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Question 1:

Write a short introduction to the use of monads to structure Haskell pro-
grams, using the example of writing a function

eval :: Expr → Maybe Int

that evaluates expressions in the following simple language, in which at-
tempting to divide by zero results in the value Nothing:

data Expr = Val Int | Div Expr Expr

You may assume that your audience is familiar with the basics of Haskell,
but has no previous experience with monads. (25)

Question 2:

a) Show how the notion of a state transformer can be represented in Haskell
as a parameterised type ST , and explain your definition. (4)

b) Define appropriate functions return and >>= that make ST into a
monad, and explain your definitions with the aid of pictures. (6)

c) Given the type definition

data Tree a = Leaf a | Node (Tree a) (Tree a)

define a non-monadic function

label :: Tree a → Int → (Tree Int, Int)

that replaces every leaf value in such a tree with a unique or fresh integer,
by taking a next fresh integer as an additional argument, and returning the
next fresh integer as an additional result. (4)

d) Show how the label function can be redefined in a monadic manner by
exploiting the fact that ST forms a monad. (8)

e) Why is the monadic definition for label preferable? (3)
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Question 3:

a) Using equational reasoning, and being explicit about any arithmetic
properties being exploited in each step, prove that: (4)

(x + a)(x + b) = xx + (a + b)x + ab

b) Given the definitions

(++) :: [a] → [a] → [a]
[ ] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

reverse :: [a] → [a]
reverse [ ] = [ ]
reverse (x : xs) = reverse xs ++ [x]

and using the fact that ++ is associative, prove that: (6)

reverse (xs ++ ys) = reverse ys ++ reverse xs

c) Explain why the above definition for reverse is inefficient, and show how
a more efficient version can be defined using the technique of accumulation,
illustrating your new definition using a simple example. (6)

d) Given the definitions

sum :: [Int] → Int
sum [ ] = 0
sum (x : xs) = x + sum xs

length = [a] → Int
length [ ] = 0
length (x : xs) = 1 + length xs

define a function

sumlen :: [Int] → (Int, Int)

that satisfies the specification sumlen xs = (sum xs, length xs), but only
makes a single traversal over the list, rather than two. (4)

e) Prove that your definition for sumlen satisfies its specification. (5)
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Question 4:

a) Given the function definition

sum :: [Int] → Int
sum [ ] = 0
sum (x : xs) = x + sum xs

explain with the aid of a simple example why this definition is potentially
inefficient in terms of memory usage. (3)

b) Given the specification sum′ xs n = n + sum xs, calculate a recursive
definition for sum′ using constructive induction on xs. You may assume
standard arithmetic properties of addition. (5)

c) Given the revised definition sum xs = sum′ xs 0, explain using your
previous example why this definition is potentially more efficient. (3)

d) Given the type declarations

data Expr = Val Int | Add Expr Expr
type Stack = [Int]
type Code = [Op]
data Op = PUSH Int | ADD

define three functions

eval :: Expr → Int

comp :: Expr → Code

exec :: Code → Stack → Stack

that evaluate an expression to an integer value, compile an expression to
code, and execute code using an initial stack to give a final stack. (6)

e) Assuming the distributivity lemma

exec (xs ++ ys) s = exec ys (exec xs s)

verify the compiler correctness property below by induction on e, justifying
each step in your equational reasoning with a short hint. (8)

exec (comp e) s = (eval e) : s
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Question 5:

Consider the following representation of Sudoku grids:

type Grid = Matrix Int
type Matrix a = [Row a]
type Row a = [a]

a) Suppose that you are given functions

rows :: Matrix a → [Row a]
cols :: Matrix a → [Row a]
boxs :: Matrix a → [Row a]
complete :: Row a → Bool

that extract the rows, columns and boxes from a matrix, and decide if a
row is complete (contains each of the numbers 1 to 9 exactly once). Using
these functions, define a function valid :: Grid → Bool that decides if all
the rows, columns and boxes in a grid are complete. (4)

b) Define a function choices :: Grid → Matrix [Int] that replaces each zero
value (representing a blank entry) in the grid by the list of choices [1..9] for
that value, and each non-zero value n by the singleton list [n]. (4)

c) Define a function cp :: [[a]] → [[a]] that returns the cartesian product of
a list of lists, e.g. cp [[1, 2], [3, 4]] = [[1, 3], [1, 4], [2, 3], [2, 4]]. (4)

d) Using cp, define a function collapse :: Matrix [a] → [Matrix a] that
collapses a matrix of choices into a choice of matrices. (3)

e) Using your answers to the previous parts of this question, define a func-
tion solve :: Grid → [Grid] that solves Sudoku puzzles. Explain why this
function is too inefficient to be practically useful. (5)

f) Suppose that you are given a function

prune :: Matrix [Int] → Matrix [Int]

that removes all choices that already occur as single entries in the associated
row, column or box of a matrix. Using this function, define a new version of
solve that can instantly solve any “easy” Sudoku puzzle that only requires
the repeated application of the basic constraints of the game. (5)
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