
G52AFP-E1

The University of Nottingham
SCHOOL OF COMPUTER SCIENCE

A LEVEL 2 MODULE, SPRING SEMESTER 2011-2012

ADVANCED FUNCTIONAL PROGRAMMING

Time allowed TWO hours

Candidates may complete the front cover of their answer book and
sign their desk card but must NOT write anything else until the

start of the examination period is announced.

Answer FOUR out of five questions

Dictionaries are not allowed with one exception. Those whose first language is
not English may use a standard translation dictionary to translate between that

language and English provided that neither language is the subject of this
examination. Subject specific translation dictionaries are not permitted.

No electronic devices capable of storing and retrieving text,
including electronic dictionaries, may be used.

DO NOT turn examination paper over until instructed to do so

ADDITIONAL MATERIAL: Haskell Standard Prelude

G52AFP-E1 Turn Over

2 G52AFP-E1

Question 1:

Write a short introduction to the use of monads to structure Haskell pro-
grams, using the example of writing a function

eval :: Expr → Maybe Int

that evaluates expressions in the following simple language, in which at-
tempting to divide by zero results in the value Nothing:

data Expr = Val Int | Div Expr Expr

You may assume that your audience is familiar with the basics of Haskell,
but has no previous experience with monads. (25)

Question 2:

a) Show how the notion of a state transformer can be represented in Haskell
as a parameterised type ST , and explain your definition. (4)

b) Define appropriate functions return and >>= that make ST into a
monad, and explain your definitions with the aid of pictures. (6)

c) Given the type definition

data Tree a = Leaf a | Node (Tree a) (Tree a)

define a non-monadic function

label :: Tree a → Int → (Tree Int, Int)

that replaces every leaf value in such a tree with a unique or fresh integer,
by taking a next fresh integer as an additional argument, and returning the
next fresh integer as an additional result. (4)

d) Show how the label function can be redefined in a monadic manner by
exploiting the fact that ST forms a monad. (8)

e) Why is the monadic definition for label preferable? (3)

G52AFP-E1

3 G52AFP-E1

Question 3:

a) Using equational reasoning, and being explicit about any arithmetic
properties being exploited in each step, prove that: (4)

(x + a)(x + b) = xx + (a + b)x + ab

b) Given the definitions

(++) :: [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

reverse :: [a] → [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

and using the fact that ++ is associative, prove that: (6)

reverse (xs ++ ys) = reverse ys ++ reverse xs

c) Explain why the above definition for reverse is inefficient, and show how
a more efficient version can be defined using the technique of accumulation,
illustrating your new definition using a simple example. (6)

d) Given the definitions

sum :: [Int] → Int
sum [] = 0
sum (x : xs) = x + sum xs

length = [a] → Int
length [] = 0
length (x : xs) = 1 + length xs

define a function

sumlen :: [Int] → (Int, Int)

that satisfies the specification sumlen xs = (sum xs, length xs), but only
makes a single traversal over the list, rather than two. (4)

e) Prove that your definition for sumlen satisfies its specification. (5)

G52AFP-E1 Turn Over

4 G52AFP-E1

Question 4:

a) Given the function definition

sum :: [Int] → Int
sum [] = 0
sum (x : xs) = x + sum xs

explain with the aid of a simple example why this definition is potentially
inefficient in terms of memory usage. (3)

b) Given the specification sum′ xs n = n + sum xs, calculate a recursive
definition for sum′ using constructive induction on xs. You may assume
standard arithmetic properties of addition. (5)

c) Given the revised definition sum xs = sum′ xs 0, explain using your
previous example why this definition is potentially more efficient. (3)

d) Given the type declarations

data Expr = Val Int | Add Expr Expr
type Stack = [Int]
type Code = [Op]
data Op = PUSH Int | ADD

define three functions

eval :: Expr → Int

comp :: Expr → Code

exec :: Code → Stack → Stack

that evaluate an expression to an integer value, compile an expression to
code, and execute code using an initial stack to give a final stack. (6)

e) Assuming the distributivity lemma

exec (xs ++ ys) s = exec ys (exec xs s)

verify the compiler correctness property below by induction on e, justifying
each step in your equational reasoning with a short hint. (8)

exec (comp e) s = (eval e) : s

G52AFP-E1

5 G52AFP-E1

Question 5:

Consider the following representation of Sudoku grids:

type Grid = Matrix Int
type Matrix a = [Row a]
type Row a = [a]

a) Suppose that you are given functions

rows :: Matrix a → [Row a]
cols :: Matrix a → [Row a]
boxs :: Matrix a → [Row a]
complete :: Row a → Bool

that extract the rows, columns and boxes from a matrix, and decide if a
row is complete (contains each of the numbers 1 to 9 exactly once). Using
these functions, define a function valid :: Grid → Bool that decides if all
the rows, columns and boxes in a grid are complete. (4)

b) Define a function choices :: Grid → Matrix [Int] that replaces each zero
value (representing a blank entry) in the grid by the list of choices [1..9] for
that value, and each non-zero value n by the singleton list [n]. (4)

c) Define a function cp :: [[a]] → [[a]] that returns the cartesian product of
a list of lists, e.g. cp [[1, 2], [3, 4]] = [[1, 3], [1, 4], [2, 3], [2, 4]]. (4)

d) Using cp, define a function collapse :: Matrix [a] → [Matrix a] that
collapses a matrix of choices into a choice of matrices. (3)

e) Using your answers to the previous parts of this question, define a func-
tion solve :: Grid → [Grid] that solves Sudoku puzzles. Explain why this
function is too inefficient to be practically useful. (5)

f) Suppose that you are given a function

prune :: Matrix [Int] → Matrix [Int]

that removes all choices that already occur as single entries in the associated
row, column or box of a matrix. Using this function, define a new version of
solve that can instantly solve any “easy” Sudoku puzzle that only requires
the repeated application of the basic constraints of the game. (5)

G52AFP-E1 End

