
G51FUN-E1

The University of Nottingham

SCHOOL OF COMPUTER SCIENCE

A LEVEL 1 MODULE, SPRING SEMESTER 2011-2012

FUNCTIONAL PROGRAMMING

Time allowed TWO hours

Candidates may complete the front cover of their answer book and
sign their desk card but must NOT write anything else until the

start of the examination period is announced.

Answer QUESTION ONE and THREE other questions

Dictionaries are not allowed with one exception. Those whose first language is
not English may use a standard translation dictionary to translate between that

language and English provided that neither language is the subject of this
examination. Subject specific translation dictionaries are not permitted.

No electronic devices capable of storing and retrieving text,
including electronic dictionaries, may be used.

DO NOT turn examination paper over until instructed to do so

ADDITIONAL MATERIAL: Haskell Standard Prelude

G51FUN-E1 Turn Over



2 G51FUN-E1

Question 1 (Compulsory)

Select ONE answer for each section.

There is no negative marking for incorrect answers.

a) The expression ["False","True"] has type:

i) [a]

ii) [Bool]

iii) [String]

iv) [Bool,Bool]

v) [String,String] (3 marks)

b) Which of the following is an invalid list in Haskell:

i) [[1,2,3,4]]

ii) [1,[2,3],4]

iii) [[1,2],[3,4]]

iv) [[1],[2,3],[4]]

v) [[1],[2],[3],[4]] (3 marks)

c) Evaluating [(x,y) | x <- [1,2], y <- [1,2]] gives:

i) ([1,2],[1,2])

ii) [(1,2),(1,2)]

iii) [(1,1),(2,2)]

iv) [(1,1),(1,2),(2,1),(2,2)]

v) [(1,1),(2,1),(1,2),(2,2)] (3 marks)

d) A function of type (Int -> Int) -> Int:

i) Takes a function as its argument

ii) Takes two arguments one at a time

iii) Takes a pair of arguments

iv) Returns a function as its result

v) Returns a pair of results (3 marks)

G51FUN-E1



3 G51FUN-E1

e) Evaluating sum [x | x <- [1..10], even x] gives:

i) An error

ii) 10

iii) 25

iv) 30

v) 55 (3 marks)

f) Evaluating zip [1,2] [’a’,’b’,’c’] gives:

i) An error

ii) ([1,2],[’a’,’b’,’c’])

iii) [(1,’a’),(2,’b’)]

iv) [(1,’a’),(2,’b’),(2,’c’)]

v) [(1,’a’),(2,’b’),(3,’c’)] (3 marks)

g) Which of the following statements about Haskell is true:

i) Function application brackets to the left

ii) All programs are guaranteed to terminate

iii) All lists must be of finite length

iv) Recursive functions must have a base case

v) Type errors can occur at run-time (3 marks)

h) The expression Node (Leaf 1) (Leaf 2) is a value of the datatype:

i) data Tree = Node | Leaf Int

ii) data Tree = Leaf Int | Node Int Int

iii) data Tree = Leaf Tree | Node Int Int

iv) data Tree = Leaf Int | Node Tree Tree

v) data Tree = Leaf Tree | Node Tree Tree (4 marks)

G51FUN-E1 Turn Over



4 G51FUN-E1

Question 2:

a) What are the types of the following expressions? (5 marks)

"Haskell"

[False,True,False]

(False,’a’)

([’a’,’b’],[False,True])

filter

b) Define the following library functions using recursion: (8 marks)

product :: [Int] -> Int

length :: [a] -> Int

reverse :: [a] -> [a]

map :: (a -> b) -> [a] -> [b]

c) Using the definition

fac :: Int -> Int

fac 0 = 1

fac n = n * fac (n-1)

show how the expression fac 3 is evaluated. (4 marks)

d) Given the alternative definition

fac :: Int -> Int

fac n = accum 1 n

accum :: Int -> Int -> Int

accum x 0 = x

accum x y = accum (x*y) (y-1)

in terms of an auxiliary function accum that uses an extra argument to
accumulate the result, show how fac 3 is now evaluated. (4 marks)

e) Explain using your answers to the two previous parts why the original
definition for fac is inefficient in terms of memory usage, and how the
alternative definition resolves this problem. (4 marks)

G51FUN-E1



5 G51FUN-E1

Question 3:

a) Give concise English definitions for the following terms: (5 marks)

Recursive function

Curried function

Higher-order function

Polymorphic function

Overloaded function

b) Give one example function definition from the Haskell Standard Prelude
for each of the five terms that are listed above. You may not use the same
example function for more than one answer. (5 marks)

c) The sum of the integers between 1 and 100 can be expressed using the
list comprehension notation as sum [x | x <- [1..100]]. Express each
of the following using a list comprehension: (8 marks)

Sum of the squares of the integers between 1 and 100

Product of the even integers between 1 and 100

List of all pairs of integers between 1 and 100

Sum of the products of all pairs of integers between 1 and 100

d) Suppose you are given a function divides :: Int -> Int -> Bool

that decides if one integer is divisible by another, e.g. divides 15 2 is
False and divides 15 3 is True. Using a list comprehension, define a
function divisors :: Int -> [Int] that returns the divisors of a natural
number. For example, divisors 15 should give [1,3,5,15]. (4 marks)

e) A natural number greater than one is prime if its only divisors are one
and itself. Using divisors, define a function prime :: Int -> Bool that
decides if a natural number is prime or not. (3 marks)

Question 4:

Suppose that you have been invited to write an article for a professional
computing magazine on the benefits that Haskell brings to programmers.
Write a short article on this topic, illustrating each of the benefits that you
mention with a small example written in Haskell. (25 marks)

G51FUN-E1 Turn Over



6 G51FUN-E1

Question 5:

a) Complete the missing parts ??? in the following definition for a recursive
function that inserts an integer into the correct position in a sorted list. For
example, insert 3 [1,2,4,5] should give [1,2,3,4,5]. (6 marks)

insert :: Int -> [Int] -> [Int]

insert x [] = ???

insert x (y:ys) = if x <= y then

???

else

???

b) Show how your definition evaluates insert 3 [1,2,4,5]. (4 marks)

c) Using insert, complete the following definition for a recursive function
that sorts a list of integers using insertion sort , in which the empty list is
already sorted, and any non-empty list is sorted by inserting the head into
the list that results from sorting its tail. (4 marks)

isort :: [Int] -> [Int]

isort [] = ???

isort (x:xs) = ???

d) Show how your definition evaluates isort [3,2,1]. There is no need
to show how each application of insert is evaluated. (5 marks)

e) Complete the missing parts in the following definition for a recursive func-
tion that implements quicksort , in which the empty list is already sorted,
and any non-empty list is sorted by sorting the tail values <= the head,
sorting the tail values > the head, and appending the resulting sorted lists
on either side of the head value. (6 marks)

qsort :: [Int] -> [Int]

qsort [] = ???

qsort (x:xs) = qsort ??? ++ ??? ++ qsort ???

G51FUN-E1 End


