition is that θ̇(t = 0) = 0.
Therefore,

θ0 = (l0)
−1/2

[
AJ1(2

√
gl0
ε

) +BY1(2

√
gl0
ε

)

]
and

θ̇(t) = − ε

2(l0 + εt)3/2

[
AJ1(2

√
g

ε
(l0 + εt)1/2) +BY1(2

√
g

ε
(l0 + εt)1/2)

]
+

√
g

l0 + εt

[
AJ ′1(2

√
g

ε
(l0 + εt)1/2) +BY ′1(2

√
g

ε
(l0 + εt)1/2)

]
θ̇(0) = 0 = − ε

2(l0)3/2

[
AJ1(2

√
gl0
ε

) +BY1(2

√
gl0
ε

)

]
+

√
g

l0

[
AJ ′1(2

√
gl0
ε

) +BY ′1(2

√
gl0
ε

)

]
= − ε

2l0
θ0 +

√
g

l0

[
AJ ′1(2

√
gl0
ε

) +BY ′1(2

√
gl0
ε

)

]
We can use this last equation to find

εθ0
2
√
g

= AJ ′1(2

√
gl0
ε

) +BY ′1(2

√
gl0
ε

).

Solve this equation simultaneously with the equation for θ0 above for A and B, (omit the argument
2
√
gl0/ε) :

A =

√
l0Y

′
1 − (ε/(2

√
g))Y1

J1Y ′1 − Y1J ′1
θ0

B =
(ε/(2

√
g))J1 −

√
l0J
′
1

J1Y ′1 − Y1J ′1
θ0.

Use the identity Jn(x)Y ′n(x)− J ′n(x)Yn(x) = 2/(πx), for n = 1,

J1Y
′
1 − J ′1Y 1 =

ε

π
√
gl0

,
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and then

A =
π
√
gl0θ0

ε
Y ′1 −

π
√
l0θ0
2

Y1

B =
π
√
l0θ0
2

J1 −
π
√
gl0θ0

ε
J ′1.

From the identity xJ ′n(x) = nJn(x)− xJn+1(x), and a similar identity for Y ′n, for n = 1, we have

A = −π
√
l0θ0
2

Y2(
2
√
gl0
ε

)

B =
π
√
l0θ0
2

J2(
2
√
gl0
ε

).

The equation for θ becomes

θ =
π
√
l0θ0

2
√
l0 + εt

[
J2(

2
√
gl0
ε

)Y1(
2
√
gl

ε

√
l0 + εt)− Y2(

2
√
gl0
ε

)J1(
2
√
gl

ε

√
l0 + εt)

]
.
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35. A homogeneous disk of weight W and radius r is supported by two identical cylindrical
steel shafts of length l, as shown in Figure 2.58. From solid mechanics, the relation between the
moment on the disk M and the angle of rotation of this disk θ is

M =
GJ

l
θ,

where G is the shear modulus of the material, J is the polar moment of inertia of the cross-
section of each shaft, and GJ is known as the torsional rigidity. Suppose this system is being
designed for a particular application that requires the frequency of vibration to be f . Find the
value of r in terms of the parameters to satisfy this requirement.

Figure 2.58: A homogeneous disk of weight is supported by two identical cylindrical steel
shafts.

Solution: The mass moment of inertia of the disk about its center of gravity is IG = mr2/2 and
the stiffness of the problem is 2GJ/l. The equation of motion is given by

IGθ̈ + 2
GJ

l
θ = 0.

The natural frequency is

fn =
1

2π

√
2GJ

lIG
.

Writing IG in terms of r, we have

fn =
1

2π

√
2GJ

mr2l/2
=

1

π

√
GJ

ml

1

r
.

The radius of the disk in terms of all the other parameters is then

r =
1

fn

1

π

√
GJ

ml
.



57

36. When a craft is sent into space it is necessary to know the mass properties of the system,
including the moment of inertia of astronauts on the flight, in order to properly calculate its
trajectory and fuel expenditures.
The device in Figure 2.59 is one way to measure an astronaut’s moment of inertia. The horizontal
platform is pinned at O and supported on the other end by a linear spring with constant k.
When the astronaut is not present, the frequency of small vibration of the platform about O is
measured to be f . When the astronaut is lying on the platform, the frequency of small vibration
is measured to be fa. (a) Find the astronaut’s moment of inertia about the z axis assuming he
or she is l m tall. (b) Assume reasonable parameter values for the system, with the astronaut
of height 2.0 m, and calculate the moment of inertia.

Figure 2.59: System to measure astronaut’s moment of inertia.

Solution: (a) In absence of the astronaut, the platform oscillates at frequency f. The equation of
motion is given by

+ 	
∑

MO = −Mp − kl2θ = IO,platformθ̈,

IO,platformθ̈ + kl2θ = −Mp

where Mp is the moment that the platform exerts due to its weight. This can be omitted if θ is
measured from static equilibrium. The natural frequency is

fn =
1

2π

√
kl2

IO,platform
. (1)

If the astronaut lies on the platform, the moment equation becomes

+ 	
∑

MO = −Mp −Ma − kl2θ = (IO,platform + IO,astronaut) θ̈,

where Ma is the moment that the astronaut exerts due to his weight. This can again be omitted if
θ is measured from static equilibrium. The natural frequency of the combined system is

fa =
1

2π

√
kl2

IO,platform + IO,astronaut
. (2)

Assume that we know the spring constant, k, the length, l, and both frequencies, fn and fa, but
we do not know the moments of inertia. Then, we first find the moment of inertia of the platform,
IO,platform, using Equation (1) and find IO,astronaut using Equation (2).
(b) Let us assume that k = 10, 000 N/m, f = 7.00 Hz, and fa = 3.00 Hz. Then, IO,platform = 20.7
kg·m2 and IO,astronaut = 91.9 kg-m2.
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37. A small pendulum is mounted in a rocket that is accelerating at a rate of 4g, as sketched
in Figure 2.60. The pendulum is composed of a massless rod of length l = 1 m that supports a
block of mass m = 0.5 kg. Assuming small oscillations, what is the rotational natural frequency
of the pendulum?

Solution: Draw the free-body diagram.

Summing the forces in the transverse direction (êθ), we have∑
Fθ = maθ,

where the left-hand side of the equation is given by
∑
Fθ = −mg sin θ and the right-hand side is

given by aθ = lθ̈ + 3g sin θ. Then, the equation of motion becomes

m
(
lθ̈ + 3g sin θ

)
+mg sin θ = 0

θ̈ + 4
g

l
sin θ = 0.

For small rotation (θ2 � 1, sin θ ' θ), we have

θ̈ +
4g

l
θ = 0,

where the natural frequency is given by ωn = 2
√
g/l.
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38. For the undamped rocker arm sketched in Figure 2.61, determine the natural frequency
of the system undergoing small amplitude oscillation using Newton’s second law of motion.
Assume that the mass of the T-bar is negligible compared to the mass m of the block.

Figure 2.61: Vibrating rocker arm.

Solution: Draw a free-body diagram based on a rotation defined as positive in the counterclockwise
direction.

The moment about O is given by
+ 	

∑
MO = IOθ̈,

where IO = ml2 and
+ 	

∑
MO = −2kr sin θ (r cos θ)−mgl sin θ.

The equation of motion is then

ml2θ̈ + 2kr2 sin θ cos θ +mgl sin θ = 0.

Assuming small rotation
(
θ2 << 1, sin θ ' θ, cos θ ' 1

)
, we obtain the linearized equation of mo-

tion:
ml2θ̈ +

(
2kr2 +mgl

)
θ = 0.

The natural frequency is then ωn =
√

(2kr2 +mgl) /ml2.
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39. For the bar system of Figure 2.62, derive the equation of motion for small oscillations
about the horizontal equilibrium position assuming the support pin is frictionless. Based on the
equation of motion, determine the effective mass and effective stiffness constant of the system.

Figure 2.62: Pinned bar-spring system.

Solution: It is assume that the equilibrium position is when the bar is horizontal. We measure
rotation from this static equilibrium and the gravity can be omitted from the problem. Draw a
free-body diagram.

Summing the moments about O, we have

+ 	
∑

MO = IOθ̈,

where IO = 1
3
Ml2 +ml2 and therefore

+ 	
∑

MO = −k
(
l

2

)2
sin θ cos θ.

Assuming small rotations, the linearized equation of motion is given by(
1

3
Ml2 +ml2

)
θ̈ + k

(
l

2

)2
θ = 0.

Dividing the above equation by l and rewriting the equation of motion in terms of the vertical
displacement of the block, y = lθ, we obtain(

1

3
M +m

)
ÿ +

k

4
y = 0.

The equivalent stiffness is k/4 and the equivalent mass is m+M/3.
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40. We consider a generalization of Example 2.9. A mass moves to the left with speed v on a
platform, disconnected from two springs, as shown in Figure 2.63. Assuming that there is no
friction, find the period of oscillation of the mass, given the data: k1 = 36 N/cm, k2 = 18 N/cm,
m = 25 kg, b = 30 cm, d = 100 cm, and v = 6 m/s.

Figure 2.63: Mass disconnected from springs oscillating.

Solution: The mass moves to the left with a constant velocity of v. Let t = 0 be defined as when
the mass comes into contact with k1. The equation of motion is given by

mẍ1 + k1x1 = 0 with x1 (0) = 0 and ẋ1 (0) = v,

where x1 is the position of the left face of the block defined positive to the left.
The solution to this equation is valid until x1 (t) becomes zero again as the block leaves the spring on
the left. The block is in contact with the spring on the left for half the normal period or π/

√
k1/m.

The block travels the distance of (d− b) at velocity v to the right until it comes in contact with the
spring on the right. The time of travel is (d− b) /v. The block is in contact with the second spring
for half the normal period or π/

√
k2/m.

After it loses contact on the right, it travels the distance (d− b) at a constant velocity v to reach
where the block reaches x1 = 0. The period is therefore

T =
π√
k1/m

+
d− b
v

+
π√
k2/m

+
d− b
v

=
π√

36/25
+

0.7

6
+

π√
18/25

+
0.7

6

= 6.55 s.

Note that we can write a single equation of motion in terms of x, defined from the middle:

mẍ+ k (x)x = 0,

where

k (x) =

 0 for − d− b
2
≤ x ≤ d− b

2

k elsewhere.
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41. A spring-mass system is suspended from the ceiling. The governing equation of motion is

mẍ+ kx = 0,

where x is measured from the static equilibrium position. Assume the initial conditions are
x(0) = 1 in and ẋ(0) = 1 in/s. Solve for the response x(t) for two cases: (a) the spring is
assumed massless, and (b) the inertia effects of the spring are included.
Plot both solutions and comment on the importance of including the spring inertia. Consider
three sets of parameter values: (a) W/g = 1 lb, k = 1 lb/in, (b) W/g = 1 slug, k = 10 lb/in,
(c) W/g = 1 slug, k = 0.1 lb/in. What conclusions can be drawn?

Solution: Massless Spring:
The equation of motion is given by

ẍ+
k

m
x = 0,

and its solution is given by

x(t) = B1 cosωnt+B2 sinωnt,

where ωn =
√
k/m. We use the initial conditions x(0) = 1 in, ẋ(0) = 1 in/s to find the constants:

B1 = 1, B2 = 1/ω. Thus, the solution to our differential equation is

x(t) = cosωnt+
1

ω
sinωnt,

with ωn defined as above. In the amplitude-phase form, we can write

x(t) =

√
1 +

(
1

ωn

)2
cos (ωnt− φ) .

Massive Spring:
The analysis including the mass of the spring is identical to that for the massless spring, except
we replace m by meq = m + ms

3
, where ms is the spring mass. The natural frequency is then

ωeq =
√
k/meq, and the solution is given by x(t) = cosωeqt+ 1

ωeq
sinωeqt. In amplitude-phase form,

we have

x(t) =

√
1 +

(
1

ωeq

)2
cos
(
ωeqt− φeq

)
.

Note that the units of the mass and stiffness must be converted to slug and lb/ft to obtain the
natural frequency in terms of rad/s. (The lbm and slug are related by 1 slug = 32.2 lbm.) The
figures below show the variation in the natural frequencies and the response amplitudes as functions
of the spring mass and stiffness for m = 1 lbm.
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The natural frequency and amplitude as functions of mass (top) and stiffness (bottom). The mass
is kept at 1/32.2 slug.
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42. Two systems with discontinuities are shown in Figure 2.64. Each system oscillates but
at some distance ±xc, the mass comes into contact with springs. For each system, derive the
equation of motion for a complete cycle.

Solution: (a) The equation of motion is given by

mẍ+ k (x)x = 0,

where

k (x) =

 0 for − xc ≤ x ≤ xc

k elsewhere.

(b) The equation of motion for this system is

mẍ+ k (x)x = 0,

where

k (x) =

 2k for − xc ≤ x ≤ xc

3k elsewhere.

The easiest way to solve for the response and the period is to solve them in different segments.
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Problems for Section 2.4 —Harmonic Forcing with No Damping

43. Derive Equation 2.33,

x(t) =
υ0
ωn

sinωnt+ x0 cosωnt+
xst

1− (ω/ωn)2
[cosωt− cosωnt].

Solution: We begin with our known relationships, namely:

ẍ+ ω2nx = F (t)

F (t) =
A

m
cosωt.

The solution to this equation consists of two parts,

x(t) = xh(t) + xp(t),

the homogeneous and particular solutions, and they are given by

xh(t) = C1 cosωnt+ C2 sinωnt

xp(t) = B1 cosωt.

The constant coeffi cients of integration, C1 and C2, are determined when the initial conditions are
applied to the total solution. The coeffi cient B1 in the particular solution must be such that the
assumed solution, xp (t) , satisfies the differential equation. Upon substituting the assumed solution
into the differential equation we obtain

B1
(
ω2n − ω2

)
cosωt =

A

m
cosωt.

Using the fact that ωn =
√
k/m, we find that

B1 =
A/k

1− (ω/ωn)2
.

Note that xst = A/k, the static response of the spring. Finally, using the complete solution for the
response x(t), we can satisfy the initial conditions, to find

C1 = x0 −
xst

1− (ω/ωn)2

C2 =
ẋ0
ωn
.

Substituting C1 and C2 into our expression for x(t) gives the solution,

x(t) =

(
x0 −

xst
1− (ω/ωn)2

)
cosωnt+

ẋ0
ωn

sinωnt+
xst

1− (ω/ωn)2
cosωt,

that we are looking for: Equation 2.33.
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44. Solve the governing equation of motion,

ẍ+ x =
1

m
F (t),

for four cases: (a) F (t) = cos 0.5t, (b) F (t) = cos 0.99t, (c) F (t) = cos t, and (d) F (t) = cos 2t.
Draw comparisons between the results.

Solution: Each of these loading cases has a homogeneous response and a particular response. The
homogeneous solution is given by xh(t) = C1 cos t+C2 sin t. Note that the natural frequency equals
1 rad/s. We will only solve for the particular solution below.
(a,b,d) Assume the particular solution

xp(t) = A cosωf t+B sinωf t,

where F (t) = cosωf t. Differentiating this assumed solution twice and substituting it into the
governing differential equation of motion we find

cosωf t
(
−ω2fA+ A

)
+ sinωf t

(
−ω2fB +B

)
=

1

m
cosωf t.

This identity is actually two equations: (
1− ω2f

)
A = 1(

1− ω2f
)
B = 0.

Since ωf 6= 0, we find B = 0, and A = 1/
(
1− ω2f

)
. The particular response is then

xp(t) =
1(

1− ω2f
) cosωf t.

The total solution is given by

x (t) = C1 cos t+ C2 sin t+
1

m
(
1− ω2f

) cosωf t.

(c) In this problem, the loading is at the same frequency as the natural frequency of the system.
Since the system is undamped, we know to expect oscillation with unbounded growth. Assume the
particular solution

xp(t) = At cos t+Bt sin t.

Differentiating this assumed solution twice and substituting it into the governing differential equa-
tion of motion we find

cos t (2B) + sin t (−2A) =
1

m
cos t.

This identity is actually two equations: 2B = 1/m and −2A = 0, resulting in A = 0 and B = 1/2m.
The particular solution is then

xp(t) = (1/2m) t sin t
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and the total solution is
x (t) = C1 cos t+ C2 sin t+

1

2m
t sin t.

The following plot shows the unstable part of the response for m = 1.
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Resonant response, x (t) = 0.5t sin t.

It should be noted that, in many of the vibration texts, the transient and homogeneous solution are
used synonymously, and the steady-state and the particular solution are used synonymously. This
is true for a damped system because the homogeneous solution decays with time.
In this case, the homogeneous solution is the transient solution. However, in an undamped system,
the homogeneous solution persists so that it is no longer the transient response (there is no transient
response in an undamped system). This is not a gross error because there is no physical system
that is truly undamped. Therefore, from an engineering perspective, the transient and homogeneous
solution are the same, and likewise for the steady-state and the particular solutions.
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45. For the oscillator that is beating according to the governing equation

ẍ+ 16x =
A

m
sin(4− ε)t,

where ε is small but not equal to zero, what do you expect to happen as ε→ 0? Relate the rate
of growth of the response amplitude to the value of ε or to the value of 4− ε.

Solution: We know from our studies of resonance that a structure loaded harmonically by a force
that oscillates at the natural frequency of the structure will oscillate with ever-increasing amplitudes.
Therefore, even before analyzing the above governing differential equation, we know that for ε = 0,
we have a resonance condition. Even for small ε, we will have large amplitude motion.
We can solve the differential equation for the forced response to find:

x (t) =
A

m

1

[4− ε]2 − 16
sin(4− ε)t

+ C1 cos 4t+ C2 sin 4t.

Applying the initial conditions, we find C1 = x0 and

C2 =
1

4

(
vo −

A

m

4− ε
[4− ε]2 − 16

)
.

The total solution is given by

x (t) =
A

m

1

[4− ε]2 − 16

(
sin(4− ε)t− 4− ε

4
sin 4t

)
︸ ︷︷ ︸

forced solution

+ x0 cos 4t+
1

4
vo sin 4t︸ ︷︷ ︸

free solution

.

The free solution, the part of the solution due to the initial conditions, does not grow with time. In
this current form we can see the term −16 + [4− ε]2 in the denominator of the forced response goes
to zero as ε → 0, resulting in a response of unbounded amplitude given enough time. However, it
does not show how the solution behaves in finite time.
In order to investigate the behavior of the solution in finite time, consider the term sin(4 − ε)t in
the forced solution. This term is expanded as cos εt sin 4t− sin εt cos 4t. The terms

cos εt

[4− ε]2 − 16
sin 4t and

sin εt

[4− ε]2 − 16
cos 4t

describe sinusoidal functions that oscillate at 4 rad/s and with magnitudes that vary slowly with
frequency ε rad/s. The magnitude of the envelop function is 1/([4− ε]2 − 16), which approaches
infinity as ε→ 0. Therefore, resonance can be thought of beating with an infinite beat period and
an envelope that grows to infinity in time.
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In order to investigate how fast the response grows as ε→ 0, we do the following. Using the method
of partial fraction expansion, we write

1

[4− ε]2 − 16
=

1

8

(
1

ε− 8
− 1

ε

)
.

The term, sin(4− ε)t, is expanded as cos εt sin 4t− sin εt cos 4t. Then the forced response becomes

xforce (t) =
A

m

1

8

(
1

ε− 8
− 1

ε

)(
cos εt sin 4t− sin εt cos 4t− 4− ε

4
sin 4t

)
=

A

m

1

8

(
1

ε− 8
− 1

ε

)[(
cos εt− 4− ε

4

)
sin 4t− sin εt cos 4t

]
=

A

m

1

8

(
cos εt− 4−ε

4

ε− 8
sin 4t− sin εt

ε− 8
cos 4t−

cos εt− 4−ε
4

ε
sin 4t+

sin εt

ε
cos 4t

)
.

As ε→ 0, the forced solution becomes

lim
ε→0

xforce (t) =
A

m

1

8

(
0− 0− 1

4
sin 4t+ t cos 4t

)
,

where the L’Hopital’s rule was used to evaluate the last two terms,

lim
ε→0

cos εt− 4−ε
4

ε
= lim

ε→0

−t sin εt+ 1
4

1
=

1

4

lim
ε→0

sin εt

ε
= lim

ε→0

t cos εt

1
= t.

Finally, the total solution is given by

x (t) =

(
1

4
vo −

1

32

A

m

)
sin 4t+ x0 cos 4t+

A

m

1

8
t cos 4t.

As ε → 0, the solution grows linearly with time. This is a long way to find the resonant solution.
The fast way was to set ε = 0 from the beginning in the equation of motion.



70 CHAPTER 2 SDOF VIBRATION: AN INTRODUCTION

46. The block given in Figure 2.65 is acted on by the force

F (t) = 100 + 25 sin 75t N

and, after the transients have died out, it oscillates with an amplitude of 0.6 mm about a position
55 mm to the left of the static equilibrium position corresponding to the condition when no force
is present. What is the mass of the block?

Figure 2.65: Block subjected to external force.

Solution: Let us assume that there is very small damping. It is small enough that the damping
can be ignored when the oscillation amplitude is calculated, but the transient response can still die
out in time.
The new static equilibrium position is (static force)/k = 100 N/k = 0.055 m. Then, k =
100/0.055 = 1818.2 N/m. The amplitude of the steady-state solution is given by

|X| = F

k

1√
(1− r2)2 + (2ζr)2

.

Assuming that the damping is very small the amplitude is approximately given by

|X| = F

k

∣∣∣∣ 1

1− r2

∣∣∣∣ .
From the problem, the amplitude of the dynamic portion of the force is 25 N and the response
amplitude is 0.0006 m. We just found that k = 1818 N/m. Then, we find r = 4.891. The natural
frequency is then,

ωn =
ωf
r

=
75

4.891
= 15.34 rad/s.

The mass is

m =
k

ω2n
=

1818

(15.34)2
= 7.732 kg.
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47. For Example 2.11, what range of frequencies of the motion y(t) must be excluded to keep
the maximum force at C less than 10 N?

Solution: The equation of motion is

mẍ+ kx =
1

2
kA sinωt.

The force at C is mg + k (x− y/2) downward.
Assuming that very small damping is included in the model, the steady-state response is

xss (t) =
1

2
kA

1

k −mω2 sinωt.

The force at C is

FC = mg + k

(
A

2

1

1− ω2/ω2n
− A

2

)
sinωt,

where FC oscillates between

F1 = mg + k

(
A

2

1

1− ω2/ω2n
− A

2

)
and

F2 = mg − k
(
A

2

1

1− ω2/ω2n
− A

2

)
.

We consider two cases. If ω > ωn, |F1| is larger than |F2| . Then, the frequency must be such that
|F1| < 10 N. This is when the motion of the rod and the mass are in phase. The frequency must be
such that ω < 13.8 rad/s to have the force on C be less than 10 N.
If ω < ωn, |F2| is larger than |F1| . Then, the frequency must be such that F2 < 10 N. This is
when the motion of the rod and the mass are 180◦ out of phase. In this case, the frequency that
satisfies this is ω > 16.7 rad/s. To avoid forces larger that 10 N, we must avoid the frequency range
13.8 < ω < 16.7 rad/s.
It is much easier if we plot F1 and F2 as shown below.
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48. A gantry for a crane is shown schematically in Figure 2.66. In this figure, the gantry is
represented by the wheeled vehicle and the crane by the simple pendulum of length l with mass
m at its end. The gantry is oscillating with the displacement x(t) = A sinωt. If A is very small,
what should ω be so that the crane has an amplitude of motion equal to 2A? Assume l = 1 m.

Figure 2.66: A model of a gantry for a crane.

Solution: The amplitude of motion depends on the initial conditions, especially if the system is
undamped. Let us assume that the system has very small damping so that the transient effects die
out. Then, we want to find the frequency of the base motion so that the steady-state response has
an amplitude of 2A in the horizontal direction.
Draw a free-body diagram and sum the forces in the horizontal and vertical directions.

From Newton’s second law

+ →
∑

Fx = max =⇒ −T sin θ = m
d2

dt
(l sin θ + A sinωt)

+ ↑
∑

Fy = may =⇒ T cos θ −mg = m
d2

dt
(−l cos θ) .
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Multiplying the first by cos θ and second by sin θ, and adding the two equations, we have

m
d2

dt
(l sin θ + A sinωt) cos θ +m

d2

dt
(−l cos θ) sin θ +mg sin θ = 0.

mlθ̈ +mg sin θ = mAω2 sinωt cos θ.

Assuming small rotations, the equation of motion becomes

θ̈ +
g

l
θ =

Aω2

l
sinωt,

with a steady-state solution

θss (t) =
Aω2

l

1
g
l
− ω2 sinωt.

The horizontal motion is xtotal = l sin θ + A sinωt ≈ lθ + A sinωt,

xtotal (t) =

 Aω2

g

l
− ω2

+ A

 sinωt.

For the state-state amplitude of the bob to be 2A,

Aω2

g

l
− ω2

+ A = 2A,

the base must have a frequency of ω = 2.21 rad/s (for l = 1 m).
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49. Solve the equation of motion and discuss the results physically,

ẍ+ 9x = 3 sin t+ cos 3t

x(0) = 0, ẋ(0) = 0.

Is it possible to predict some specific response behavior without solving the governing equation?

Solution: From the equation of motion we know that the system has a natural frequency of 3
rad/s, which coincides with one of the forcing frequencies. Therefore, the response will consist of
a harmonic response at the natural frequency of 3 rad/s, another harmonic response at the forcing
frequency of 1 rad/s, and a harmonic response that grows linearly with time at 3 rad/s. The exact
solution is

x1 (t) = −1

8
sin 3t+

3

8
sin t+

1

6
t sin 3t,

and is shown next.
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 x
(t)

x1 (t) = −1
8

sin 3t+ 3
8

sin t+ 1
6
t sin 3t

Let us also solve for the response due to each term on the right-hand side separately.

x′′ + 9x = sin t

x(0) = 0

x′(0) = 0

Exact solution is : x (t) = −1
8

sin 3t+ 3
8

sin t

The harmonic loading is at a frequency of 1 rad/s, while the natural frequency is 3 rad/s. Therefore,
we expect a periodic response as shown next.
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−1
8

sin 3t+ 3
8

sin t

The second loading case is given by:

x′′ + 9x = cos 3t

x(0) = 0

x′(0) = 0.

Here the loading is at the natural frequency, and thus, we expect unbounded growth. The exact
solution is obtained by assuming a solution of the form

x(t) = At cos 3t+Bt sin 3t.

Differentiating and substituting into the differential equation of motion we find x(t) = 1
6
t sin 3t.
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(Note that MAPLE evaluates the solution to be 1
9

cos3 t− 1
12

cos t+ 2
3
t sin t cos2 t− 1

6
t sin t− 1

36
cos 3t.

Believe it or not, this expression and one we found are identical. Plot the difference and you will
obtain zero. This is just a word of warning on being too dependent on canned programs. We
depend on them, but it is always a good idea to study the results and try to verify the results using
back-of-the-envelope computations.)
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50. Solve for the response of the governing equation of motion,

ẍ+ ω2nx =
A

m
sinωnt,

for arbitrary initial conditions.

Solution: The free vibration problem has been previously solved, resulting in the general solution

xh(t) = C1 cosωnt+ C2 sinωnt,

where ωn is the natural frequency. We will only solve for the particular solution next.
In this problem, the loading is at the same frequency as the natural frequency of the system.
Since the system is undamped, we know to expect oscillation with unbounded growth. Assume a
particular solution of the form

xp(t) = Ct cosωnt+Bt sinωnt.

Differentiate this assumed solution twice and substitute it into the governing differential equation
of motion to find:

d2

dt2
[Ct cosωnt+Bt sinωnt]

=
[
−2C (sinωnt)ωn − Ct (cosωnt)ω

2
n + 2B (cosωnt)ωn −Bt (sinωnt)ω

2
n

]
The differential equation becomes[

−2C (sinωnt)ωn − Ct (cosωnt)ω
2
n + 2B (cosωnt)ωn −Bt (sinωnt)ω

2
n

]
+ω2nCt cosωnt+Bt sinωnt

= (A/m) sinωnt.

Next we combine like terms:

(−2Cωn + (−ω2n + 1)tB) sinωnt

+2Bωn cosωnt = (A/m) sinωnt.

This equation is an identity of two equalities: −2Cωn+ (−ω2n+ 1)tB = A/m, and 2Bωn = 0, which
must now be solved for C and B simultaneously:

−2Cωn −Btω2n +Bt = A/m

2Bωn = 0.

The solution is

B = 0 and C = − 1

2ωn

A

m
.
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Note that above simultaneous equations must be satisfied for all time t. The total solution is

x (t) = xh (t) + xp(t)

= C1 cosωnt+ C2 sinωnt−
A

m

1

2ωn
t cosωnt.

The constants of integration, C1 and C2, are determined by satisfying the initial conditions. Let
x (0) = x0 and ẋ (0) = v0, and we find the total solution to be given by

x (t) = xo cosωnt+

(
2vown + A/m

2ω2n

)
sinωnt−

A

m

1

2ωn
t cosωnt.
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51. Derive Equation 2.37,

x(t) =
xstω

2
n

2ε(ε+ ω)
[sin(ε+ ω)t sin εt] ,

from the equation of motion.

Solution: Begin with the equation

x(t) =
xst

1− (ω/ωn)2
[cosωt− cosωnt].

Use the trig identities for sums and differences of angles to obtain Equation 2.36:

x(t) =
xst

1− (ω/ωn)2

[
2 sin

(ωn + ω)t

2
sin

(ωn − ω)t

2

]
,

and make the substitution ωn = 2ε+ ω. Then,

x(t) =
2xst

1− (ω/ωn)2
[sin(ε+ ω)t sin εt]

=
2xst(

ωn2−ω2
ωn2

) [sin(ε+ ω)t sin εt]

=
2xstωn

2

(ωn − ω)(ωn + ω)
[sin(ε+ ω)t sin εt]

=
2xstωn

2

2ε(2ε+ 2ω)
[sin(ε+ ω)t sin εt].

Finally, we obtain Equation 2.37 given by

x (t) =
xstωn

2

2ε(ε+ ω)
[sin(ε+ ω)t sin εt].
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52. A cylinder of massm is mounted as shown in Figure 2.67 in a water tunnel. The configuration
is end-on with the cylinder axis shown to be transverse to the flow direction. When there is
no flow, a vertical force of Fstatic on the cylinder results in a deflection of y. With flow in the
tunnel, shedding vortices impart alternating forces on the cylinder. The velocity of the water is
v in the y direction, the distance between vortices is d, and the magnitude of the lateral forces
is Fv. The lateral forces can be modeled by the harmonic function F (t) = Fv sinωt. Find the
amplitude of lateral steady-state response of the cylinder.

Figure 2.67: Cross-section of an elastically mounted cylinder excited by shedding vortices.

Solution: This problem can be modeled as a mass supported by a spring as shown below.

It is given that the force Fstatic is required to deflect the system a distance y. This gives us the
stiffness of the leaf spring as k = Fstatic/y. It is said that the vortices are shed every d/v seconds.
This gives us the forcing frequency of ω = 2π/ (d/v) . The equation of motion of the simple model
is then

mẍ+ kx = Fv sinωt,

where x(t) is the vertical deflection. The steady-state response (assuming very small damping so
that the transient response dies out) amplitude is

Fv√
(k −mω2)

,

where k = Fstatic/y and ω = 2π/ (d/v) . It is assumed that Fv and m are known.


