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2. networks - electrical power grids;

3. spatio-temporal interactions - Newton’s cradle;

4. nonlinear systems - operational amplifier with saturation;

5. self-adaptivity - self-leveling suspensions of the vehicles.

1.2.11 Exercise 1.11

Exercise: Analyze the expression “define your terms, gentleman, define your
terms. It saves argument!” Who pronounced it?

Solution: This is a sentence by Dr. Samuel Johnson. He was an important
social and literary celebrity of the eighteenth century. He was suggesting to
fix well structured definitions as the first step to develop the arguments of a
discussion. The sentence seems to suggest that, once fixed basic pillars, the
construction may be easier to do. If a definition is clear, indeed, it is more
simple to follow a scientific reasoning.

1.2.12 Exercise 1.12

Exercise: Propose simple experiments that show nonlinear phenomena in
your everyday experience.

Solution: Some examples of nonlinear phenomena we can experience in our
everyday life are propagation of waves (for instance sea tides), the diffusion
of smoke of cigarettes in the air, the flow of lava, or the wind.

1.3 Solutions of exercises of Chapter 2

1.3.1 Exercise 2.1

Exercise: Consider the tent map

xk+1 =

{
2xk if 0 ≤ xk ≤ 1

2
2(1− xk) if 1

2 < xk ≤ 1
(1.5)

1. Draw the map nonlinearity.

2. Build a simple MATLABr program to calculate the time series
generated by the map.

3. Compare it with the logistic map.
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FIGURE 1.16
Nonlinearity of the tent map.

4. Generalize the map by substituting the factor 2 appearing in Equa-
tion (1.5) with a parameter a. Then build the bifurcation diagram
of the map with respect to this parameter and compare with that
of the logistic map.

5. Calculate and plot the Lyapunov exponents with respect to a.

Note: the solution of the initial value problem associated to the tent map
is xk = 1

π cos−1(cos(2kπx(0))).

Solution:

1. The following commands may be used to plot the nonlinearity of
the tent map:

a=2;
hold on;
xx=linspace (0 ,1 ,10001);
for i=1:10001

if xx(i)<0.5
x(i) = a*xx(i);

else
x(i) = a*(1-xx(i));

end
plot(xx(i),x(i),’k’,’linewidth ’,2)

end
xlabel(’x_i ’,’FontSize ’,20)
ylabel(’x_{i+1}’,’FontSize ’,20)

The result is shown in Figure 1.16.

For a = 2 the times series of the tent map goes to zero after a
number of iterations related to the number of bits in the initial
condition. This is due to the limited precision of MATLABr. In or-
der to overcome this problem, we can set a = 1.9999. The following
commands may be used to plot the time series:
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FIGURE 1.17
A time series generated by the tent map.

a=1.9999;
x=0.7;
for i=1:150

if x < 0.5
x = a*x;

else
x = a*(1-x);

end
y(i)=x;

end
plot(y,’k’)
ylim ([0 1]);
xlabel(’k’,’FontSize ’,20)
ylabel(’x’,’FontSize ’,20)

The time series is shown in Figure 1.17; it exhibits a chaotic behav-
ior.

2. The tent map can be seen as a piece-wise linear approximation of the
logistic map. For the logistic map the maximum of the nonlinearity
is equal to a/4, for the tent map it is equal to a/2. The tent map is
chaotic for a = 2, while the logistic map for a = 4.

3. The generalized tent map can be expressed as:

xk+1 =

{
a xk if 0 ≤ xk ≤ 1

2
a (1− xk) if 1

2 < xk ≤ 1
(1.6)

4. The following commands may be used to plot the bifurcation dia-
gram of the tent map:

n = 1000;
x = zeros(n+1,1);
x(1)=0.51;
for a=0:0.003:2

for i=1:n
if x(i)<0.5

x(i+1) = a*x(i);
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FIGURE 1.18
Bifurcation diagram of the tent map.

else
x(i+1) = a*(1-x(i));

end
end

end
plot(a,x (900: end ),’k.’,’MarkerSize ’,4)
hold on
end
xlabel(’a’,’FontSize ’,20)
ylabel(’x’,’FontSize ’,20)

The bifurcation diagram is shown in Figure 1.18.

5. The Lyapunov exponent of the tent map is given by λ = log a. In
fact, the Lyapunov exponent λ = λ(x0) can be computed consider-
ing the following expression:

λ(x0) = lim
n→∞

1

n

n∑
k=1

ln |f ′(xk−1)| (1.7)

For the tent map f ′(xk−1 is equal to:

f ′(xk−1) =

{
a if 0 ≤ xk−1 ≤ 1

2
−a if 1

2 < xk−1 ≤ 1
(1.8)

Therefore, the Lyapunov exponent is equal to:

λ(x0) = lim
n→∞

1

n

n∑
k=1

ln a = ln a (1.9)

In accordance with the bifurcation diagram, the Lyapunov exponent
assumes a positive value for a > 1. For these values of the parameter,
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FIGURE 1.19
Lyapunov exponent of the tent map for a ∈ [0 2]. The initial condition is
x(0) = 0.51.

in fact, the tent map is chaotic. The following MATLABr code may
be used to plot the Lyapunov exponent:

n =1000;
a_vector =0:0.004:2;
lamba_a=zeros(length(a_vector ),1);
for j=1: length(a_vector)

x =.51;
lyaptmp =0;
a= a_vector (j)
lyaptmp=log(a);
lambda_a(j)= lyaptmp ;

end
plot(a_vector ,lambda_a ,’k’)
xlabel(’a’,’FontSize ’,20)
ylabel(’\lambda(a)’,’FontSize ’,20)

The Lyapunov exponent vs. a is shown in Figure 1.19.

1.3.2 Exercise 2.2

Exercise: Consider the logistic map with a = 4 and initial condition x(0) = 1
3 .

Derive without using the computer the time series x(1), x(2), . . . , x(n), . . . and
comment on the result obtained.

Solution: The first five iterations of the logistic map with a = 4 and x(0) = 1
3

are:
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x(1) = 23

32

x(2) = 25

34

x(3) = 27

38 72

x(4) = 29

316 72 172

x(5) = 211

332 72 172 59832

(1.10)

While from the first two terms a simple iteration rule seems to appear, this
is no more evident in the next samples. In fact, for r = 4 a general expression,
not easy to derive, exists:

x(i) = sin2(2iθπ) (1.11)

with θ = 1
π sin−1(x

1/2
0 ).

1.3.3 Exercise 2.3

Exercise: The asymmetric tent map is defined as

xk+1 =

{
axk if 0 ≤ xk ≤ 1

a
a

a−1 (1− xk) if 1
a < xk ≤ 1

(1.12)

where a, b, and c are parameters with a > 0, b > 1 and a+ b > ab.

1. Implement it.

2. Derive a time series for given values of a, b, and c.

3. Draw the bifurcation diagrams with respect to the parameters of
the map.

4. Derive the Lyapunov exponents as function of each parameter.

Solution: The equation of the asymmetric tent map is a more general model
of the tent map. In fact, for a = 2 the symmetric tent map is retrieved.

1. The map can be implemented with the following MATLABr com-
mands:

a= 3;
hold on;
xx=linspace (0 ,1 ,10001);
for i=1:10001

if ((xx(i)<=1/a) &&(xx(i) >=0))
x(i) = a*xx(i);

elseif ((xx(i)>1/a)&&(xx(i) <=1))
x(i) = a*(1-xx(i))/(a-1);

end
plot(xx(i),x(i),’k.’,’linewidth ’,2)

end
xlabel(’x_k ’,’FontSize ’,20)
ylabel(’x_{k+1}’,’FontSize ’,20)
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FIGURE 1.20
xk vs. xk−1 for the asymmetric tent map with a = 3.

An example of the plot illustrating xk vs. xk−1 obtained with a = 3
is shown in Figure 1.20.

2. The time series is calculated and plotted with the following com-
mands:

a=3;
hold on;
x=0.1;
for i=1:150

if ((x<=1/a)&&(x >=0))
x = a*x;

elseif ((x>1/a)&&(x<=1))
x = a*(1-x)/(a-1);

end
y(i)=x;

end
plot(y,’k’)
xlabel(’t’,’FontSize ’,20)
ylabel(’x’,’FontSize ’,20)

The result is shown in Figure 1.21.

3. The bifurcation diagram is built by varying the parameter a in
the interval [0, 4]. The following commands may be used for the
purpose:

n = 1000;
x = zeros(n+1,1);
x(1)=0.51;
for a=0:0.01:4

for i=1:n
if x(i)<=1/a

x(i+1)=a*x(i);
else

x(i+1)=a*(1-x(i))/(a-1);
end

end
plot(a,x(900: end),’k.’,’MarkerSize ’,4)
hold on

end
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FIGURE 1.21
Time series of asymmetric tent map with a = 3.
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FIGURE 1.22
Bifurcation diagram of asymmetric tent map with respect to a.

xlabel(’a’,’FontSize ’,20)
ylabel(’x’,’FontSize ’,20)

The bifurcation diagram shown in Figure 1.22 reveals that the be-
havior of the map is chaotic for a > 1.

4. The following commands may be used to plot the Lyapunov expo-
nent:

n =1000;
a_vector =0:0.002:4;
lamba_a = zeros (length(a_vector ),1);
for j=1: length (a_vector)

x =.1;
lyaptmp =0;
a= a_vector(j)
for i=1:n

if ((x<=1/a)&&(x>=0))
y(i) = a*x;
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FIGURE 1.23
Lyapunov exponent of the asymmetric tent map for a ∈ [0, 4] with initial
condition x(0) = 0.1.

elseif ((x>1/a)&&(x <=1))
y(i) = a*(1-x)/(a-1);

end
x=y(i);
if ((x<=a)&&(x>=0))

lyap =(1/ n)* log (abs(a));
elseif ((x>a)&&(x<=1))

lyap =(1/ n)* log (abs(-a/(a -1)));
end
lyaptmp = lyap + lyaptmp;

end
lambda_a(j)= lyaptmp;

end
plot(a_vector ,lambda_a ,’k’)
xlabel(’a’,’FontSize ’,20)
ylabel(’\lambda(a)’,’FontSize ’,20)

The Lyapunov exponent is shown in Figure 1.23. It assumes a posi-
tive value for a > 1 according with what observed in the bifurcation
diagram.

1.3.4 Exercise 2.4

Exercise: Consider the delayed logistic map

xk+1 = rxk(1− xk−1) (1.13)

It represents a population at the k + 1 generation that depends not only
on the population at the k generation but also on that at the k−1 generation.

1. Draw the bifurcation diagram with respect to r.

2. Plot xk vs. xk−1.

3. Derive a surface plot reporting xk+1 as a function of xk and xk−1.
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FIGURE 1.24
Bifurcation diagram of delayed logistic map.

4. Discuss the results obtained.

Solution:

1. The following commands may be used to calculate the bifurcation
diagram of the map:

n = 1000;
x = zeros(n+1,1);
x(1)=0.51;
x(2)=0.51;
for r=1:0.0015:2.25

for i=2:n
x(i+1)=r*x(i)*(1-x(i-1));

end
plot(r,x(900: end),’k.’,’MarkerSize ’,4)
hold on

end
xlabel(’r’,’FontSize ’,20)
ylabel(’x’,’FontSize ’,20)
xlim ([1 2.25])

The result is shown in Figure 1.24.

2. The following commands may be used to generate the xk − xk−1

graph:

hold on
x= linspace (0 ,1 ,101);
for i=2:101

y(i) = 2.15*x(i)*(1-x(i -1));
end
for i=2:101

plot(y(i-1),y(i),’k.-’,’linewidth ’ ,2)
end
xlabel(’x_{k-1} ’,’FontSize ’,20)
ylabel(’x_{k} ’,’FontSize ’,20)

The graph is shown in Figure 1.25.
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FIGURE 1.25
xk vs. xk−1 of the delayed logistic map for a = 2.15.

3. The surface plot reporting xk+1 as a function of xk and xk−1, along
with a system trajectory, is obtained with the following MATLABr

commands:

x=linspace (0 ,1 ,101);
[X,Y]= meshgrid(x,x);
Z=2.15.*X.*(1-Y);
figure ,surface(X,Y,Z)
figure ,mesh(X,Y,Z)
hold on
x=linspace (0 ,1 ,1001);
for i=3:1000

y(i)=2.15*x(i-1)*(1 -x(i -2));
x(i)=y(i);

end
y=y(1 ,200: end);
plot3(y(2:end -1),y(1:end -2),y(3:end),’k.’,’linewidth ’ ,2)
xlabel(’x_k ’,’FontSize ’,20)
ylabel(’x_{k-1} ’,’FontSize ’,20)
zlabel(’x_{k+1} ’,’FontSize ’,20)

The surface plot is shown in Figure 1.26.

4. We note that the logistic map is a second-order discrete-time map.
In fact, the actual sample depends on two past samples. For this
reason, reporting xk as function of xk−1 does not provide any insight
on the system nonlinearity. On the contrary, the surface plot is
meaningful. Finally, we note that the map is able to generate chaotic
motion and that a period doubling cascade is observed also for this
map.

1.3.5 Exercise 2.5

Exercise: The following map is said to be the Bernoulli map:

xk+1 = f(xk) (1.14)
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FIGURE 1.26
Surface plot reporting xk+1 as function of xk and xk−1, along with a system
trajectory, in the delayed logistic map for a = 2.15.

where f(xk) = 2xk mod 1. Draw the time series generated by this map.

Solution: As for the tent map with a = 2, also in this case the limited
precision of the numerical calculation yields to uncorrect results. To overcome
this problem, we set the parameter equal to 1.9999 instead than equal to 2.
The following commands may be used to calculate and plot the time series
generated by the Bernoulli map:

x(1) = 0.6;
for i=1:150

x(i+1) = mod (1.9999*x(i),1);
end
plot(x,’k’)
xlabel(’k’,’FontSize ’,20)
ylabel(’x’,’FontSize ’,20)
ylim ([0 1]); xlim ([0 150]);

The time series is shown in Figure 1.27.

1.3.6 Exercise 2.6

Exercise: Make a qualitative comparison of the results derived analyzing the
behavior of the maps at the points 1)-5).

Solution: The following first-order discrete-time maps have been analyzed:

1. the tent map;

2. the logistic map;

3. the asymmetric tent map;
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FIGURE 1.27
Time series of the Bernoulli map with a = 1.9999.

4. the delayed logistic map;

5. the Bernoulli map.

All the maps are characterized by a single parameter and the interval
where it can change is different for each map. All the maps can produce a
chaotic behavior for a specific range of the parameter. It is important to note
that the logistic map with a = 4 is topologically conjugate to the tent map
and Bernoulli map with a = 2. The parameter of the tent map varies between
0 ≤ a ≤ 2; a bifurcation point occurs at a = 1 after which the map becomes
chaotic. On the contrary, for the logistic map a bifurcation point occurs at
a = 3, where a cascade of period doubling starts. The Bernoulli map has also
a bifurcation point for a = 1 and it becomes chaotic for increasing values of
this parameter.

Making a comparison between the delayed logistic map and the non-
delayed one, we note that they have different behavior since the bifurcation
diagram has a different shape and bifurcations occur for different values of
the parameters. For example, in the delayed logistic map the first bifurcation
occurs for a = 2 instead than a = 3 of the classical one.

1.3.7 Exercise 2.7

Exercise: Consider the cubic map xk+1 = axk − x3
k.

1. Find the equilibrium points and study their stability.

2. Draw the bifurcation diagram with respect to a.

Solution:
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1. The equilibrium points of the map are calculated from the equation
xk+1 = xk. For the cubic map the solutions are:

xk = 0 (1.15)

and

xk = ±
√
a− 1 (1.16)

The Jacobian associated to the system is equal to:

J =
∂xk+1

∂xk
= a− 3x2

k (1.17)

We study the stability of the first equilibrium point by substituting
xk = 0 to the Jacobian:

J =
∂xk+1

∂xk

∣∣∣∣
xk=0

= a (1.18)

Therefore, for |a| < 1 the equilibrium point is asymptotically stable,
while |a| > 1 it is unstable.

Let us now study the other two equilibrium points by substituting
xk = ±

√
a− 1 to the Jacobian. The result is:

J =
∂xk+1

∂xk

∣∣∣∣
xk=±

√
a−1

= 3− 2a (1.19)

The condition |3 − 2a| < 1 can be rewritten as 1 < a < 2 and in
this case the equilibrium points xk = ±

√
a− 1 are asymptotically

stable. The condition |3− 2a| > 1 can be rewritten as a < 1∪a > 2
and in this case equilibrium points xk = ±

√
a− 1 are unstable.

2. The following code may be used to obtain the bifurcation diagram:

n = 1000;
x = zeros(n+1,1);
x(1)=0.51;
for a=1:0.002:3

for i=1:n
x(i+1)= a*x(i)-x(i)^3;

end
plot(a,x (900: end ),’k.’,’MarkerSize ’,4)
hold on

end

The bifurcation diagram is shown in Figure 1.28.
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FIGURE 1.28
Bifurcation diagram of the cubic map xk+1 = axk − x3

k.

1.3.8 Exercise 2.8

Exercise: Consider two coupled logistic maps

xk+1 = rxk(1− xk) + σ(yk − xk)
yk+1 = ryk(1− yk) + σ(xk − yk)

(1.20)

Derive the bifurcation diagrams considering fixed the parameter σ and
varying r and vice versa.

Solution: The following commands are used to obtain the bifurcation diagram
of the system of two coupled logistic maps while varying the parameter r and
keeping constant σ (σ = 0.1):

n =1000;
x= zeros(n+1,1);
y= zeros(n+1,1);
x(1)=0.51;
y(1)=0.72;
sigma =0.1;
figure
for a =1:0.004:3.7

for i=1:n
x(i+1)= a*x(i)*(1-x(i))+ sigma*(y(i)-x(i));
y(i+1) = a*y(i)*(1-y(i))+ sigma*(x(i)-y(i));

end
plot(a,x(900: end),’k.’,’MarkerSize ’,4)
hold on

end
xlabel(’a’,’FontSize ’,20)
ylabel(’x’,’FontSize ’,20)
xlim ([1 3.7])
set(gca ,’FontSize ’,20)

The bifurcation diagram is shown in Figure 1.29 (in the diagram the vari-
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FIGURE 1.29
Bifurcation diagram of the map (1.20) while varying r with σ = 0.1.

able xk is considered; similar results are obtained when yk is taken into ac-
count).

The bifurcation diagram with respect to σ with fixed r (r = 3.8) is obtained
with the following commands:

n =1000;
x= zeros(n+1,1);
y=zeros(n+1,1);
x(1)=0.51;
y(1)=0.72;
r=3.8;
for sigma = -0.2:0.0001:0.05

for i=1:n
x(i+1)=r*x(i)*(1-x(i))+ sigma*(y(i)-x(i));
y(i+1)=r*y(i)*(1-y(i))+ sigma*(x(i)-y(i));

end

plot(sigma ,x(900: end),’k.’,’MarkerSize ’,4)
hold on

end
xlabel(’\sigma ’,’FontSize ’,20)
ylabel(’x’,’FontSize ’,20)
xlim ([-0.2 0.05])
ylim ([-0.2 1])
set(gca ,’FontSize ’,20)

It is shown in Figure 1.30.

1.3.9 Exercise 2.9

Exercise: Consider a natural number n and the following map

xk+2 =
[
yk+n
yk+1

]
xk+1 − xk

yk+2 =
[
yk+n
yk+1

]
yk+1 − yk

(1.21)

with initial conditions x0 = 0, y0 = 1, x1 = 1, y1 = n, where [x] indicates the
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FIGURE 1.30
Bifurcation diagram of the map (1.20) while varying σ with r = 3.8.

largest integer not greater than x. xi/yi with i = 2, 3, . . . represents the Farey
sequence. Analyze the map.

Solution: The map is studied with the following commands:

T=5000;
n=1;
x(1)=0;
x(2)=1;
y(1)=1;
y(2)=n;
f(1)=x(1)/y(1);
f(2)=x(2)/y(2);
hold on;
for n=1:1:1000

for k=1:T
x(k+2) = floor((x(k)+n)/x(k+1))*x(k+1)-x(k);
y(k+2) = floor((y(k)+n)/y(k+1))*y(k+1)-y(k);
f(k+2) = x(k+2)/y(k+2);

end
plot(n,x(4000: end),’k’);
%plot(n,f(4000: end),’k’);

end
xlabel(’n’,’FontSize ’ ,20);
ylabel(’x’,’FontSize ’ ,20);

used to generate the bifurcation diagrams of Figure 1.31. The diagram in
Figure 1.31(a) is obtained by plotting the last 1000 samples of the variable
xk, while that in Figure 1.31(b) the samples of the ratio between the two
variables xk and yk. For a given value of n, from the map definition it is clear
that each variable can take only integer values in the interval [1, n]. For large
enough n, the sequence of these n symbols is not short-term periodic and not
trivial. The same applies for the behavior of the ratio as it appears clear in
the bifurcation diagram.
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FIGURE 1.31
Bifurcation diagram of the map (1.21) with respect to n: (a) xk; (b) fk =
xk/yk.


