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Chapter Two

1. The equation of motion for an operator in the Heisenberg picture is given by (2.2.19), so

. 1 1 eB eB . eB .
Sy = —|9:, H| = ———|5,,5.| = —8 S, =——85, S.=0
zh[ ] ih mc[ ] me Y Y mc
and Sxy = —w25x7y for w = eB/me. Thus S, and S, are sinusoidal with frequency w and S,

is a constant.

2. The Hamiltonian is not Hermitian, so the time evolution operator will not be unitary, and
probability will not be conserved as a state evolves in time. As suggested, set Hy; = Hyy = 0.
Then H = a|1)(2| in which case H? = a?|1)(2]1)(1| = 0. Since H is time-independent,

U(t) = exp (—%Ht) =1- %Ht =1- %at|1><2|

even for finite times t. Thus a state |, t) = U(t)|2) = |2) — (iat/h)|1) has a time-dependent
norm. Indeed (a|a) = 1 + a??/h* which is nonsense. In words, it says that if you start out
in the state |2), then the probability of finding the system in this state is unity at ¢t = 0 and
then grows with time. You can be more formal, and talk about an initial state ¢;|1) + c2|2),
but the bottom line is the same; probability is no longer conserved in time.

3. We have n = sinfx + cos fz and S = (h/2)o, so S - n = (h/2)(sin fo, + cos fo,) and
we want to solve the matrix equation S - niy = (h/2)1 in order to find the initial state
column vector 1. This is, once again, a problem whose solution best makes use of the Pauli
matrices, which are not introduced until Section 3.2. On the other hand, we can also make
use of Problem 1.9 to write down the initial state. Either way, we find

la,t =0) = cos (g) [4) + sin <§> -) 50,
|, t) = exp [—%;—BctSz] lo,t =0) = e~ Wt/2 (g <§> +) + o /2 gin (g) =)

for w = eB/mc. From (1.4.17a), the state |S,; +) = (1/v2)|+) + (1/v/2)|-), so

[(Se; He, )P = '%eiwt/2 cos (g) + %em/z sin (g)
= %cos2 (g) + % (ei“’t + e_i“’t) coS (g) sin (g) + %sin2 (g)

1 1 1
= 3 + §Cos(wt) sin 8 = 5(1 + sin 3 cos wt)

2

which makes sense. For 8 = 0, the initial state is a z-eigenket, and there is no precession,
so you just get 1/2 for the probability of measuring S, in the positive direction. The same
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works out for § = 7. For = 7/2, the initial state is |S,; +) so the probabilty is +1 at ¢t =0
and 0 at t = 7/w = T/2. Now from (1.4.18a), S, = (A/2)[|+){(—| + |=){+]], so

(o, 1|Splast) = {e“t/%os (g) (+| + e~ "2 sin (§) <—!1

g {ei‘”t/Q sin (g) [+) + e cos <§> |—>]

_ h : ﬁ 5 iwt —wt _h :
= QSID(2>COS(2)[€ +e ]—QSlnBcoswt

Again, this makes perfect sense. The expectation value is zero for § = 0 and § = m, but for
f = m/2, you get the classical precession of a vector that lies in the zy-plane.

4. First, restating equations from the textbook,

|ve) = cosf|vy) — sinf|vy)
lv,) = sinf|vy) + cosf|vy)
2.2
and E = pc (1 + Tgpz )

Now, let the initial state |v.) evolve in time to become a state |a,t) in the usual fashion

|a,t) _ 6—th/h|Ve>
= cosfe B ) — sin B E2t/R )

— e—ipct/h [e—im%CSt/2ph coS 0|V1> . e—imgc?’t/Qph sin 6)’1/2>:|
The probability that this state is observed to be a |v,) is
2 —im2c3t/2ph 2 —im3c3t/2ph ;2 2
Pve = ve) = |[(Ve|la, )" = ‘e 1CY P cos® 0 4 e M2 M P sin 6"

f 2
. 2.3 .
= ‘0052 0 + A/ 2h 2 0‘

Am?2c3t
= 00849+Sin49+2COS26’SiIl29COS{ me 1

2ph

Am?2c3t
= 1—sin22081n2{ me }

4ph

Writing the nominal neutrino energy as E = pc and the flight distance L = ¢t we have

L
P(v. — v.) = 1 — sin® 26 sin? {Am2644Ehc}

It is quite customary to ignore the factor of ¢* and agree to measure mass in units of energy,
typically eV.
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The neutrino oscillation probability from KamLAND is plotted here:
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The minimum in the oscillation probability directly gives us sin® 26, that is

1 —sin?20 ~ 0.4 SO 0 ~ 25°

The wavelength gives the mass difference parameter. We have

km 5 4he 81 x 200 MeV fm
ﬂ' pr—

4 —
0 MeV Am? Am?

where we explicitly agree to measure Am? in eV2. Therefore

Am? = 40m x 10%eV? x 107%/10° = 1.2 x 107* eV?

The results from a detailed analysis by the collaboration, in Phys.Rev.Lett.100(2008)221803,
are tan?0 = 0.56 (6 = 37°) and Am? = 7.6 x 107° eV2. The full analysis not only includes
the fact that the source reactors are at varying distances (although clustered at a nominal
distance), but also that neutrino oscillations are over three generations.

5. Note: This problem 1is worked through rather thoroughly in the text. See page 85.
First, © = (1/ih)[z, H] = (1/ih)[z,p*/2m| = p/m (using Problem 1.29). However p =
(1/ih)[p,p?/2m] = 0 so p(t) = p(0), a constant. Therefore z(t) = x(0) + p(0)t/m, and
[z(t),2(0)] = [2(0) 4+ p(0)t/m,x(0)] = [p(0),z(0)]t/m = —iht/m. By the generalized uncer-
tainty principle(1.4.53), this means that the uncertainty in position grows with time. This
conclusion is also a consequence of a study of “wave packets.”
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6. This is the proof of the so-called “dipole sum rule.” Using Problem 1.29,

2 2
_ |2 ) __"
(H,z] = {Qm + V(x), } = zhm SO [[H,z],z] = -
Now [[H,z],z] = [H,z]x — z[H,z] = Ha? — xHx — vHx + 2*H = Ha* + 2*H — 2xHx,
and so (a"|[[H, z], z]|a") = 2E"{a"|2?|a") — 2(a"|zHz|a") = —h*/m from above. Inserting a
complete set of states |a’) into each of the two terms on the left, we come up with

h2

2_ — <CLH|ZEHZE‘GN>—E”<6L”|I2|6L”>
m

= 3 el ) fela”) — B falaya'fola")] = SO (B = B)|(a” ]’}

a’ a’

7. We solve this in the Heisenberg picture, letting the operators be time dependent. Then

d 1 1 1
a _ H — — 2 2 2
ZXP 7 —[x-p, H] = = |wPe Hypy + 2Dz 5 (py +p, +p2) + V(X)}
1 1
= 5 {lz,03]pe + . 0)lpy + 2, P2]p:} + =% [p,V(x)]
1 oV oV oV  p?
= (px+py+pz)—1f%—ya—y— 5 = VvV

using (2.2.23). What does this mean if dx-p/dt = 07 The original solution manual is elusive,
so I'm not sure what Sakurai was getting at. In Chapter Three, we show that for the orbital
angular momentum operator L, one has L? = x’p? — (x - p)? + thix - p, so it appears that
there is a link between this quantity and conservation of angular momentum. So,...7

8. Firstly, ((Az)?) = (2?) — (2)? and (from Problem 5 above) x(t) = z(0) + (p(0)/m)t, so
(z(t)) = (x(0)) + ((p(0))/m)t = 0 and ((Ax)?) = (2?) at all times. Therefore we want

t t°
(D)) = (@*(1)) = (2%(0)) + — (2(0)p(0) + p(0)x(0)) + —{(p*(0))
where the expectation value can be calculated for the state at ¢ = 0. For this (minimum
uncertainty) state, we have Az = 2(0) — (z(0)) = x(0) and Ap = p(0) — (p(0)) = p(0), so
from Problem 1.18(b) we have Ap(0)|) = iaAx(0)|) where a is real. Therefore

t2

(A2)?) = (2%(0)) + — [ia(2*(0)) — ia(z*(0))] + —(~ia)(ia){z*(0)) = (+*(0)) [1 + _t]

t
m
where h? /4 = ((Az)?)((Ap)?) = a?(2?(0)) sets a®> = h?/4{(Ax)?)|,—o. San Fu Tuan’s original
solution manual states that this agrees with the expansion of wave packets calculated using
wave mechanics. This point should probably be investigated further.
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9. The matrix representation of H in the |a’), |a”) basis is H = [ (5) 0 } , so the characteristic

equation for the eigenvalues is (—F)?*—§? = 0 and E = +0 = F.. with eigenstates \/Li [ jil } :

This gives |a/) = (|Ey) +|E_))/v2 and |a”) = (|E,) — |E_))/+/2. Since the Hamiltonian is
time-independent, the time evolved state is exp(—iHt/h)|a’) = (e M E, ) +e®/"|E_)) /2.
The probability to find this state at time ¢ in the state |a”) is |(a”| exp(—iHt/h)|a’)|?, or

1 , . 1, _, . . ot
Z ’(<E+‘ o <E,) ‘ (e—zét/h’E+> + 616t/h|E7>) ‘2 _ Z |6—z6t/h o ezét/h‘Q _ SIH2 (%)

This is the classic two-state problem. Spin-1/2 is one example. Another is ammonia.

10. This problem is nearly identical to Problem 9, only instead speciying two ways to de-
termine the time-evolved state, plus Problem 2 tossed in at the end. Perhaps it should be
removed from the next edition.

(a) The energy eigenvalues are Ey = A with normalized eigenstates |Ey) = (|R)%|L))/V/2.
(b) We have |R) = (|E,) + |E_))/v/2 and |L) = (|E}) — |E_))/V?2, so, with w = A/,
ja.t) = e Ma,t =0) = e R)(Rla) + e L)(L|a)

= [ + € EL)] (Rla) + —= [ L) — L)) (Lla)

1
_I._ JR—
% vl
(¢) The initial condition means that (R|a) = 1 and (L]a) = 0, so we calculate

> 1

(Ll ) = 7 [(Bs] = () | (1 B) + ) = |

i w2
!e m—e“’t‘ = sin® wt

(d) This is the only part of the problem that is “new.” Indeed, Problem 9 could have been
done this way, instead of using the time propagation operator. Using (2.1.27) we write

m%(}gm,t) = (R|H|a,t)  and ih%(ﬂa,t) = (L|H|a,t)

Let ¥g(t) = (R|a, t) and ¥y, (t) = (L|a, t). These coupled equations become

i = (ML = ME) fouf) = Ay, and iy, = Ay

or thp = —iwy, and 1, = —iwg, so Yr(t) = Ae™' + B! and i (t) = Ce™' + D™t
These are just (b) where A = (R|E,), B=(R|E_), C = (L|E,), and D = (L|E_).

(e) See Problem 2. It can be embellished by in fact solving the most general time-evolution
problem, but in the end, the point will still be that probability is not conserved.
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11. Restating this problem: Using the one-dimensional simple harmonic oscillator as an
example, illustrate the difference between the Heisenberg picture and the Schrodinger picture.
Discuss in particular how (a) the dynamic variables x and p and (b) the most general state
vector evolve with time in each of the two pictures.

This problem, namely 2.10 in the previous edition, is rather open ended, atypical for most
of the problems in the book. Perhaps it should be revised. Most of the problem is in fact
covered on pages 94 to 96. Anyway, we start from the Hamiltonian

1 1 1
H = %pQ + émwaQ = (N + 5) hw

(a) In the Schrédinger picture,  and p do not evolve in time. In the Heisenberg picture

dx 1 1 1 P

— = —|z,Hl= —— 2 = h(2p) = —

dt ih [z, H] 2imh 7] 2@'th (2p) m

dp 1 mw? w?

— = —|p,Hl = —— 2l = —ih)(21) = —mw?

using Problem 1.29. These are just the classical Hamilton’s equations, with a force —w?x.
Solving these coupled equations are simple, yielding sinusoidal motion at frequency w for
x and p. One can also recognize that the two pictures coincide at ¢ = 0, and then get
Heisenberg from Schrédinger using xzpy(t) = exp(iHt/h)z(0) exp(—iHt/h) and expanding
the exponentials. Similarly for momentum.

(b) In the Heisenberg picture, state vectors are stationary. For the Schrédinger picture, it is
easiest to expand in terms of eigenstates of N, that is |a,t) = > ¢, (t)|n), so (2.1.27) gives

ihy " én(t)n) = Hlo,t) =Y <n + %) hwen (1) |n)

in which case ¢, (t) = exp[—i(n + 1/2)wt], using orthonormality of the |n).

12. Not enough information is given in the problem statement. The state |0) is one for
which (x) =0 = (p). As described in the solution to Problem 11, in the Heisenberg picture,
the position operator is x(t) = z(0) cos(wt) + (p(0)/m) sin(wt), and (z) = (t = 0]z(t)|t = 0).
Since eP/Tye= P/l = /M [ e=Pa/P] 4 emipalhyp) = /Mih(—ja/h)e” P + ¥ = x + a, using

Problem 1.29, the expectation value of position is

() = (0]e™2(0)e~""|0) cos(wt) + (0|e® " p(0)e~P/"|0) sin(wt)
= (0][z(0) + a]|0) cos(wt) + (0]p(0)|0) sin(wt) = a cos(wt)

Since the state e~%/"|0) represents a position displaced by a distance a (See Problem 1.28),
we have the classical motion of a harmonic oscillator starting from rest with amplitude a.
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13. Making use of (1.6.36), we recognize T (a) = exp(—ipa/h) as the operator that translates
in = by a distance a. Therefore (z/|T(a) = (z' — a| and

| 11 L (2 —a)’
/| —ipa/h _ r_
(z'|e |0) = (2" — al0) = Tl/4 (1)/2 P [ 2 ( Lo ) ]

The probability to find the state e=7*/%|0) in the ground state |0) is the square of

. : 1 1 2
<O|e—zpa/h|0> :/dx/<0|x/><xl|6—zpa/h|0> - - dl‘, —[(z'—a)?+2""] /223

7T1/2£B0

The integral is simple to do by completing the square. Write

2 2
! 2 /2_ [2 / a o (, a/) a
— 9 _ Zl=9 _Z bl
(' —a)*+x {x a$+2} |:£L' 5 }—1—2

and shift the integration variable by a/2. You end up with

—ina 1 1 _a2 2:2 & 22 fEQ _a2 2:2
(Ole p/h|0>:ma7_06 /40/_ dye V%0 = =@ /4%

so the probability is just e~*/275 This is indeed time-independent.

14. Rearranging, we have z = \/hi/2mw(a + a') and p = i\/hmw/2(a’ — a), therefore

zln) = ,/% [\/ﬁ|n— 1) +\/n—+1|n+1)]

pln) = M/MT""[Jn—H\n+1>—\/mn_1>]

(m|zln) = 4/ %(m](a +a')|n) = 4/ % [\/ﬁém,n,l +vn+ 15m.n+1]

mlpln) = i/ "2 (at — )} = i/ [V Tis — Vi

(m{z,p}n) = (m|[(xp+px)ln) = (m|xpn) + (n|zp|m)”
= 1 hmTw [\/n + 1{m|z|n + 1) — v/n(m|z|n — 1)

—Vm ¥ Unjzm + 1) + Vm(n|zlm — 1)}
h
— i [0+ Do+ V/F 0+ 2nszm — V(0 = Dnzn — 1

2

—(m 4 D)Om — /(e + D) (m+ 2)8nmse + /(M — D)opm_s + mdnm]
— ih [\/(n+1)(n+2 v — /1 — 1)5,_ Qm}
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(mla®|n) = % [\/ﬁ<m|x|n — 1) +Vn+ L{m|z|n + 1>]
- % V= D)z + (20 4+ D + /(0 D0+ 2)0012.m)

mlp?ln) = i/ [V Tomlpln + 1) — viatmlpln — 1]

hmw

— 5 [\/(n +1)(n+ 2)6n+2,m — (2n + 1)6pm + V/n(n — 1)571*2:”1}

Now, the virial theorem in three dimensions is quoted as

B)-wen o (2)-05)

in one dimension. For the harmonic oscillator, zdV/dz = mw?z?. So, evaluating the expec-
tation value in the state |n) using the calculations above, we have

2
P hw 1 dV hw 1
—)=—0n+1) = + = —)=—72n+1)= 5

<m> 5 2n+1) =hw (n 2) and <xd:r; 5 2n+1) =hw n+2

and the virial theorem is indeed satisfied.

15. Turning around what is given, (p/|2’) = (27h)~/2e~#'*'/" Then
Whela) = [ ') el = [ do'a' 1oy (w)
0 0 0
— . /_ / / / —ih / / / / — h_ /
i [ o' e le) = i [ o'l ') = in 9])

For the Hamiltonian H = p?/2m + mw?z?/2 with eigenvalues F, the wave equation in
momentum space is (p'|H|a) = E(p'|a) = Eu,(p’), and the second term in (p'|H|«) is

2 2 2,2 92 2,2 2
mw 9 mw? .. 0 mh w* 0 mh w?® d“uq
= latla) = i lela) =~ ) =~

With a little rearranging, the wave equation becomes

mhw? d?u, 1
5 g+t tet) = Bt

which is the same as (2.5.13) but with mw? replaced with 1/m. Inserting this same substi-
tution into (2.5.28) therefore gives the wave functions in momentum space.
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16. From (2.3.45a), z(t) = x(0) coswt + [p(0)/mw] sin wt, so

C(t) = (0]z(t)x(0)|0) = (0]x(0)x(0)|0) coswt + (1/mw){0|p(0)z(0)|0) sin wt

The matrix elements can be calculated by the techniques in Problem 14. You find that
(0]z(0)x(0)|0) = h/2mw and (0|p(0)z(0)|0) = —ih/2. (Note: Error in old solutions manual.)
Therefore C(t) = (h/2mw) cos wt — i(h/2mw) sin wt.

17. Write |a) = a|0) + b|1), with a, b real and a® + b*> = 1. Using Problem 14,
2 2 [ h
(o] z|er) = a*(0]z|0) 4+ ab(0|x|1) + ab(1|z|0) + b*(1|z|1) = 2ab S

The maximum is obtained when a = b= 1/v/2 so () = \/h/2mw.

The state vector in the Schrédinger picture is |a, t) = e *H¥/?|a) = \/Lg [e7t/2]0) + e=3«1/2]1)]
and the expectation value (o, t|z|a, t), again using Problem 14, is
h

1, 1, 1 , ,
= Ze it 1 — wt 1 0) = = —iwt wity _
() 2°¢ (0l >+26 (1]10) 2 2mw(e +e) mw

cos wt

In the Heisenberg picture, use z(t) from (2.3.45a), and again Problem 14. In this case, we

note that (O|p|1) = (1|p|0) = 0, so we read off (x) = \/h/2mw coswt.

To evaluate ((Az)?) = (x?) — (z)?, we just need to calculate (x?). Use the state vector in
the Schrodinger picture, and read off matrix elements of 2% from Problem 14, to get

1 1, 1 1 h
(%) = (0|w2|0> ¢ H0l2%[1) + S (1]a?[0) + S(1a’ (1) = 5o —[143] = —

22mw mw
o ((Az)?) = (h/mw)(1 — 5 cos® wt).

18. Somehow, it seems this problem should be worked by considering (0]x2"|0), but I don’t
see it. So, instead, work the left and right sides separately. For the right side, from Problem
14, exp[—k?(0]2?]0) /2] = exp[—k*N/4mw]. For the left side, use position space to write

<O|€ikm|0>:/dﬂ?/<0|€ik$’l’l><$/|0>:/d.CC/ zkx x|0 /mw/d 1 _ikx! 7mwx

Put #’ = uy/h/mw and write —u? + ikuy/h/mw = —(u —ik+\/h/mw/2)? — hk*/4mw. Then,
putting w = u — ik\/h/mw/2, we have

mw 2 2 2 2
Olezk:v|0 —hk /4mw dwe V" = —hk /4mw\/_ —hk /4dmw
V wh \ mw \/_

and the two sides are indeed equal.
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19. Tt will be useful to note that, from (2.3.21), (a")"|0) = v/n!|n). So

a[&“WO)} — a[ijﬂ( )|O]—a[2\/_| ] Z a|n

B ; (n—l Z\/_’m —)\[e*‘”]o}]

so e’ |0) is an eigenvector of a with eigenvalue A. For the normalization, we need the inner
produce of e*'|0) with itself. However, (0]e* ®e**'[0) = (0e*™*|0) = el*” since e*'|0) is an
eigenvector of a with eigenvalue A. Thus |\) = e~ MP/2ghal |0) is the normalized eigenvector.

Now we have al\) = A)) and (Aat = (A|N*, so (\|(a” £ a)|A) = X £ X (M(a)?]\) = N2
Al(@)?X) = (A% (MaTa] Ay = M A; and (Maa®| ) = (M\(1 + a’a)|\) = 1+ A*A\. Therefore

(1) = ) =y 5 (A4 )

@) = % A2+ (V)2 + XA+ (14 A™N)]
2 2 2 _ h
(Ao = ()~ () = 5
W = Ol = i/ T2 - )
(p*) = _m_hw [)\2 ()\*)2—)\*)\—(1—1—)\*)\)]
() = <p2>—<p>2:m7m”

so AxzAp = h/2 and the minimum uncertainty relation is indeed satisfied. Now, from above,

20 N - 2 [A[*"
N = MY S =3 fal)so [ = e
n=0 : n=0 ’

which is a Poisson distribution P,(u) = e #u"/n! with mean p = |A\|?. Note that the mean
value of n is not the same as the most probable value, which is an integer, although they
approach the same value for large u, when the Poisson distribution approaches a Gaussian.
However, P,(u)/P,—1(n) = p/n > 1 only if n < p, so the most probable value of n is the
largest integer n,, less than |A?|, and the energy is (n,, + 1)hw. To evaluate e=?*/"|0) =

elVme/ 2 =a)|0) yge eATB = eAeBemlABl/2 where A and B each commute with [A, B]. (See
Gottfried, 1966, page 262; Gottfried, 2003, problem 2.13; or R. J. Glauber, Phys. Rev.
84(1951)399, equation 39.) With A = ¢y/mw/2h, we then easily prove the last part, as

6—ip€/h|0> _ 6&/mw/?haTe—E\/mw/2hae—€2mw/4ﬁ|0> _ e—mﬁzw/élﬁeﬂg/mw/QhaT |0> _ €_>\2/26>\aT |O>
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20. Note the entry in the errata; J* is not yet defined at this point in the text. The solution
is straightforward. We have [ax,al] = 1 and [a, aIF] =0 = [al, aiF] = [a4,az]. Then

2

h
., = = al aJraT a_ —ala_al ay — ata_ala_+ala_ala_
+ g \ 4+ +a-ay + +

h2

= - CL]L a (IJ[ a_ — (lJf a_\a CLJr —-1)— CLT_CL_(IJr a_ + aT CL_CLT_CL_
5 \d+0+0+ + +04 + +
h? h?

= 3 <aﬁra_ - aia_aia_ + ala_ai _> = Eal <a_ —ala_a_ + a_aT,a_>
hQ

= —d (a_—a'aa_+(1+ala_ =n2ala_ = +hJ,
2 + +

and similarly for [J,, J_]. Put Ny = al,a. so Jz = (h/2)(N —N,) with [Ny, N_] =0. From
(3.5.24), J2 JoJ +J2—hJ,, so J.J_ =h%*aa_aa, =K N+(1 +ala_)=HmN, (1+N_),
so J? = (N2 +2N,N_+N2+2N, +2N_) = e “(N?+2N) = N ( + 1) Finally, noting
that we can write both J? and J, in terms of Ny, Wthh commute we clearly have [J?, J,] = 0.

21. Starting with (2.5.17a), namely g(z,t) = exp(—t2+2tz), carry out the suggested integral
g

> o0
/ g(w,t)g(m,s)e_$2dx = :/ 625t—(t+5)2+2x(t+s)—x2dx

—00 —0o0

o 2
_ 628t/ 6—[x—(t+s)] dr = 7T1/2625t

[ [ 2 1 >, 2"
ZZ{ [ @)@ dx} T S
n=0 m=0 -/~ : n=0 "

The sum on the right only includes terms where ¢ and s have the same power, so the
normalization integral on the left must be zero if n # m. When n = m this gives

/ H’2 e~ dr = 7l/29np)

which is (2.5.29). In order to normalize the wave function (2.5.28), we compute

/ ( )un d$ _ |Cn| / H2 ( /%) —mwz2/hdl. _ |C | / 1/22nn'

so that ¢, = (mw/mh)/4(2"n!)~1/2, taking c, to be real. Compare to (B.4.3).
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22. This is a harmonic oscillator with w = \/k/m for x > 0, with (z|n) = 0 at z = 0, that
is, solutions with odd n. So, the ground state has energy 3iw/2. The wave function is given
by (B.4.3), times v/2 for normalization, that is u(z) = 2(mw/7h)4e ™2z /mw [h, for
x>0, and u(z) =0 for x < 0. We than calculate the expectation value

22) 4mw mw/ dg—men?/h g _ dmw w3 ( h ? mh _ 3 h
mh h 7rh mw  2mw
23. From (B.2.4), u,(z) = (z|n) = \/2/Lsin(nnz/L) and E, = n*7?h*/2mL?, so

U(z,t) = (x|o, t) = (x|e M a,0) = Z(l’le_im/hln (n]a, 0) ch =iBut/hy (1)

n

where ¢, = (n|a,0). Now, I take a hint from the previous solutions manual, that “known
to be exactly at x = L/2 with certainty” and “You need not worry about normalizations”
mean that (z|a,0) = ¥ (z,0) = §(x — L/2), so ¢, = fo (2,0)up,(v)dx = /2/Lsin(nm/2). T
don’t like this; it seems that 1 (z,0) = 1/d(x — L/2) is a better choice, but how well defined

is “known with certainty”? Anyway, ¢, = 0 if n is even, and ¢, = \/2/L(—1)""Y/2 if n is
odd, and |¢,|? =0 or |c,|* = 2/L, i.e. independent of n, for n odd. Then, insert in above.

24. Write the energy eigenvalue as —FE < 0 for a bound state, so the Schrodinger Equation
is (—h*/2m)d*u/dz® — vod(z)u(z) = —Eu(z). Thus u(z) = Aexp(—zv2mE/h) for z > 0,
and u(x) = Aexp(+xv2mE/h) for < 0, and du/dx = F(v2mE /h)u(x). Now integrate
the Schrodiner Equation from —e to +¢, and then take ¢ — 0. You end up with

! { h? /2mE W2 V2omE
1

SR [—u<a>—u<—s>1}—uOu<o>—— u(0) — vou(0) = 0

2m  h m h

which gives E = mu?/ 2h*. This is unique, so there is only the ground state.

25. For this problem, I just reproduce the solution from the manual for the revised edition.
(Note that “problem 22” means “problem 24” here.) See the errata for some comments.
Using the result of problem 22, where 2mE/KZ = A%w“/K* in our notation, we have

p(x,c=0) = Aup[-nl[:])‘lzl. The mormalization is then 24° z exp[-2mix/W?]dx =
1 or 2a2[¥2/2m1] = 1 and hence A = (m\/K2)%. From (2.5.7) and (2.5.16), we have

$(x,t20) = ] dax'9(x',0)K(x,x";t)

= (@ /K25 (m/2viKe)® T expl-mi|x'| /M) exp[1(x-x")%n/2ht)dx"
where we have used %(x',0) = (nlfl(z)l’up[-lﬂx’fﬂzls
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26. With V(z) = Az, A > 0 and —oo < x < o0, the eigenvalues E are continuous. The
wave function is oscillatory for x < a and decaying for > a, where a = E/\ is the classical
turning point. Indeed, the wave function is proportional to the Airy function Ai(z) where
z x (z — a). See Figure 2.3. On the other hand, for V(z) = A|z|, there are now quantized
bound states. This parity-symmetric potential has even and odd wave functions. The even
wave functions have Ai'(z) = 0 at z = 0, and the odd wave functions have Ai(z) = 0 at
x = 0. These conditions lead to quantized energies through (2.5.34) and (2.5.35). As shown
in Figure 2.4, the odd energy levels have been confirmed by “bouncing neutrons.”

27. Note: This was Problem 36 in Chapter Five in the Revised Fdition. It was moved to this
chapter because “density of states” is explicitly worked out now in this chapter. It seems,
though, that I should have reworded the problem a bit. See the errata.

Refer back to the discussion in Section 2.5. The wave function is

L, 2 2
ug(x) = Zelk'x where ky, = %nw and k, = %ny
and n, and n, are integers, with p = hik. The energy is
2 2 242 242

p =, 9 2 h” 9 2r°h”

om ~ am e TR = S () = T

Am2K?
SO dE = " ndn

The number of states with |n| between n and n + dn, and ¢ and ¢ + d¢, is

2
dN = ndnd¢ = m (%) dEd¢o

™

so the density of states is just m(L/27h)%. Remarkably, this result is independent of energy.

28. We want to solve (2.5.1) in cylindrical coordinates, that is find u(p, ¢, z) where

10 ( 8u) 1 0*u  O*u 2m.E 5
—— | p=— = — u=—k"u
pOp \" dp

T rog T o ®
subject to u(pa, ¢, 2) = ulpe, ¢, z) = u(p, 9,0) = u(p, ¢, L) = 0. For u(p, ¢, z) = w(p, 2)®(¢),

1] 0 [ ow o, 0*w 2,2, Ld*®
a{pa—p(pa—p)”w}”’“ TFag

The first two terms are independent of ¢, and the third term is independent of p and z, so they
both must equal some constant but with opposite sign. Write (1/®)9*®/0¢* = —m?, giving
P(¢p) = eF™? with m an integer so that ®(¢ + 2m) = ®(¢). Now with w(p, z) = R(p)Z(2),

p O ([ OR p>0*Z 5, ) 1 0 ( OR m*  , 10°Z
R Op <pap)+ Tp " i pR Op p(?p p? * +Z@zz 0
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and similarly put (1/2)9?Z/9z* = —a® so that Z(a) = e***. Enforcing Z(0) = 0 = Z(L)
leads to Z(z) = sin ayz where ay = ¢w/L and ¢ = 1,2,3.... The p equation is therefore

1d [ dR m?
Ld (diey kQ—aQ——>R:0
pdp <pdp) ( Cop

Now define k% = k* — a2 and x = kp. Multiply through by z? and this becomes

i.e., Bessel’s equation, with solution R(p) = A, Jm(kp) + BnNm(kp), where J,(z) and
N,,(z) are Bessel functions of the first and second kind, respectively. The cylinder wall
boundary conditions tell us that for each m we must have A,,J,(kpa) + B Nm(kpa) = 0
and Ay, JJo(kpp) + B N (kpp) = 0. Set the determinant to zero, and so we would solve

S (6Pa) Nin(Kpp) = Jin(155) Nin(Kpa)

for k. Denote with k,,, the nth solution for  for a given m. Then

2 2 2 2
E= f K? = f (K% + ] or Evpn = h [k:2 +(€_7r>

- 2m, 2m. 2me | ™ L

In the presence of a magnetic field, the Hamiltonian becomes (2.7.20), with ¢ = 0. We
recover the problem already solved, essentially, using the gauge transformation (2.7.36), but
we need to multiply the wave function by the phase factor explieA(x)/hic] as in (2.7.55). In
this case, A = VA = ¢(1/p)9A /D¢ is given by (2.7.62), so A(x) = Bp2¢/2 = hegd/e, and

1 20 1 120 2igdd

___>719¢>__ 1g¢q) _ = e et 2:_ 2 ) _2:_ + 2

saz " aE ) = gur T o g Y T T F Mo g = ()
for ®(¢p) = e*™?. Consequently, the solution is the same, but with (integer) m replaced by
v =m =+ g. (The solutions to Bessel’s equation are perfectly valid for non-integral indices.)
The ground state is £ = 1 and n = 1, so Ey = (h*/2m.)(koy + 7%/L?) for B = 0, and
Ey = (h*/2m.) (ks + w2/ L?) for B # 0. For these to be equal, m 4 g = 0 for integer m, so

he

Bp? h
= ¢ PP _ +m or B x 7Tp(21 = j:27r—cm =+—m
e e

g:hc 2

which is the “flux quantization” condition.

The history of flux quantization is quite fascinating. The original discovery can be found in
B. S. Deaver and W. M. Fairbank, “Experimental Evidence for Quantized Flux in Supercon-
ducting Cylinders”, Phys. Rev. Lett. 7(1961)43. The flux quantum worked out to be hc/2e,
but it was later appreciated that the charge carriers were Cooper pairs of electrons. See also
articles by Deaver and others in “Near Zero: new frontiers of physics”, by Fairbank, J. D.;
Deaver, B. S., Jr.; Everitt, C. W. F.; Michelson, P. F.. Freeman, 1988.
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29. The hardest part of this problem is to identify the Hamilton-Jacobi Equation. See
Chapter 10 in Goldstein, Poole, and Saftko. With one spacial dimension, this equation is
H(z,08/0z,t) + 05/0t = 0 to be solved for S(x,t), called Hamilton’s Principle Function.
So, Hyp = —(h?/2m)0% /0t* + V (2) = ihoy /Ot with o (x,t) = exp[iS(x,t)/h] becomes

1028 [i9S\?
hor * (ﬁa_)

If h is “small” then the second term in square brackets dominates. Dividing out v then leaves
us with the Hamilton-Jacobi Equation. Putting V(z) = 0 and trying S(z,t) = X(z) + T'(t),
find (X”)* /2m = —T" = o (a constant). Thus T(t) = a — ot and X (z) = +v2max + b,
where a and b are constants that can be discarded when forming ¢ (x,t) = exp[i(X + T)/h].
Hence ¢(z,t) = expli(v2max — at)/h], a plane wave. This exact solution comes about

because S is linear in x, so 92S/9z* = 0 and the first term in the Schrodinger Equation,
above, is manifestly zero.

h2

oS

Y+ V() = o

30. You could argue this should be in Chapter 3, but what you need to know about
the hydrogen atom is so basic, it would surely be covered in an undergraduate quantum
physics class. (See, for example, Appendix B.5.) The wave function for the atom looks like
W(r,0,¢0) = Ru(r)Y,"(0,¢) = ClmRnl( )P (cos B)e mé where Cyp, Ru(r), and P (cos ) are
all real. Since V = #9/0r + 0(1/r)0/00 + ¢(1/r sin 0)8/d¢, we have from (2.4.16)

= vy = g

Me mersin @

[¥I*
so j = 0if m =0, and is in the positive (negative) ¢ direction if m is positive (negative).

31. Write ibp/ — iap” = —ia(p” — bp'/a + b2/4a ) +ib%*/4a = —ia(p’ — b/2a)? + ib*/4a,
translate p’ in the integral, and use f_oo e~ dy = /7 7/c. Then

[e.e]

1
K" t;2' tg) = 77 dp’exp[

ip(a” —a') ip(t — to)
nh 2mh

1 21hm o im(x”—x’)z _ m o im(x”—x’)Q
oo\t —to) P | 2t —to) |\ 2t —to) C V" 2R(E — to)

To generalize to three dimensions, just realize that the length along the z-axis is invariant
under rotations. Therefore, we have

" \2
K (" t:x 1) = m m(x" —x) }

omhi(t — o) ¥ {Z 2h(t — to)
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32. From (2.6.22), Z =), exp [~ Ey], so, defining E to be the ground state energy,

107 , By —BE, . , By —B(Ey — E

i {12y (S Boonl D) (5 B Ay B
S exp BB | i S, exp [~B(Ba — Eo)

where we multiply top and bottom by exp(5Ep) in the penultimate step. The limit is easy

to take because for all terms in which E, # Ejy, the exponent is negative as § — oo and the
term vanishes. For the term E, = Ej, the numerator is F and the denominator is unity.

B—00

To “illustrate this for a particle in a one-dimensional box” is trivial. Just replace E, with
E, = h*n®n?/2mL? for n = 1,2,3... (B.2.4) and the work above carries through. The
old solution manual has a peculiar approach, though, replacing the sum by an integral,
presumably valid as § — oo, but I don’t really get the point.

33. Recall that, in the treatment (2.6.26) for the propagator, position (or momentum) bras
and kets are taken to be in the Heisenberg picture. So, one should recall the discussion on
pages 86-88, regarding the time dependence of base kets. In particular, |a’,t)y = UT(t)|d’),
that is, base kets are time dependent and evolve “backwards” relative to state kets in the
Schrodinger picture. So, for a free particle with H = p?/2m, we have

72

_iHh i p
(PP, to) = (p[e /e 0/ pf) = exp [_ﬁ%(t B to>] 5% (p" = p')

The solution in the old manual confuses me.

34. The classical action is S(t4,tp) = tib dt (3mi? — Imw?a2?). Approximating this for the
time interval At = t, — t,, defining Az = z, — x,, and writing z, + x, = 22, — Az, we have
1 Ax

1 (Az\?> 1 Az\? 1
“m(=2) -2 20 | om [ 52) Az — cmw?a2A
2m( t) me <$b 2) 2m< t) X 2mw Ty, t

keeping only lowest order terms. Combine this with (2.6.46) (and sum over all paths) to get
the Feynman propagator. Now the problem says to show this is the same as (2.6.26), but
(2.6.18) is the solution for the harmonic oscillator. Taking this limit for At — 0, one gets

m m w2 At?
K(xp, ty; Tayta) = 4/ SinAg P [{ 2hAt} {(:U% + 22) (1 -~ ) - Qxaxb}]
B m i (1 (Az)?2 1, o,
=\ mina: P [ﬁ {5m A g A

Taking the limit Ax — 0 clearly gives the same expression as inserting our classical action,
above, into (2.6.46).

S(ta, tb) ~ At

I’'m not sure I understand the point of this problem.
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35. The “Schwinger action principle” does not seem to be treated in modern references, and
also not in (this version of) this textbook. So, I just reprint here San Fu Tuan’s old solution.

The Schwinger action principle states that the following condition determines the
transformation funcrion qzczixltf in terms of a given quantum mechanical La-
grangian L

}-2

6a2t2|xltl> = (iﬂ)f-xztzlét Ldt|x; t,>.

1
To obtain <xzt2}xlt1>,le: S<xat, |x 8> = (ifﬂ)ﬁztziﬁwﬂlxltf vhere W;; is action
in going from initial state Xt to final state XoL,. Also, let 5‘"21 = 5”?_1

where 6“21 is the well-ordered form (c.f. Finkelstein (1973), p.164) of 6&!21-

i _ i
Then 8<x,t,|x;t,> = i-:xztz] Sy Iy 8,> = i 6m51<x2t2|x1:1> and thus élm<x,t,|x,t,>

(:thlxltl) - e:p[iuil]. (1)
The corresponding Feynman expression for «:xztzixl:l:» [c.f. Finkelstein (1573),
p.-144] is
= l z 1
ﬂ:ztz]xlt.l:» & paths exp[(i/K)S,,]. (2)
The classical limit of (2) is such that as K/S - small, the probability amplitude

“2‘2"1‘1’ will be important only for those varied paths which lie in a narrow

tube between x,t; and X,t, enclosing the classical path. On the other hand, to
describe the classical limit for (1) (which has a well-ordered expoment instead

of a sum over paths), is to comsider first the operator Hamilton-Jacobi equation

(c.f. Finkelstein (1973), p.166)

B(:—:-...-.x....} + w/3t = 0. (3)

Since w,, satisfies (3), which arises from a variation of the final state
(and is similar to the Schr8dinger picture), it is seen that the correspondence
limit of uil is S, i.e. the probability amplitude (1) approaches the considera-
tion of all possible paths as in the Feymman path integral case (2). Thus in
the classical limit, (1) and (2) become equal provided they both are modulated
by the factor 1/N (N = total number of individual steps in going frem 3t *

lztz)-
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36. Wave mechanically, the phase difference comes about because, approximating the neu-
tron by a plane wave, the factor exp[—i(wt — px/h)] (where x is the direction AC or BD
in Figure 2.9) is different because p (and v = p/m,) will depend on the height. That is,
PEp/2my = pio/2m, — myugz where z = l3sind. The accumulated phase difference is

- 1 1 - fiw
OBD — dac = |:pBD pAC_w(___)]llzpBthAC [1+ }h

h UBD Vac mpvBplAC

The experiment in Figure 2.10 was performed with A = 1.445A neutrons. (The book has
A = 1.42A?) So p = h/X = 27he/ch = 21(200 x 10% x 107% eV — A)/eX = 8.7 keV/c and
E = hw = p*/2m,, = 4.05x1072 eV, whereas m,,gh = (m,c*)gh/c* ~ 107" eV for h = 10 cm.
Thus the change in momentum is very small and fiw/m,vgpvac = m, E/p? = 1/2. Therefore

bnp — & _pBD—pAcﬁl szBD—Pi(j%l _ 2m 923l _ §mig(/\/27r)llz
pp e hoo2 2hp 2 2hp 2 2

This differs from (2.7.17) by the factor 3/2, which comes from the wt contribution to the
phase. San Fu Tuan’s solution starts with the same expression as I do, but ignores the wt
term when calculating the phase. My thought is that this is in fact a more complicated
problem than meets the eye, and I need to think about it more.

37. Since A = A(x), write p; = (h/i)0/0x; and work in position space. Then

iy z@a:j c
he [0A; 0A; ihe the
- —zz{a; Ty 909 = o (7 x At = TWBW(X)
? J
d*z; dl; 1 1 1
i II; H2 I, 13| + — [pi
mE = S — I H) = m{ + cb] QZMZ : [p,e¢]

Now from Problem 1.29(a), (1/ih)[p;, e¢] = —ed¢/0x; = eE;. Also [I1;, IT] = [IL;, TL;]IT; +
IT; [I1;, IL] so (1/2imh)[1L;, II7] = (e/2mc)(e4x Bipj + pj€ijiBi). This amounts to
d*x e 1 [dx
— =cE+ —[-B B—E——BB—
mogr =Bt g FBxpipxB e[ * (dtx th)}
As for showing that (2.7.30) follows from (2.7.29) with j defined as in (2.7.31), just follow
the same steps used to prove (2.4.15) with the definition (2.4.16). That is, multiply the
Schrodinger equation by ¢*, and then multiply its complex conjugate by v, and subtract
the two equations. You just need to use some extra care when writing out (2.7.29) to make
sure the A(x') is appropriately differentiated. Indeed, the Schrodinger equation becomes
n? g,
“om Y+ eph = zh—d)

The remainder of the proof is simple from here.

. i n
V’w+5A V’¢+ﬂ(v’ A)
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38. The vector potential A = —3ByX + 3By gives B = Bz in a gauge where V - A = 0.
Reading the Hamiltonian from the previous problem solution, we are led to an interaction

the e? e 1 1 e?B? eB e? B2
—A-V A= —— (—=Byx + =By |- 22 = L, 212
me +2m02 me ( 2 . 2 :L'y) p+8mc2 (") 2me +8m62 (@)
where L = r x p. The first term is just p - B for p = (e/2mc)L, the magnetic moment of

an orbiting electron. The second term gives rise to the quadratic Zeeman effect. See pages
328-330 and Problems 5.18 and 5.19 in the textbook.

39. See the solution to Prob.37. We find [IL,,Il,] = (ihe/c)B, = iheB/c or [Y,I1,] = ih for
Y = cll,/eB. As in the solution to Prob.38; A, = 0. So, as in Prob.37, the Hamiltonian is

H:_525_|_H_32/ é—p_z H_?24+1m€232

— Y2
2m  2m  2m  2m  2m 2 m?2c?

The second two terms constitute the one dimensional harmonic oscillator Hamiltonian, by
virtue of the commutation relation [Y,II,] = ik, with w replaced by eB/mec.

40. One requires that the phase change uBT/h be 27 after traversing a field B of length
= vT. The speed v = p/m = h/Am. Since u = g,(eh/2mc), we have

uBT —  eh BlmA 5 o B 4dmthe
o Tomen n 0t = gl

See also (3.2.25). San Fu Tuan’s solution is much more complicated. I may be misunder-
standing something.



