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Chapter Two

1. The equation of motion for an operator in the Heisenberg picture is given by (2.2.19), so

Ṡx =
1

ih̄
[Sx, H] = − 1

ih̄

eB

mc
[Sx, Sz] =

eB

mc
Sy Ṡy = −eB

mc
Sx Ṡz = 0

and S̈x,y = −ω2Sx,y for ω ≡ eB/mc. Thus Sx and Sy are sinusoidal with frequency ω and Sz
is a constant.

2. The Hamiltonian is not Hermitian, so the time evolution operator will not be unitary, and
probability will not be conserved as a state evolves in time. As suggested, set H11 = H22 = 0.
Then H = a|1〉〈2| in which case H2 = a2|1〉〈2|1〉〈1| = 0. Since H is time-independent,

U(t) = exp

(
− i
h̄
Ht

)
= 1− i

h̄
Ht = 1− i

h̄
at|1〉〈2|

even for finite times t. Thus a state |α, t〉 ≡ U(t)|2〉 = |2〉 − (iat/h̄)|1〉 has a time-dependent
norm. Indeed 〈α|α〉 = 1 + a2t2/h̄2 which is nonsense. In words, it says that if you start out
in the state |2〉, then the probability of finding the system in this state is unity at t = 0 and
then grows with time. You can be more formal, and talk about an initial state c1|1〉+ c2|2〉,
but the bottom line is the same; probability is no longer conserved in time.

3. We have n̂ = sin βx̂ + cos βẑ and S
.
= (h̄/2)σ, so S · n .

= (h̄/2)(sin βσx + cos βσz) and
we want to solve the matrix equation S · nψ = (h̄/2)ψ in order to find the initial state
column vector ψ. This is, once again, a problem whose solution best makes use of the Pauli
matrices, which are not introduced until Section 3.2. On the other hand, we can also make
use of Problem 1.9 to write down the initial state. Either way, we find

|α, t = 0〉 = cos

(
β

2

)
|+〉+ sin

(
β

2

)
|−〉 so,

|α, t〉 = exp

[
− i
h̄

eB

mc
tSz

]
|α, t = 0〉 = e−iωt/2 cos

(
β

2

)
|+〉+ eiωt/2 sin

(
β

2

)
|−〉

for ω ≡ eB/mc. From (1.4.17a), the state |Sx; +〉 = (1/
√

2)|+〉+ (1/
√

2)|−〉, so

|〈Sx; +|α, t〉|2 =

∣∣∣∣ 1√
2
e−iωt/2 cos

(
β

2

)
+

1√
2
eiωt/2 sin

(
β

2

)∣∣∣∣2
=

1

2
cos2

(
β

2

)
+

1

2

(
eiωt + e−iωt

)
cos

(
β

2

)
sin

(
β

2

)
+

1

2
sin2

(
β

2

)
=

1

2
+

1

2
cos(ωt) sin β =

1

2
(1 + sin β cosωt)

which makes sense. For β = 0, the initial state is a z-eigenket, and there is no precession,
so you just get 1/2 for the probability of measuring Sx in the positive direction. The same
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works out for β = π. For β = π/2, the initial state is |Sx; +〉 so the probabilty is +1 at t = 0
and 0 at t = π/ω = T/2. Now from (1.4.18a), Sx = (h̄/2)[|+〉〈−|+ |−〉〈+|], so

〈α, t|Sx|α, t〉 =

[
eiωt/2 cos

(
β

2

)
〈+|+ e−iωt/2 sin

(
β

2

)
〈−|
]

h̄

2

[
eiωt/2 sin

(
β

2

)
|+〉+ e−iωt/2 cos

(
β

2

)
|−〉
]

=
h̄

2
sin

(
β

2

)
cos

(
β

2

)[
eiωt + e−ωt

]
=
h̄

2
sin β cosωt

Again, this makes perfect sense. The expectation value is zero for β = 0 and β = π, but for
β = π/2, you get the classical precession of a vector that lies in the xy-plane.

4. First, restating equations from the textbook,

|νe〉 = cos θ|ν1〉 − sin θ|ν2〉
|νµ〉 = sin θ|ν1〉+ cos θ|ν2〉

and E = pc

(
1 +

m2c2

2p2

)
Now, let the initial state |νe〉 evolve in time to become a state |α, t〉 in the usual fashion

|α, t〉 = e−iHt/h̄|νe〉
= cos θe−iE1t/h̄|ν1〉 − sin θe−iE2t/h̄|ν2〉

= e−ipct/h̄
[
e−im

2
1c

3t/2ph̄ cos θ|ν1〉 − e−im
2
2c

3t/2ph̄ sin θ|ν2〉
]

The probability that this state is observed to be a |νe〉 is

P (νe → νe) = |〈νe|α, t〉|2 =
∣∣∣e−im2

1c
3t/2ph̄ cos2 θ + e−im

2
2c

3t/2ph̄ sin2 θ
∣∣∣2

=
∣∣∣cos2 θ + ei∆m

2c3t/2ph̄ sin2 θ
∣∣∣2

= cos4 θ + sin4 θ + 2 cos2 θ sin2 θ cos

[
∆m2c3t

2ph̄

]
= 1− sin2 2θ sin2

[
∆m2c3t

4ph̄

]
Writing the nominal neutrino energy as E = pc and the flight distance L = ct we have

P (νe → νe) = 1− sin2 2θ sin2

[
∆m2c4 L

4Eh̄c

]
It is quite customary to ignore the factor of c4 and agree to measure mass in units of energy,
typically eV.



Copyright, Pearson Education. 17

The neutrino oscillation probability from KamLAND is plotted here:

of these backgrounds is assumed to be flat to at least
30 MeV based on a simulation following [12]. The atmos-
pheric ! spectrum [13] and interactions were modeled
using NUANCE [14]. We expect fewer than 9 neutron and
atmospheric ! events in the data-set. We observe 15 events
in the energy range 8.5–30 MeV, consistent with the limit
reported previously [15].

The accidental coincidence background above 0.9 MeV
is measured with a 10- to 20-s delayed-coincidence win-
dow to be 80:5! 0:1 events. Other backgrounds from (",
n) interactions and spontaneous fission are negligible.

Antineutrinos produced in the decay chains of 232Th and
238U in the Earth’s interior are limited to prompt energies
below 2.6 MeV. The expected geoneutrino flux at the
KamLAND location is estimated with a geological refer-
ence model [9], which assumes a radiogenic heat pro-
duction rate of 16 TW from the U and Th-decay chains.
The calculated !!e fluxes for U and Th-decay, including
a suppression factor of 0.57 due to neutrino oscillation,
are 2:24" 106 cm#2 s#1 (56.6 events) and 1:90"
106 cm#2 s#1 (13.1 events), respectively.

With no !!e disappearance, we expect 2179! 89$syst%
events from reactors. The backgrounds in the reactor en-
ergy region listed in Table II sum to 276:1! 23:5; we also
expect geoneutrinos. We observe 1609 events.

Figure 1 shows the prompt energy spectrum of selected
!!e events and the fitted backgrounds. The unbinned data
are assessed with a maximum likelihood fit to two-flavor
neutrino oscillation (with #13 & 0), simultaneously fitting

the geoneutrino contribution. The method incorporates the
absolute time of the event and accounts for time variations
in the reactor flux. Earth-matter oscillation effects are
included. The best fit is shown in Fig. 1. The joint con-
fidence intervals give "m2

21 & 7:58'0:14
#0:13$stat%'0:15

#0:15$syst% "
10#5 eV2 and tan2#12 & 0:56'0:10

#0:07$stat%'0:10
#0:06$syst% for

tan2#12 < 1. A scaled reactor spectrum with no distortion
from neutrino oscillation is excluded at more than 5$. An
independent analysis using cuts similar to Ref. [2] gives
"m2

21 & 7:66'0:22
#0:20 " 10#5 eV2 and tan2#12 & 0:52'0:16

#0:10.
The allowed contours in the neutrino oscillation parame-

ter space, including "%2-profiles, are shown in Fig. 2. Only
the so-called LMA-I region remains, while other regions
previously allowed by KamLAND at (2:2$ are disfavored
at more than 4$. For three-neutrino oscillation, the data
give the same result for "m2

21, but a slightly larger uncer-
tainty on #12. Incorporating the results of SNO [16] and
solar flux experiments [17] in a two-neutrino analysis with
KamLAND assuming CPT invariance, gives "m2

21 &
7:59'0:21

#0:21 " 10#5 eV2 and tan2#12 & 0:47'0:06
#0:05.

To determine the number of geoneutrinos, we fit the
normalization of the !!e energy spectrum from the U and
Th-decay chains simultaneously with the neutrino oscilla-
tion parameters using the KamLAND and solar data. There
is a strong anticorrelation between the U and Th-decay
chain geoneutrinos, and an unconstrained fit of the indi-
vidual contributions does not give meaningful results.
Fixing the Th/U mass ratio to 3.9 from planetary data
[18], we obtain a combined U' Th best fit value of $4:4!
1:6% " 106 cm#2 s#1 (73! 27 events), in agreement with
the reference model.

The KamLAND data, together with the solar ! data, set
an upper limit of 6.2 TW (90% C.L.) for a !!e reactor source
at the Earth’s center [19], assuming that the reactor pro-
duces a spectrum identical to that of a slow neutron artifi-
cial reactor.

The ratio of the background-subtracted !!e candidate
events, including the subtraction of geoneutrinos, to no-
oscillation expectation is plotted in Fig. 3 as a function of
L0=E. The spectrum indicates almost two cycles of the
periodic feature expected from neutrino oscillation.

In conclusion, KamLAND confirms neutrino oscillation,
providing the most precise value of "m2

21 to date and
improving the precision of tan2#12 in combination with
solar ! data. The indication of an excess of low-energy
antineutrinos consistent with an interpretation as geo-
neutrinos persists.

The KamLAND experiment is supported by the
Japanese Ministry of Education, Culture, Sports, Science
and Technology, and under the United States Department
of Energy Office Grant No. DEFG03-00ER41138 and
other DOE grants to individual institutions. The reactor
data are provided by courtesy of the following electric
associations in Japan: Hokkaido, Tohoku, Tokyo,
Hokuriku, Chubu, Kansai, Chugoku, Shikoku, and
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FIG. 3 (color). Ratio of the background and geoneutrino-
subtracted !!e spectrum to the expectation for no-oscillation as
a function of L0=E. L0 is the effective baseline taken as a flux-
weighted average (L0 & 180 km). The energy bins are equal
probability bins of the best fit including all backgrounds (see
Fig. 1). The histogram and curve show the expectation account-
ing for the distances to the individual reactors, time-dependent
flux variations, and efficiencies. The error bars are statistical
only and do not include, for example, correlated systematic
uncertainties in the energy scale.

PRL 100, 221803 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
6 JUNE 2008

221803-4

The minimum in the oscillation probability directly gives us sin2 2θ, that is

1− sin2 2θ ≈ 0.4 so θ ≈ 25◦

The wavelength gives the mass difference parameter. We have

40
km

MeV
= 2π

4h̄c

∆m2
=

8π × 200 MeV fm

∆m2

where we explicitly agree to measure ∆m2 in eV2. Therefore

∆m2 = 40π × 1012eV2 × 10−15/103 = 1.2× 10−4 eV2

The results from a detailed analysis by the collaboration, in Phys.Rev.Lett.100(2008)221803,
are tan2 θ = 0.56 (θ = 37◦) and ∆m2 = 7.6× 10−5 eV2. The full analysis not only includes
the fact that the source reactors are at varying distances (although clustered at a nominal
distance), but also that neutrino oscillations are over three generations.

5. Note: This problem is worked through rather thoroughly in the text. See page 85.
First, ẋ = (1/ih̄)[x,H] = (1/ih̄)[x, p2/2m] = p/m (using Problem 1.29). However ṗ =
(1/ih̄)[p, p2/2m] = 0 so p(t) = p(0), a constant. Therefore x(t) = x(0) + p(0)t/m, and
[x(t), x(0)] = [x(0) + p(0)t/m, x(0)] = [p(0), x(0)]t/m = −ih̄t/m. By the generalized uncer-
tainty principle(1.4.53), this means that the uncertainty in position grows with time. This
conclusion is also a consequence of a study of “wave packets.”
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6. This is the proof of the so-called “dipole sum rule.” Using Problem 1.29,

[H, x] =

[
p2

2m
+ V (x), x

]
= −ih̄ p

m
so [[H, x], x] = − h̄

2

m

Now [[H, x], x] = [H, x]x − x[H, x] = Hx2 − xHx − xHx + x2H = Hx2 + x2H − 2xHx,
and so 〈a′′|[[H, x], x]|a′′〉 = 2E ′′〈a′′|x2|a′′〉 − 2〈a′′|xHx|a′′〉 = −h̄2/m from above. Inserting a
complete set of states |a′〉 into each of the two terms on the left, we come up with

h̄2

2m
= 〈a′′|xHx|a′′〉 − E ′′〈a′′|x2|a′′〉

=
∑
a′

[〈a′′|xH|a′〉〈a′|x|a′′〉 − E ′′〈a′′|x|a′〉〈a′|x|a′′〉] =
∑
a′

(E ′ − E ′′)|〈a′′|x|a′〉|2

7. We solve this in the Heisenberg picture, letting the operators be time dependent. Then

d

dt
x · p =

1

ih̄
[x · p, H] =

1

ih̄

[
xpx + ypy + zpz,

1

2m
(p2
x + p2

y + p2
z) + V (x)

]
=

1

2ih̄m

{
[x, p2

x]px + [y, p2
y]py + [z, p2

z]pz
}

+
1

ih̄
x · [p, V (x)]

=
1

m
(p2
x + p2

y + p2
z)− x

∂V

∂x
− y∂V

∂y
− z∂V

∂z
=

p2

m
− x ·∇V

using (2.2.23). What does this mean if dx ·p/dt = 0? The original solution manual is elusive,
so I’m not sure what Sakurai was getting at. In Chapter Three, we show that for the orbital
angular momentum operator L, one has L2 = x2p2 − (x · p)2 + ih̄x · p, so it appears that
there is a link between this quantity and conservation of angular momentum. So,. . . ?

8. Firstly, 〈(∆x)2〉 = 〈x2〉 − 〈x〉2 and (from Problem 5 above) x(t) = x(0) + (p(0)/m)t, so
〈x(t)〉 = 〈x(0)〉+ (〈p(0)〉/m)t = 0 and 〈(∆x)2〉 = 〈x2〉 at all times. Therefore we want

〈(∆x)2〉 = 〈x2(t)〉 = 〈x2(0)〉+
t

m
〈x(0)p(0) + p(0)x(0)〉+

t2

m2
〈p2(0)〉

where the expectation value can be calculated for the state at t = 0. For this (minimum
uncertainty) state, we have ∆x = x(0) − 〈x(0)〉 = x(0) and ∆p = p(0) − 〈p(0)〉 = p(0), so
from Problem 1.18(b) we have ∆p(0)|〉 = ia∆x(0)|〉 where a is real. Therefore

〈(∆x)2〉 = 〈x2(0)〉+
t

m

[
ia〈x2(0)〉 − ia〈x2(0)〉

]
+

t2

m2
(−ia)(ia)〈x2(0)〉 = 〈x2(0)〉

[
1 +

a2t2

m2

]
where h̄2/4 = 〈(∆x)2〉〈(∆p)2〉 = a2〈x2(0)〉 sets a2 = h̄2/4〈(∆x)2〉|t=0. San Fu Tuan’s original
solution manual states that this agrees with the expansion of wave packets calculated using
wave mechanics. This point should probably be investigated further.
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9. The matrix representation of H in the |a′〉, |a′′〉 basis is H =

[
0 δ
δ 0

]
, so the characteristic

equation for the eigenvalues is (−E)2−δ2 = 0 and E = ±δ ≡ E± with eigenstates 1√
2

[
1
±1

]
.

This gives |a′〉 = (|E+〉+ |E−〉)/
√

2 and |a′′〉 = (|E+〉 − |E−〉)/
√

2. Since the Hamiltonian is
time-independent, the time evolved state is exp(−iHt/h̄)|a′〉 = (e−iδt/h̄|E+〉+eiδt/h̄|E−〉)/

√
2.

The probability to find this state at time t in the state |a′′〉 is |〈a′′| exp(−iHt/h̄)|a′〉|2, or

1

4

∣∣(〈E+| − 〈E−) |
(
e−iδt/h̄|E+〉+ eiδt/h̄|E−〉

)∣∣2 =
1

4

∣∣e−iδt/h̄ − eiδt/h̄∣∣2 = sin2

(
δt

h̄

)
This is the classic two-state problem. Spin-1/2 is one example. Another is ammonia.

10. This problem is nearly identical to Problem 9, only instead speciying two ways to de-
termine the time-evolved state, plus Problem 2 tossed in at the end. Perhaps it should be
removed from the next edition.

(a) The energy eigenvalues are E± ≡ ±∆ with normalized eigenstates |E±〉 = (|R〉±|L〉)/
√

2.

(b) We have |R〉 = (|E+〉+ |E−〉)/
√

2 and |L〉 = (|E+〉 − |E−〉)/
√

2, so, with ω ≡ ∆/h̄,

|α, t〉 = e−iHt/h̄|α, t = 0〉 = e−iHt/h̄|R〉〈R|α〉+ e−iHt/h̄|L〉〈L|α〉

=
1√
2

[
e−iωt|E+〉+ eiωt|E−〉

]
〈R|α〉+

1√
2

[
e−iωt|E+〉 − eiωt|E−〉

]
〈L|α〉

(c) The initial condition means that 〈R|α〉 = 1 and 〈L|α〉 = 0, so we calculate

|〈L|α, t〉|2 =
1

4

∣∣(〈E+| − 〈E−) |
(
e−iωt|E+〉+ eiωt|E−〉

)∣∣2 =
1

4

∣∣e−iωt − eiωt∣∣2 = sin2 ωt

(d) This is the only part of the problem that is “new.” Indeed, Problem 9 could have been
done this way, instead of using the time propagation operator. Using (2.1.27) we write

ih̄
∂

∂t
〈R|α, t〉 = 〈R|H|α, t〉 and ih̄

∂

∂t
〈L|α, t〉 = 〈L|H|α, t〉

Let ψR(t) ≡ 〈R|α, t〉 and ψL(t) ≡ 〈L|α, t〉. These coupled equations become

ih̄ψ̇R =
1√
2

(∆〈E+| −∆〈E−) |α, t〉 = ∆ψL and ih̄ψ̇L = ∆ψR

or ψ̇R = −iωψL and ψ̇L = −iωψR, so ψR(t) = Aeiωt + B−iωt and ψL(t) = Ceiωt + D−iωt.
These are just (b) where A = 〈R|E+〉, B = 〈R|E−〉, C = 〈L|E+〉, and D = 〈L|E−〉.

(e) See Problem 2. It can be embellished by in fact solving the most general time-evolution
problem, but in the end, the point will still be that probability is not conserved.
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11. Restating this problem: Using the one-dimensional simple harmonic oscillator as an
example, illustrate the difference between the Heisenberg picture and the Schrödinger picture.
Discuss in particular how (a) the dynamic variables x and p and (b) the most general state
vector evolve with time in each of the two pictures.

This problem, namely 2.10 in the previous edition, is rather open ended, atypical for most
of the problems in the book. Perhaps it should be revised. Most of the problem is in fact
covered on pages 94 to 96. Anyway, we start from the Hamiltonian

H =
1

2m
p2 +

1

2
mω2x2 =

(
N +

1

2

)
h̄ω

(a) In the Schrödinger picture, x and p do not evolve in time. In the Heisenberg picture

dx

dt
=

1

ih̄
[x,H] =

1

2imh̄
[x, p2] =

1

2imh̄
ih̄(2p) =

p

m
dp

dt
=

1

ih̄
[p,H] =

mω2

2ih̄
[p, x2] =

mω2

2ih̄
(−ih̄)(2x) = −mω2x

using Problem 1.29. These are just the classical Hamilton’s equations, with a force −ω2x.
Solving these coupled equations are simple, yielding sinusoidal motion at frequency ω for
x and p. One can also recognize that the two pictures coincide at t = 0, and then get
Heisenberg from Schrödinger using xH(t) = exp(iHt/h̄)x(0) exp(−iHt/h̄) and expanding
the exponentials. Similarly for momentum.

(b) In the Heisenberg picture, state vectors are stationary. For the Schrödinger picture, it is
easiest to expand in terms of eigenstates of N , that is |α, t〉 =

∑
cn(t)|n〉, so (2.1.27) gives

ih̄
∑
n

ċn(t)|n〉 = H|α, t〉 =
∑
n

(
n+

1

2

)
h̄ωcn(t)|n〉

in which case cn(t) = exp[−i(n+ 1/2)ωt], using orthonormality of the |n〉.

12. Not enough information is given in the problem statement. The state |0〉 is one for
which 〈x〉 = 0 = 〈p〉. As described in the solution to Problem 11, in the Heisenberg picture,
the position operator is x(t) = x(0) cos(ωt) + (p(0)/m) sin(ωt), and 〈x〉 = 〈t = 0|x(t)|t = 0〉.
Since eip/h̄xe−ipa/h̄ = eip/h̄{[x, e−ipa/h̄] + e−ipa/h̄x} = eip/h̄ih̄(−ia/h̄)e−ipa/h̄ + x = x+ a, using
Problem 1.29, the expectation value of position is

〈x〉 = 〈0|eip/h̄x(0)e−ipa/h̄|0〉 cos(ωt) + 〈0|eip/h̄p(0)e−ipa/h̄|0〉 sin(ωt)

= 〈0|[x(0) + a]|0〉 cos(ωt) + 〈0|p(0)|0〉 sin(ωt) = a cos(ωt)

Since the state e−ipa/h̄|0〉 represents a position displaced by a distance a (See Problem 1.28),
we have the classical motion of a harmonic oscillator starting from rest with amplitude a.
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13. Making use of (1.6.36), we recognize T (a) = exp(−ipa/h̄) as the operator that translates
in x by a distance a. Therefore 〈x′|T (a) = 〈x′ − a| and

〈x′|e−ipa/h̄|0〉 = 〈x′ − a|0〉 =
1

π1/4

1

x
1/2
0

exp

[
−1

2

(
x′ − a
x0

)2
]

The probability to find the state e−ipa/h̄|0〉 in the ground state |0〉 is the square of

〈0|e−ipa/h̄|0〉 =

∫
dx′〈0|x′〉〈x′|e−ipa/h̄|0〉 =

1

π1/2

1

x0

∫ ∞
−∞

dx′e−[(x′−a)2+x′
2
]/2x20

The integral is simple to do by completing the square. Write

(x′ − a)2 + x′
2

= 2

[
x′

2 − ax′ + a2

2

]
= 2

[(
x′ − a

2

)2
]

+
a2

2

and shift the integration variable by a/2. You end up with

〈0|e−ipa/h̄|0〉 =
1

π1/2

1

x0

e−a
2/4x20

∫ ∞
−∞

dye−y
2/x20 = e−a

2/4x20

so the probability is just e−a
2/2x20 . This is indeed time-independent.

14. Rearranging, we have x =
√
h̄/2mω(a+ a†) and p = i

√
h̄mω/2(a† − a), therefore

x|n〉 =

√
h̄

2mω

[√
n|n− 1〉+

√
n+ 1|n+ 1〉

]
p|n〉 = i

√
h̄mω

2

[√
n+ 1|n+ 1〉 −

√
n|n− 1〉

]
〈m|x|n〉 =

√
h̄

2mω
〈m|(a+ a†)|n〉 =

√
h̄

2mω

[√
nδm,n−1 +

√
n+ 1δm.n+1

]
〈m|p|n〉 = i

√
h̄mω

2
〈m|(a† − a)|n〉 = i

√
h̄mω

2

[√
n+ 1δm.n+1 −

√
nδm,n−1

]
〈m|{x, p}|n〉 = 〈m|(xp+ px)|n〉 = 〈m|xp|n〉+ 〈n|xp|m〉∗

= i

√
h̄mω

2

[√
n+ 1〈m|x|n+ 1〉 −

√
n〈m|x|n− 1〉

−
√
m+ 1〈n|x|m+ 1〉+

√
m〈n|x|m− 1〉

]
= i

h̄

2

[
(n+ 1)δnm +

√
(n+ 1)(n+ 2)δn+2,m −

√
n(n− 1)δn−2,m − nδnm

−(m+ 1)δnm −
√

(m+ 1)(m+ 2)δn,m+2 +
√
m(m− 1)δn,m−2 +mδnm

]
= ih̄

[√
(n+ 1)(n+ 2)δn+2,m −

√
n(n− 1)δn−2,m

]
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〈m|x2|n〉 =

√
h̄

2mω

[√
n〈m|x|n− 1〉+

√
n+ 1〈m|x|n+ 1〉

]
=

h̄

2mω

[√
n(n− 1)δn−2,m + (2n+ 1)δnm +

√
(n+ 1)(n+ 2)δn+2,m

]
〈m|p2|n〉 = i

√
h̄mω

2

[√
n+ 1〈m|p|n+ 1〉 −

√
n〈m|p|n− 1〉

]
= − h̄mω

2

[√
(n+ 1)(n+ 2)δn+2,m − (2n+ 1)δnm +

√
n(n− 1)δn−2,m

]
Now, the virial theorem in three dimensions is quoted as〈

p2

m

〉
= 〈x ·∇V 〉 or

〈
p2

m

〉
=

〈
x
dV

dx

〉
in one dimension. For the harmonic oscillator, xdV/dx = mω2x2. So, evaluating the expec-
tation value in the state |n〉 using the calculations above, we have〈

p2

m

〉
=
h̄ω

2
(2n+ 1) = h̄ω

(
n+

1

2

)
and

〈
x
dV

dx

〉
=
h̄ω

2
(2n+ 1) = h̄ω

(
n+

1

2

)
and the virial theorem is indeed satisfied.

15. Turning around what is given, 〈p′|x′〉 = (2πh̄)−1/2e−ip
′x′/h̄. Then

〈p′|x|α〉 =

∫
dx′〈p′|x′〉〈x′|x|α〉 =

∫
dx′x′〈p′|x′〉〈x′|α〉

= ih̄

∫
dx′

∂

∂p′
〈p′|x′〉〈x′|α〉 = ih̄

∂

∂p′

∫
dx′〈p′|x′〉〈x′|α〉 = ih̄

∂

∂p′
〈p′|α〉

For the Hamiltonian H = p2/2m + mω2x2/2 with eigenvalues E, the wave equation in
momentum space is 〈p′|H|α〉 = E〈p′|α〉 ≡ Euα(p′), and the second term in 〈p′|H|α〉 is

mω2

2
〈p′|x2|α〉 =

mω2

2
ih̄

∂

∂p′
〈p′|x|α〉 = −mh̄

2ω2

2

∂2

∂p′2
〈p′|α〉 = −mh̄

2ω2

2

d2uα
dp′2

With a little rearranging, the wave equation becomes

−mh̄
2ω2

2

d2uα
dp′2

+
1

2m
p′

2

uα(p′) = Euα(p′)

which is the same as (2.5.13) but with mω2 replaced with 1/m. Inserting this same substi-
tution into (2.5.28) therefore gives the wave functions in momentum space.
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16. From (2.3.45a), x(t) = x(0) cosωt+ [p(0)/mω] sinωt, so

C(t) ≡ 〈0|x(t)x(0)|0〉 = 〈0|x(0)x(0)|0〉 cosωt+ (1/mω)〈0|p(0)x(0)|0〉 sinωt

The matrix elements can be calculated by the techniques in Problem 14. You find that
〈0|x(0)x(0)|0〉 = h̄/2mω and 〈0|p(0)x(0)|0〉 = −ih̄/2. (Note: Error in old solutions manual.)
Therefore C(t) = (h̄/2mω) cosωt− i(h̄/2mω) sinωt.

17. Write |α〉 = a|0〉+ b|1〉, with a, b real and a2 + b2 = 1. Using Problem 14,

〈α|x|α〉 = a2〈0|x|0〉+ ab〈0|x|1〉+ ab〈1|x|0〉+ b2〈1|x|1〉 = 2ab

√
h̄

2mω

The maximum is obtained when a = b = 1/
√

2 so 〈x〉 =
√
h̄/2mω.

The state vector in the Schrödinger picture is |α, t〉 = e−iHt/h̄|α〉 = 1√
2

[
e−iωt/2|0〉+ e−3ωt/2|1〉

]
and the expectation value 〈α, t|x|α, t〉, again using Problem 14, is

〈x〉 =
1

2
e−iωt〈0|x|1〉+

1

2
eiωt〈1|x|0〉 =

1

2

√
h̄

2mω
(e−iωt + eiωt) =

√
h̄

2mω
cosωt

In the Heisenberg picture, use x(t) from (2.3.45a), and again Problem 14. In this case, we
note that 〈0|p|1〉 = 〈1|p|0〉 = 0, so we read off 〈x〉 =

√
h̄/2mω cosωt.

To evaluate 〈(∆x)2〉 = 〈x2〉 − 〈x〉2, we just need to calculate 〈x2〉. Use the state vector in
the Schrödinger picture, and read off matrix elements of x2 from Problem 14, to get

〈x2〉 =
1

2
〈0|x2|0〉+

1

2
e−iωt〈0|x2|1〉+

1

2
eiωt〈1|x2|0〉+

1

2
〈1|x2|1〉 =

1

2

h̄

2mω
[1 + 3] =

h̄

mω

so 〈(∆x)2〉 = (h̄/mω)(1− 1
2

cos2 ωt).

18. Somehow, it seems this problem should be worked by considering 〈0|x2n|0〉, but I don’t
see it. So, instead, work the left and right sides separately. For the right side, from Problem
14, exp[−k2〈0|x2|0〉/2] = exp[−k2h̄/4mω]. For the left side, use position space to write

〈0|eikx|0〉 =

∫
dx′〈0|eikx|x′〉〈x′|0〉 =

∫
dx′eikx

′ |〈x|0〉|2 =

√
mω

πh̄

∫
dx′eikx

′
e−mωx

′2/h̄

Put x′ = u
√
h̄/mω and write −u2 + iku

√
h̄/mω = −(u− ik

√
h̄/mω/2)2− h̄k2/4mω. Then,

putting w = u− ik
√
h̄/mω/2, we have

〈0|eikx|0〉 =

√
mω

πh̄

√
h̄

mω
e−h̄k

2/4mω

∫
dwe−w

2

=
1√
π
e−h̄k

2/4mω
√
π = e−h̄k

2/4mω

and the two sides are indeed equal.
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19. It will be useful to note that, from (2.3.21), (a†)n|0〉 =
√
n!|n〉. So

a
[
eλa

†|0〉
]

= a

[
∞∑
n=0

λn

n!
(a†)n|0〉

]
= a

[
∞∑
n=0

λn√
n!
|n〉

]
=
∞∑
n=1

λn√
n!
a|n〉

=
∞∑
n=1

λn√
(n− 1)!

|n− 1〉 = λ

∞∑
m=0

λm√
m!
|m〉 = λ

[
eλa

†|0〉
]

so eλa
†|0〉 is an eigenvector of a with eigenvalue λ. For the normalization, we need the inner

produce of eλa
†|0〉 with itself. However, 〈0|eλ∗aeλa†|0〉 = 〈0|eλ∗λ|0〉 = e|λ|

2
since eλa

†|0〉 is an
eigenvector of a with eigenvalue λ. Thus |λ〉 = e−|λ|

2/2eλa
†|0〉 is the normalized eigenvector.

Now we have a|λ〉 = λ|λ〉 and 〈λ|a† = 〈λ|λ∗, so 〈λ|(a† ± a)|λ〉 = λ∗ ± λ; 〈λ|(a)2|λ〉 = λ2;
〈λ|(a†)2|λ〉 = (λ∗)2; 〈λ|a†a|λ〉 = λ∗λ; and 〈λ|aa†|λ〉 = 〈λ|(1 + a†a)|λ〉 = 1 + λ∗λ. Therefore

〈x〉 = 〈λ|x|λ〉 =

√
h̄

2mω
(λ∗ + λ)

〈x2〉 =
h̄

2mω

[
λ2 + (λ∗)2 + λ∗λ+ (1 + λ∗λ)

]
(∆x)2 = 〈x2〉 − 〈x〉2 =

h̄

2mω

〈p〉 = 〈λ|p|λ〉 = i

√
mh̄ω

2
(λ∗ − λ)

〈p2〉 = −mh̄ω
2

[
λ2 + (λ∗)2 − λ∗λ− (1 + λ∗λ)

]
(∆p)2 = 〈p2〉 − 〈p〉2 =

mh̄ω

2

so ∆x∆p = h̄/2 and the minimum uncertainty relation is indeed satisfied. Now, from above,

|λ〉 = e−|λ|
2/2

∞∑
n=0

λn√
n!
|n〉 =

∞∑
n=0

f(n)|n〉 so |f(n)|2 = e−|λ|
2 |λ|2n

n!

which is a Poisson distribution Pn(µ) = e−µµn/n! with mean µ ≡ |λ|2. Note that the mean
value of n is not the same as the most probable value, which is an integer, although they
approach the same value for large µ, when the Poisson distribution approaches a Gaussian.
However, Pn(µ)/Pn−1(µ) = µ/n > 1 only if n < µ, so the most probable value of n is the
largest integer nm less than |λ2|, and the energy is (nm + 1)h̄ω. To evaluate e−ip`/h̄|0〉 =

e`
√
mω/2h̄(a†−a)|0〉, use eA+B = eAeBe−[A,B]/2 where A and B each commute with [A,B]. (See

Gottfried, 1966, page 262; Gottfried, 2003, problem 2.13; or R. J. Glauber, Phys. Rev.
84(1951)399, equation 39.) With λ ≡ `

√
mω/2h̄, we then easily prove the last part, as

e−ip`/h̄|0〉 = e`
√
mω/2h̄a†e−`

√
mω/2h̄ae−`

2mω/4h̄|0〉 = e−m`
2ω/4h̄e`

√
mω/2h̄a†|0〉 = e−λ

2/2eλa
†|0〉
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20. Note the entry in the errata; J2 is not yet defined at this point in the text. The solution
is straightforward. We have [a±, a

†
±] = 1 and [a±, a

†
∓] = 0 = [a†±, a

†
∓] = [a±, a∓]. Then

[Jz, J+] =
h̄2

2

(
a†+a+a

†
+a− − a

†
+a−a

†
+a+ − a†−a−a

†
+a− + a†+a−a

†
−a−

)
=

h̄2

2

(
a†+a+a

†
+a− − a

†
+a−(a+a

†
+ − 1)− a†−a−a

†
+a− + a†+a−a

†
−a−

)
=

h̄2

2

(
a†+a− − a

†
−a−a

†
+a− + a†+a−a

†
−a−

)
=
h̄2

2
a†+

(
a− − a†−a−a− + a−a

†
−a−

)
=

h̄2

2
a†+

(
a− − a†−a−a− + (1 + a†−a−)a−

)
= h̄2a†+a− = +h̄J+

and similarly for [Jz, J−]. Put N± = a†±a± so Jz = (h̄/2)(N+−N−) with [N+, N−] = 0. From

(3.5.24), J2 = J+J−+J2
z − h̄Jz, so J+J− = h̄2a†+a−a

†
−a+ = h̄2N+(1+a†−a−) = h̄2N+(1+N−),

so J2 = h̄2

4
(N2

+ +2N+N−+N2
−+2N+ +2N−) = h̄2

4
(N2 +2N) = h̄2

2
N
(
N
2

+ 1
)
. Finally, noting

that we can write both J2 and Jz in terms of N±, which commute, we clearly have [J2, Jz] = 0.

21. Starting with (2.5.17a), namely g(x, t) = exp(−t2+2tx), carry out the suggested integral∫ ∞
−∞

g(x, t)g(x, s)e−x
2

dx = =

∫ ∞
−∞

e2st−(t+s)2+2x(t+s)−x2dx

= e2st

∫ ∞
−∞

e−[x−(t+s)]2dx = π1/2e2st

i.e.
∞∑
n=0

∞∑
m=0

[∫ ∞
−∞

Hn(x)Hm(x)e−x
2

dx

]
1

(n!)2
tnsm = π1/2

∞∑
n=0

2n

n!
tnsn

The sum on the right only includes terms where t and s have the same power, so the
normalization integral on the left must be zero if n 6= m. When n = m this gives[∫ ∞

−∞
Hn(x)Hn(x)e−x

2

dx

]
1

(n!)2
= π1/2 2n

n!

or

∫ ∞
−∞

H2
n(x)e−x

2

dx = π1/22nn!

which is (2.5.29). In order to normalize the wave function (2.5.28), we compute∫ ∞
−∞

u∗n(x)un(x)dx = |cn|2
∫ ∞
−∞

H2
n

(
x

√
mω

h̄

)
e−mωx

2/h̄dx = |cn|2
√

h̄

mω
π1/22nn! = 1

so that cn = (mω/πh̄)1/4(2nn!)−1/2, taking cn to be real. Compare to (B.4.3).



Copyright, Pearson Education. 26

22. This is a harmonic oscillator with ω =
√
k/m for x > 0, with 〈x|n〉 = 0 at x = 0, that

is, solutions with odd n. So, the ground state has energy 3h̄ω/2. The wave function is given
by (B.4.3), times

√
2 for normalization, that is u(x) = 2(mω/πh̄)1/4e−mωx

2/2h̄x
√
mω/h̄, for

x > 0, and u(x) = 0 for x < 0. We than calculate the expectation value

〈x2〉 =
4mω

h̄

√
mω

πh̄

∫ ∞
0

x4e−mωx
2/h̄dx =

4mω

h̄

√
mω

πh̄

3

8

(
h̄

mω

)2
√

πh̄

mω
=

3

2

h̄

mω

23. From (B.2.4), un(x) = 〈x|n〉 =
√

2/L sin(nπx/L) and En = n2π2h̄2/2mL2, so

ψ(x, t) = 〈x|α, t〉 = 〈x|e−iHt/h̄|α, 0〉 =
∑
n

〈x|e−iHt/h̄|n〉〈n|α, 0〉 =
∑
n

cne
−iEnt/h̄un(x)

where cn ≡ 〈n|α, 0〉. Now, I take a hint from the previous solutions manual, that “known
to be exactly at x = L/2 with certainty” and “You need not worry about normalizations”

mean that 〈x|α, 0〉 ≡ ψ(x, 0) = δ(x− L/2), so cn =
∫ L

0
ψ(x, 0)un(x)dx =

√
2/L sin(nπ/2). I

don’t like this; it seems that ψ(x, 0) =
√
δ(x− L/2) is a better choice, but how well defined

is “known with certainty”? Anyway, cn = 0 if n is even, and cn =
√

2/L(−1)(n−1)/2 if n is
odd, and |cn|2 = 0 or |cn|2 = 2/L, i.e. independent of n, for n odd. Then, insert in above.

24. Write the energy eigenvalue as −E < 0 for a bound state, so the Schrödinger Equation
is (−h̄2/2m)d2u/dx2 − ν0δ(x)u(x) = −Eu(x). Thus u(x) = A exp(−x

√
2mE/h̄) for x > 0,

and u(x) = A exp(+x
√

2mE/h̄) for x < 0, and du/dx = ∓(
√

2mE/h̄)u(x). Now integrate
the Schrödiner Equation from −ε to +ε, and then take ε→ 0. You end up with

lim
ε→0

{
− h̄2

2m

√
2mE

h̄
[−u(ε)− u(−ε)]

}
− ν0u(0) =

h̄2

m

√
2mE

h̄
u(0)− ν0u(0) = 0

which gives E = mν2
0/2h̄

2. This is unique, so there is only the ground state.

25. For this problem, I just reproduce the solution from the manual for the revised edition.
(Note that “problem 22” means “problem 24” here.) See the errata for some comments.
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26. With V (x) = λx, λ > 0 and −∞ < x < ∞, the eigenvalues E are continuous. The
wave function is oscillatory for x < a and decaying for x > a, where a ≡ E/λ is the classical
turning point. Indeed, the wave function is proportional to the Airy function Ai(z) where
z ∝ (x − a). See Figure 2.3. On the other hand, for V (x) = λ|x|, there are now quantized
bound states. This parity-symmetric potential has even and odd wave functions. The even
wave functions have Ai′(z) = 0 at x = 0, and the odd wave functions have Ai(z) = 0 at
x = 0. These conditions lead to quantized energies through (2.5.34) and (2.5.35). As shown
in Figure 2.4, the odd energy levels have been confirmed by “bouncing neutrons.”

27. Note: This was Problem 36 in Chapter Five in the Revised Edition. It was moved to this
chapter because “density of states” is explicitly worked out now in this chapter. It seems,
though, that I should have reworded the problem a bit. See the errata.

Refer back to the discussion in Section 2.5. The wave function is

uE(x) =
1

L
eik·x where kx =

2π

L
nx and ky =

2π

L
ny

and nx and ny are integers, with p = h̄k. The energy is

E =
p2

2m
=

h̄2

2m
(k2
x + k2

y) =
2π2h̄2

mL2
(n2

x + n2
y) =

2π2h̄2

mL2
n2

so dE =
4π2h̄2

mL2
ndn

The number of states with |n| between n and n+ dn, and φ and φ+ dφ, is

dN = ndndφ = m

(
L

2πh̄

)2

dEdφ

so the density of states is just m(L/2πh̄)2. Remarkably, this result is independent of energy.

28. We want to solve (2.5.1) in cylindrical coordinates, that is find u(ρ, φ, z) where

1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+

1

ρ2

∂2u

∂φ2
+
∂2u

∂z2
= −2meE

h̄2 u ≡ −k2u

subject to u(ρa, φ, z) = u(ρb, φ, z) = u(ρ, φ, 0) = u(ρ, φ, L) = 0. For u(ρ, φ, z) = w(ρ, z)Φ(φ),

1

w

[
ρ
∂

∂ρ

(
ρ
∂w

∂ρ

)
+ ρ2∂

2w

∂z2

]
+ ρ2k2 +

1

Φ

d2Φ

dφ2
= 0

The first two terms are independent of φ, and the third term is independent of ρ and z, so they
both must equal some constant but with opposite sign. Write (1/Φ)∂2Φ/∂φ2 = −m2, giving
Φ(φ) = e±imφ with m an integer so that Φ(φ+ 2π) = Φ(φ). Now with w(ρ, z) = R(ρ)Z(z),

ρ

R

∂

∂ρ

(
ρ
∂R

∂ρ

)
+
ρ2

Z

∂2Z

∂z2
+ ρ2k2 = m2 so

1

ρR

∂

∂ρ

(
ρ
∂R

∂ρ

)
− m2

ρ2
+ k2 +

1

Z

∂2Z

∂z2
= 0
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and similarly put (1/Z)∂2Z/∂z2 = −α2 so that Z(α) = e±iαz. Enforcing Z(0) = 0 = Z(L)
leads to Z(z) = sinα`z where α` = `π/L and ` = 1, 2, 3 . . .. The ρ equation is therefore

1

ρ

d

dρ

(
ρ
dR

dρ

)
+

(
k2 − α2

` −
m2

ρ2

)
R = 0

Now define κ2 ≡ k2 − α2
` and x ≡ κρ. Multiply through by x2 and this becomes

x2d
2R

dx2
+ x

dR

dx
+ (x2 −m2)R = 0

i.e., Bessel’s equation, with solution R(ρ) = AmJm(κρ) + BmNm(κρ), where Jm(x) and
Nm(x) are Bessel functions of the first and second kind, respectively. The cylinder wall
boundary conditions tell us that for each m we must have AmJm(κρa) + BmNm(κρa) = 0
and AmJm(κρb) +BmNm(κρb) = 0. Set the determinant to zero, and so we would solve

Jm(κρa)Nm(κρb)− Jm(κρb)Nm(κρa)

for κ. Denote with kmn the nth solution for κ for a given m. Then

E =
h̄2

2me

k2 =
h̄2

2me

[κ2 + α2
` ] or E`mn =

h̄2

2me

[
k2
mn +

(
`π

L

)2
]

In the presence of a magnetic field, the Hamiltonian becomes (2.7.20), with φ = 0. We
recover the problem already solved, essentially, using the gauge transformation (2.7.36), but
we need to multiply the wave function by the phase factor exp[ieΛ(x)/h̄c] as in (2.7.55). In
this case, A =∇Λ = φ̂(1/ρ)∂Λ/∂φ is given by (2.7.62), so Λ(x) = Bρ2

aφ/2 ≡ h̄cgφ/e, and

1

Φ

d2Φ

dφ2
−→ e−igφ

1

Φ

d2

dφ2

(
eigφΦ

)
=

1

Φ

d2Φ

dφ2
+

2ig

Φ

dΦ

dφ
− g2 = −m2 ∓ 2gm− g2 = −(m± g)2

for Φ(φ) = e±imφ. Consequently, the solution is the same, but with (integer) m replaced by
γ ≡ m± g. (The solutions to Bessel’s equation are perfectly valid for non-integral indices.)
The ground state is ` = 1 and n = 1, so E0 = (h̄2/2me)(k01 + π2/L2) for B = 0, and
E0 = (h̄2/2me)(kγ1 + π2/L2) for B 6= 0. For these to be equal, m± g = 0 for integer m, so

g ≡ e

h̄c

Bρ2
a

2
= ±m or B × πρ2

a = ±2π
h̄c

e
m = ±hc

e
m

which is the “flux quantization” condition.

The history of flux quantization is quite fascinating. The original discovery can be found in
B. S. Deaver and W. M. Fairbank, “Experimental Evidence for Quantized Flux in Supercon-
ducting Cylinders”, Phys. Rev. Lett. 7(1961)43. The flux quantum worked out to be hc/2e,
but it was later appreciated that the charge carriers were Cooper pairs of electrons. See also
articles by Deaver and others in “Near Zero: new frontiers of physics”, by Fairbank, J. D.;
Deaver, B. S., Jr.; Everitt, C. W. F.; Michelson, P. F.. Freeman, 1988.
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29. The hardest part of this problem is to identify the Hamilton-Jacobi Equation. See
Chapter 10 in Goldstein, Poole, and Safko. With one spacial dimension, this equation is
H(x, ∂S/∂x, t) + ∂S/∂t = 0 to be solved for S(x, t), called Hamilton’s Principle Function.
So, Hψ = −(h̄2/2m)∂2ψ/∂t2ψ + V (x)ψ = ih̄∂ψ/∂t with ψ(x, t) = exp[iS(x, t)/h̄] becomes

− h̄2

2m

[
i

h̄

∂2S

∂x2
+

(
i

h̄

∂S

∂x

)2
]
ψ + V (x)ψ = −∂S

∂t
ψ

If h̄ is “small” then the second term in square brackets dominates. Dividing out ψ then leaves
us with the Hamilton-Jacobi Equation. Putting V (x) = 0 and trying S(x, t) = X(x) + T (t),
find (X ′′)2 /2m = −T ′ = α (a constant). Thus T (t) = a − αt and X(x) = ±

√
2mαx + b,

where a and b are constants that can be discarded when forming ψ(x, t) = exp[i(X + T )/h̄].
Hence ψ(x, t) = exp[i(±

√
2mαx − αt)/h̄], a plane wave. This exact solution comes about

because S is linear in x, so ∂2S/∂x2 = 0 and the first term in the Schrödinger Equation,
above, is manifestly zero.

30. You could argue this should be in Chapter 3, but what you need to know about
the hydrogen atom is so basic, it would surely be covered in an undergraduate quantum
physics class. (See, for example, Appendix B.5.) The wave function for the atom looks like
ψ(r, θ, φ) = Rnl(r)Y

m
l (θ, φ) = ClmRnl(r)P

m
l (cos θ)eimφ where Clm, Rnl(r), and Pm

l (cos θ) are

all real. Since ∇ = r̂∂/∂r + θ̂(1/r)∂/∂θ + φ̂(1/r sin θ)∂/∂φ, we have from (2.4.16)

j =
h̄

me

Im [ψ?∇ψ] = φ̂
mh̄

mer sin θ
|ψ|2

so j = 0 if m = 0, and is in the positive (negative) φ direction if m is positive (negative).

31. Write ibp′ − iap′
2

= −ia(p′
2 − bp′/a + b2/4a2) + ib2/4a = −ia(p′ − b/2a)2 + ib2/4a,

translate p′ in the integral, and use
∫∞
−∞ e

−cx2dx =
√
π/c. Then

K(x′′, t;x′, t0) =
1

2πh̄

∫ ∞
−∞

dp′ exp

[
ip(x′′ − x′)

h̄
− ip′2(t− t0)

2mh̄

]
=

1

2πh̄

√
2πh̄m

i(t− t0)
exp

[
i
m(x′′ − x′)2

2h̄(t− t0)

]
=

√
m

2πh̄i(t− t0)
exp

[
i
m(x′′ − x′)2

2h̄(t− t0)

]
To generalize to three dimensions, just realize that the length along the x-axis is invariant
under rotations. Therefore, we have

K(x′′, t; x′, t0) =

√
m

2πh̄i(t− t0)
exp

[
i
m(x′′ − x′)2

2h̄(t− t0)

]
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32. From (2.6.22), Z =
∑

a′ exp [−βEa′ ], so, defining E0 to be the ground state energy,

lim
β→∞

{
− 1

Z

∂Z

∂β

}
= lim

β→∞

{∑
a′ Ea′ exp [−βEa′ ]∑
a′ exp [−βEa′ ]

}
= lim

β→∞

{∑
a′ Ea′ exp [−β(Ea′ − E0)]∑
a′ exp [−β(Ea′ − E0)]

}
= E0

where we multiply top and bottom by exp(βE0) in the penultimate step. The limit is easy
to take because for all terms in which Ea′ 6= E0, the exponent is negative as β →∞ and the
term vanishes. For the term Ea′ = E0, the numerator is E0 and the denominator is unity.

To “illustrate this for a particle in a one-dimensional box” is trivial. Just replace Ea′ with
En = h̄2π2n2/2mL2 for n = 1, 2, 3 . . . (B.2.4) and the work above carries through. The
old solution manual has a peculiar approach, though, replacing the sum by an integral,
presumably valid as β →∞, but I don’t really get the point.

33. Recall that, in the treatment (2.6.26) for the propagator, position (or momentum) bras
and kets are taken to be in the Heisenberg picture. So, one should recall the discussion on
pages 86–88, regarding the time dependence of base kets. In particular, |a′, t〉H = U †(t)|a′〉,
that is, base kets are time dependent and evolve “backwards” relative to state kets in the
Schrödinger picture. So, for a free particle with H = p2/2m, we have

〈p′′, t|p′, t0〉 = 〈p′′|e−iHt/h̄eiHt0/h̄|p′〉 = exp

[
− i
h̄

p′
2

2m
(t− t0)

]
δ(3) (p′′ − p′)

The solution in the old manual confuses me.

34. The classical action is S(ta, tb) =
∫ tb
ta
dt
(

1
2
mẋ2 − 1

2
mω2x2

)
. Approximating this for the

time interval ∆t ≡ tb − ta, defining ∆x ≡ xb − xa, and writing xa + xb = 2xb −∆x, we have

S(ta, tb) ≈ ∆t

[
1

2
m

(
∆x

∆t

)2

− 1

2
mω2

(
xb −

∆x

2

)2
]
≈ 1

2
m

(
∆x

∆t

)
∆x− 1

2
mω2x2

b∆t

keeping only lowest order terms. Combine this with (2.6.46) (and sum over all paths) to get
the Feynman propagator. Now the problem says to show this is the same as (2.6.26), but
(2.6.18) is the solution for the harmonic oscillator. Taking this limit for ∆t→ 0, one gets

K(xb, tb;xa, ta) =

√
m

2πih̄∆t
exp

[{
im

2h̄∆t

}{
(x2

b + x2
a)

(
1− ω2∆t2

2

)
− 2xaxb

}]
=

√
m

2πih̄∆t
exp

[
i

h̄

{
1

2
m

(∆x)2

∆t
− 1

2
mω2(x2

a + x2
b)∆t

}]
Taking the limit ∆x→ 0 clearly gives the same expression as inserting our classical action,
above, into (2.6.46).

I’m not sure I understand the point of this problem.
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35. The “Schwinger action principle” does not seem to be treated in modern references, and
also not in (this version of) this textbook. So, I just reprint here San Fu Tuan’s old solution.
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36. Wave mechanically, the phase difference comes about because, approximating the neu-
tron by a plane wave, the factor exp[−i(ωt − px/h̄)] (where x is the direction AC or BD
in Figure 2.9) is different because p (and v = p/mn) will depend on the height. That is,
p2
BD/2mn = p2

AC/2mn −mngz where z = l2 sin δ. The accumulated phase difference is

φBD − φAC =

[
pBD − pAC

h̄
− ω

(
1

vBD
− 1

vAC

)]
l1 =

pBD − pAC
h̄

[
1 +

h̄ω

mnvBDvAC

]
l1

The experiment in Figure 2.10 was performed with λ = 1.445Å neutrons. (The book has
λ = 1.42Å?) So p = h/λ = 2πh̄c/cλ = 2π(200 × 106 × 10−5 eV − Å)/cλ = 8.7 keV/c and
E = h̄ω = p2/2mn = 4.05×10−2 eV, whereas mngh = (mnc

2)gh/c2 ≈ 10−9 eV for h = 10 cm.
Thus the change in momentum is very small and h̄ω/mnvBDvAC = mnE/p

2 = 1/2. Therefore

φBD − φAC =
pBD − pAC

h̄

3

2
l1 ≈

p2
BD − p2

AC

2h̄p

3

2
l1 = −2m2

ngz

2h̄p

3

2
l1 = −3

2

m2
ng(λ/2π)l1z

h̄2

This differs from (2.7.17) by the factor 3/2, which comes from the ωt contribution to the
phase. San Fu Tuan’s solution starts with the same expression as I do, but ignores the ωt
term when calculating the phase. My thought is that this is in fact a more complicated
problem than meets the eye, and I need to think about it more.

37. Since A = A(x), write pi = (h̄/i)∂/∂xi and work in position space. Then

[Πi,Πj]ψ(x) =

[
h̄

i

∂

∂xi
− eAi

c
,
h̄

i

∂

∂xj
− eAj

c

]
ψ(x) = − h̄

i

e

c

{[
∂

∂xi
, Aj

]
−
[
Ai,

∂

∂xj

]}
ψ(x)

= − h̄
i

e

c

{
∂Aj
∂xi
− ∂Ai
∂xj

}
ψ(x) =

ih̄e

c
εijk (∇×A)k ψ(x) =

ih̄e

c
εijkBkψ(x)

m
d2xi
dt2

=
dΠi

dt
=

1

ih̄
[Πi, H] =

1

ih̄

[
Πi,

1

2m
Π2 + eφ

]
=

1

2imh̄

∑
j

[
Πi,Π

2
j

]
+

1

ih̄
[pi, eφ]

Now from Problem 1.29(a), (1/ih̄)[pi, eφ] = −e∂φ/∂xi = eEi. Also [Πi,Π
2
j ] = [Πi,Πj]Πj +

Πj[Πi,Πj] so (1/2imh̄)[Πi,Π
2
j ] = (e/2mc)(εijkBkpj + pjεijkBk). This amounts to

m
d2x

dt2
= eE +

e

2mc
[−B× p + p×B] = e

[
E +

1

2c

(
dx

dt
×B−B× x

dt

)]
As for showing that (2.7.30) follows from (2.7.29) with j defined as in (2.7.31), just follow
the same steps used to prove (2.4.15) with the definition (2.4.16). That is, multiply the
Schrödinger equation by ψ∗, and then multiply its complex conjugate by ψ, and subtract
the two equations. You just need to use some extra care when writing out (2.7.29) to make
sure the A(x′) is appropriately differentiated. Indeed, the Schrödinger equation becomes

− h̄2

2m
∇′2ψ +

ih̄e

mc
A ·∇′ψ +

ih̄e

2mc
(∇′ ·A)ψ +

e2

2mc2
A2ψ + eφψ = ih̄

∂ψ

∂t

The remainder of the proof is simple from here.
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38. The vector potential A = −1
2
Byx̂ + 1

2
Bxŷ gives B = Bẑ in a gauge where ∇ ·A = 0.

Reading the Hamiltonian from the previous problem solution, we are led to an interaction

ih̄e

mc
A·∇+

e2

2mc2
A2 = − e

mc

(
−1

2
Byx̂ +

1

2
Bxŷ

)
·p+

e2B2

8mc2
(x2+y2) =

eB

2mc
Lz+

e2B2

8mc2
(x2+y2)

where L ≡ r × p. The first term is just µ · B for µ ≡ (e/2mc)L, the magnetic moment of
an orbiting electron. The second term gives rise to the quadratic Zeeman effect. See pages
328–330 and Problems 5.18 and 5.19 in the textbook.

39. See the solution to Prob.37. We find [Πx,Πy] = (ih̄e/c)Bz = ih̄eB/c or [Y,Πy] = ih̄ for
Y ≡ cΠx/eB. As in the solution to Prob.38, Az = 0. So, as in Prob.37, the Hamiltonian is

H =
Π2
x

2m
+

Π2
y

2m
+

p2
z

2m
=

p2
z

2m
+

Π2
y

2m
+

1

2
m
e2B2

m2c2
Y 2

The second two terms constitute the one dimensional harmonic oscillator Hamiltonian, by
virtue of the commutation relation [Y,Πy] = ih̄, with ω replaced by eB/mc.

40. One requires that the phase change µBT/h̄ be 2π after traversing a field B of length
l = vT . The speed v = p/m = h/λm. Since µ = gn(eh̄/2mc), we have

µBT

h̄
= gn

eh̄

2mc

B

h̄

lmλ

h
= 2π or B =

4πhc

egnlλ

See also (3.2.25). San Fu Tuan’s solution is much more complicated. I may be misunder-
standing something.


