Problem 2.4: Solution
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Assume steady, incompressible, constant-property, laminar flow. Also, assume negligible gravity
effect. For an infinitely large plane no dependence on x is possible, therefore
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The y-momentum gives
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However, mass conservation says,

- v = constant = —v;,
Evidently, v = v, everywhere, and that satisfies E 0\ (2).

Eqn. (1) can now be written as
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The solution will be

u=U, [1 — exp (—%y)]
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(Note that, by our definition, v; > 0 for suction at the wall.)

If we define the edge of the boundary layer as the location where Ui = (%, then

¢ =[1-exp (-26)] (6)
Forvg = 0.1™/,, and assumingv = 8.6 X 10~ mz/s for water, and {* = 0.999, then
§~6X10"°m (7)
For blowing, vs < 0, and since {* < 1, will set,
5=—v151n(1—(*)<0 (8)
(No acceptable solution)

a) In steady-state, neglecting the viscous dissipation, the energy equation becomes
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Aty =0,T =T, (10)
Aty - oo, T - o (11)
The solution will be
T-
= Too =1—exp (——y) (12)
For air, withv = .158 X 1074 ™ /s' will have for the suction case,
6 =0.00109m
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